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Abstract-This paper is a summary of an address given to the Conference on Frontiers 
of Applied Geometry. A stochastic version of catastrophe theory is presented, using 
stochastic differential equations. We show that there is a nontrivial relationship between 
the potential functions of the deterministic models and the stationary probability density 
functions of the stochastic models. In the second part of the paper, we use maximum 
likelihood theory to derive estimators for the stationary densities, and we demonstrate 
how to test statistical hypotheses for these models. 

1. INTRODUCTION 

Statistical catastrophe theory is a term that sounds inherently paradoxical. Statistical 
models do not, as a rule, contain degenerate singularities, and catastrophe theory is 
generally perceived as a purely deterministic branch of differential topology. However, 
one may restate catastrophe models in stochastic form, using stochastic differential equa- 
tions. The resulting stochastic processes have stationary probability density functions 
which are of some topological interest in themselves. It will also be seen that these 
densities are, as a class, amenable to statistical analysis by the classical method of max- 
imum likelihood. This enables the construction of algorithms for estimating the param- 
eters of given models from data, and for testing statistical hypotheses concerning the 
existence of degenerate singularities within the data. 

2. STOCHASTIC CATASTROPHE MODELS 

Let x(t) be the real-valued state variable of a (deterministic) system whose dynamics 
are controlled by a smooth potential function U(x), so that 

dxldt = -aufax. (1) 

The singularities of U are those points for which 8 U lax = 0. These singularities are said 
to be degenerate if azU lax* = 0. Catastrophe theory is a family of topological theorems 
which is useful for classifying these degenerate singularities and for describing the be- 
havior of systems such as (1) in the neighborhood of such singularities [see 1,2,3 for 
details]. 

One way to render (1) stochastic is to introduce a white noise driving term, viz., 

dx = (-aVlax)dt + m.dw(t). (2) 
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In this stochastic differential equation (SDE). the function w(t) is to be understood as a 
standard Wiener process (idealized Brownian motion). This construction is the usual one 
within the stochastic calculus of It8 and Stratanovich 141. The function V(X) in (2) mod- 
ulates the intensity of the random input dw(t); it is called the injiniresimnl ~wrictnce 

jirnction of the SDE. Let A, an interval of the real line, be the range of x (i.e., x: T x 
fl + A CR, where 0 is the sample space for the random variable x). Then v(x) > 0 for 
x E Interior(A), and V(X) L 0 for x E Boundary(A). Some common examples for the 
infinitesimal variance function are 

(1) v(x) = E, A= (- m, + Q)), 

(2) v(x) = EX, A= t&m), 

(3) v(x) = EX(l--X), A= (0,l). 

The last occurs very commonly in the theories of population genetics, but we shall pri- 
marily concern ourselves with the first two. 

Let j&, t,x,J be the probability density function 

&Prob{x(t)<ulx(O)=.r,}, 

for the random variable x at time t, given an initial position x0. 

THEOREM (Ito) [4, chap. 71. 

If dx = m(x)dt + I’m dbtj, 
(3) 

In effect, this theorem shows that the probability density of an SDE obeys a (determin- 
istic!) partial differential equation. We shall find it convenient to focus our attention on 
the evolution of the density j; rather than on the individual trajectories of x. 

Equation (3) is the Kolmogoro\, forward equation for the stochastic process. As 
t + m, f converges to a stationary form, f*, such that af *,‘at = 0. This stationary density 
is either a generalized function (e.g., the Dirac b-function, see Es]), or a proper probability 
density function, depending on the functions m and V. Upon solving (3) for f* with 
appropriate boundary conditions, we obtain 

f*(x) = C-exP [2 I ((m(s)- f~’ (S))/r(S))ds]. (4) 

(See [4, p. 1971 for details.) The functionf* given by (4) will be the theoretical probability 
density function for use in statistical catastrophe theory, in which case we shall identify 
m(x) with -au/ax. For example, suppose that the infinitesimal variance function is 
constant, e.g., v(x) = E. Then, since m(x) = -aU lax, we have 

.r 

which implies 

f” (x) = C*exp[2 I(-aUl&)dsl~] 

= C.exp[--2LI(x)Iel, 

loaf‘ * = IogC - 2UiE. (5) 
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Thus, we see that logf* is just an affine transformation of the potential function. There- 
fore, the entire apparatus of catastrophe theory, and, in particular, the classification of 
the degenerate singularities of U, now applies without change to logf*, the logarithm of 
the stationary probability density function of the stochastic version of (1). Of course, if 
the infinitesimal variance function is not constant, then the situation is not quite so 
straightforward (but perhaps is more interesting). 

2. THE STATIONARY DENSITIES 

If the infinitesimal variance function l,(u) is zero at one of the boundaries of the interval 
A, then the stationary density f* generically has either a zero or a pole at the boundary. 
For example, if the potential function U is quadratic and I’ is proportional to X, then f* 
has the form .P exp (- bx) for 0 <SC 00. Thus, .f* has a pole or zero at zero depending 
on the sign of a, and is positive but finite at zero only if u = 0. We suggest that there is 
a need for a local classification of stationary densities near boundaries. One such clas- 
sification exists 161, but it is not a topological classification. 

In the interior of its domain, f* has differentiable relative maxima (modes) and minima 
(antimodes). The modes and antimodes of .f* are related nontrivially to the relative 
minima and maxima of the potential function U. Only when the infinitesimal variance 
function is constant is the relationship simple: In this special case the modes and anti- 
modes of .f* coincide with the relative minima and maxima of U, respectively. In all 
other cases it is necessary to refer to Eq. (4), which can be rewritten as 

d(logf* )ldx = -2(aU/ax- +-;&~/&w)lv(x). (6) 

Define the shape function off* to be 

g(x) = au/ax + iaviax. (7) 

From (6) and (7) it can be seen that the modes and antimodes off* occur at the zeroes 
of a(x), which do not necessarily coincide with the zeroes of aCJ lax. 

The canonical catastrophe potentials are universal unfoldings of Taylor polynomial 
approximations to potentials that have degenerate singularities 131. For example, the 
potential $x4 has a degenerate singularity at ,u=O. Its universal unfolding is %x4-%x2-UX, 
the canonical cusp potential. The cusp potential has relative minima and maxima at {x: 
x3-bx-a=O). Now suppose that V(X) = 2e(x-x0), EBO. For this choice of infinitesimal 
variance function, the shape function for f * is 

g(x) = 2 - bx - a + E, (x>x,). (8) 

From this, the modes and antimodes off* are seen to be displaced away from the minima 
and maxima of U. Indeed, f* may be unimodal even if U has two minima. 

The parameters of an unfolding are called its control variables, and their number is its 
codimension. The canonical cusp potential is 

V(x,a,b) = $! - ib2 -ax, (9) 

where a and b are the control variables and codim( U) = 2. The zeroes of alJ lax are 
frequently depicted as a function of the control variables, as shown in Fig. 1, where 
aUlax = x3-bx-a = 0. 
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Fig. 1. 

In the stochastic theory presented here there is a probability density function, f: , 
associated with each point c in the control space of CT. The precise form off* depends 
on the choice of the infinitesimal variance function, V(S). Each choice of v determines a 
family of densitiesJ‘,* , parametrized by C. Figure 2 shows a representative sequence 
from such a family, constructed from the cusp potential of Eq. (9) with p(x)=constant. 
The sequence of parameters in Fig. 2 corresponds to the pathway through the control 
space marked with an arrow in Fig. 1. 

The nontrivial relationship between the number of minima of U and the number of 
modes off* is illustrated by the following theorem. 

Fig. 2. Bifurcation of an exponential family of probability densities. 
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THEOREM: Let U :R’+’ + R be the universal urzfolding of a given catastrophe potential 

U of codimension k. Let HER” be the subset of the control space of Uwithin which U 
has more than one relative minimum. Let I~(x)=~E(x -x0), with x0 arbitrary and E>O, and 
let .f* be the stationary probability density$lnction associated to U and 11. If c E h, then 

there exists a rlalue of E such that .f‘r is not multimodal. 

Proqf. By (7), the shape function for f: is’ g,(x) = W(x,c)lax + E. U(x,c) can be 
taken to be a polynomial, from which ge is a polynomial. Now choose E to lift the relative 
minima of ge above the y=O axis. Then g,(x) has at most one real root. 

This theorem is of great import to statistical catastrophe theory, because it states that 
stochastic systems with multiple stable equilibria may nevertheless exhibit unimodal sta- 
tionary probability densities. It would appear possible that multiple stable equilibria could 
even be inferred from certain unimodal densities. 

4. STATISTICAL INFERENCE 

For the purposes of statistical catastrophe theory, it is fortunate that the stationary 
densities should have the exponential form (4). The exponential families of probability 
density functions take the form 

f(x) = exp[--+ + b 4,(x) + ..- + &4~,(x)l, (10) 

where the +i:R +R are linearly independent, and J, is chosen to normalize the density. 

THEOREM [73. If {X,, X2, . . . ,X,} is a random sample of observations of a random 
variable whose density is an exponential family, then, 

(1) Maximum likelihood estimators (MLE’s) for 0 = (O,, . . . 0,) exist. 

(2) The MLE’s are completely determined by the k sample statistics i 4i (X&, 
)51 

i=I, . . . ,k. 

(3) The MLE’s are asymptotically normally distributed as N + CQ, and have minimum 
sampling lqariance in the class of all such estimators. 

If both the potential function and the infinitesimal variance function of a stochastic 
catastrophe model are polynomials, then it is clearly possible to express its stationary 
density as an exponential family. For example, consider the canonical cusp potential of 
Eq. (9). If we assume that V(X) = VEX, then 

g(x) = 2 - bx - a + E (11) 

is the shape polynomial. Clearly g has up to 3 roots, and so f* is possibly bimodal. The 
density f * is 

f*(x) = exp[-+ + ((a-•)log(x) + bx -x3/3)/~]. (12) 

so, 

8, = -1 + a/E, 
e2 = ble, 

03 = - l/36, 

6(x) = log(x), 
&Ax) = x, (13) 
4J3c-4 = 2. 
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The theorem just stated now applies. The statistics 

1 i log&, i xi, i _q 
i=l i=l i=l i 

are sufficient to calculate (e,, I%, &), the maximum likelihood estimators for (e,, &, es). 
Estimates for the three original coefficients (CJ, h, E) are easily obtained from (e,, &, 0,). 

The only problematic part of this procedure is the calculation of the maximum likeli- 
hood estimators from the sufficient statistics. The following algorithm, for general dens- 
ities of the form (lo), will usually converge to the MLE’s. It is based on a Newton-Raphson 
search for the maximum of the likelihood function. In the algorithm, 6(n) refers to 
the coefficient vector (e,, . . . ,6,) on the n iteration. The initial value should be 0”’ = 
(0, 0,. . .) 0, - 1). 

(1) Do (2-3) until @‘+r) = 6(n). 
(2) Using numerical integration, calculate 

Vi = E{f)f(X)l@“)} - i4i(Xj)/N, (i= 1,. ,k); 

j=l 

Mij = COV{~j(x)~~j(x){~(n)}, (iJ = 1,. . . ,k). 

(3) Let @n+l) =fltn’ _ M-Iv. 

This algorithm can easily be extended to cover cases in which control variables have 
also been measured. A penalty, of course, is paid in the numerical integration stage. 

5. HYPOTHESIS TESTING 

The procedure described in the previous section yields estimates for the elements of 
the parameter 8 of a specified hypothetical model, given a random sample of observations. 
The particular estimates so obtained maximize the likelihood of the observed data, where 
the maximum is taken over all the parameter values permitted by the hypothesis. The 
likelihood of a parameter 8 is defined as 

L(e) = ;YIf(X,lOJ, (14) 
i=l 

where f(.rl@ is the probability density function determined by 0. This likelihood function 
also permits the comparison of different models, using the straightforward notion that the 
model with the larger maximum likelihood is the better model. When one model is con- 
tained within another, in the sense that the parameter space of the first is a proper subset 
of the parameter space of the second, then this comparison can be formalized into a 
statistical test, with known asymptotic sampling properties. This is particularly conve- 
nient for statistical catastrophe theory, because the canonical catastrophe potentials in 
one variable form a heimrchy of polynomials of increasing degree. It is therefore a rel- 
atively simp!e matter to construct a corresponding heirarchy of statistical tests, with 
which each catastrophe model can be tested against models of higher codimension. 

Let Lk,t. be the maximum of the likelihood function for a stochastic catastrophe model 
with codimension k and infinitesimal variance function I’. Let A = Lk,rlLk+j,r be the 
likelihood rutio for the test of the hypothesis H k: codim( U)=li against the alternative 
hypothesis Hk+jZ codim( U)=k+j. Because Hk is contained within Hk+j, we will have 
0 < A 5 1. In essence, we want to reject Hk if A is too small. We must determine what 
“too small” means. 
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Under certain mild regularity conditions it can be shown [7, p. 3111 that -2 logh 
converges in distribution to the x2 random variable with j degrees of freedom. This 
provides a criterion for the decision concerning the value of A: Hk is rejected at the 
sigtrijkarw-e lcl*e/ (Y if -2 logh exceeds the value c such that Prob{$ > c} = (Y. This 
means that if Hk is true there is a (known) probability (Y that Hk will mistakenly be 
rejected. 

6. SUMMARY 

The broad outlines of a statistical catastrophe theory have been given. The four steps 
are (1) construction of a general class of stochastic catastrophe models, (2) determination 
of their stationary probability density functions, (3) specification of an algorithm for es- 
timating their parameters, (4) identification of a statistical test by which competing models 
may be evaluated. 

Since functions of maximum likelihood estimators are themselves maximum likelihood 
estimators, the estimation and testing paradigm described here is invariant under in- 
vertible changes of parametrization. However, MLE’s are nor invariant under general 
diffeomorphisms of the measured variables. Therefore, much of the topological generality 
of catastrophe theory may have been lost in the statistical portion of our theory. 

There are a number of directions for future work. Catastrophes in two dependent 
variables (the umbilics) should be considered. Nonparametric statistical theory should be 
integrated with topological models-perhaps this combination is more natural than the 
pairing of maximum likelihood estimation (a parametric theory) with catastrophe theory. 
Lastly, it would be desirable to find a statistical procedure for parameter estimation and 
hypothesis testing that does not require numerical integration. 
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