
Theoretical Computer Science 327 (2004) 375–390

www.elsevier.com/locate/tcs

Minimizing finite automata is computationally hard

Andreas Malcher
Institut für Informatik, JohannWolfgang Goethe Universität, D-60054 Frankfurt am Main, Germany

Received 17 September 2003; received in revised form 19 March 2004; accepted 19 March 2004

Abstract

It is known that deterministic finite automata (DFAs) can be algorithmically minimized, i.e., a
DFA M can be converted to an equivalent DFAM ′ which has a minimal number of states. The
minimization can be done efficiently (in: Z. Kohavi (Ed.), Theory of Machines and Computations,
Academic Press, New York, 1971, pp. 189–196). On the other hand, it is known that unambiguous
finite automata and nondeterministic finite automata can be algorithmically minimized too, but their
minimization problems turn out to beNP-complete andPSPACE-complete, respectively (SIAM J.
Comput. 22(6) (1993) 1117–1141). In this paper, the time complexity of the minimization problem
for two restricted types of finite automata is investigated. These automata are nearly deterministic,
since they only allow a small amount of nondeterminism to be used. The main result is that the
minimization problems for these models are computationally hard, namelyNP-complete. Hence,
even the slightest extension of the deterministic model towards a nondeterministic one, e.g., allowing
at most one nondeterministic move in every accepting computation or allowing two initial states
instead of one, results in computationally intractable minimization problems.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Finite automata; Limited nondeterminism; Minimization;NP-complete

1. Introduction

Finite automata are a well-investigated concept in theoretical computer science with a
wide range of applications such as lexical analysis, pattern matching, or protocol specifi-
cation in distributed systems. Owing to time and space constraints it is often very useful
to provide minimal or at least succinct descriptions of such automata. Deterministic fi-
nite automata (DFAs) and their corresponding language class, the set of regular languages,

E-mail address:malcher@psc.informatik.uni-frankfurt.de(A. Malcher).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.03.070

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82129762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:malcher@psc.informatik.uni-frankfurt.de

376 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

possessmany nice properties such as, for example, closure undermany language operations
and many decidable questions. In addition, most of the decidability questions for DFAs,
such as membership, emptiness, or equivalence, are efficiently solvable (cf. Section 5.2 in
[16]). Furthermore, in[6] a minimization algorithm for DFAs is provided working in time
O(n log n), wheren denotes the number of states of the given DFA.
It is known that both nondeterministic finite automata (NFAs) and DFAs accept the set of

regular languages, but NFAs can achieve exponentially savings in size when compared to
DFAs[14]. Unfortunately, certain decidability questions, which are solvable in polynomial
time for DFAs, are computationally hard for NFAs such as equivalence, inclusion, or univer-
sality [15,16]. Furthermore, the minimization of NFAs is proven to bePSPACE-complete
in [8]. In the latter paper, it is additionally shown that unambiguous finite automata (UFAs)
have anNP-complete minimization problem.
Therefore, we can summarize that determinism permits efficient solutions whereas the

use of nondeterminism often makes solutions computationally intractable. Thus, one might
ask what amount of nondeterminism is necessary to make things computationally hard,
or, in other words, what amount of nondeterminism may be allowed so that efficiency is
preserved.
Measuresof nondeterminism in finite automatawere first considered in[12] and[4] where

the relation between the amount of nondeterminism of an NFA and the succinctness of its
description is studied. Here, we look at computational complexity aspects of NFAs with a
fixed finite amount of nondeterminism. In particular, these NFAs are restricted such that
within every accepting computation at most a fixed number of nondeterministic moves is
allowed to be chosen. It is easily observed that certain decidability questions then become
solvable in polynomial time in contrast to arbitrary NFAs. However, the minimization
problem for such NFAs is proven to beNP-complete.
We further investigate a model where the nondeterminism used is not only restricted to

a fixed finite number of nondeterministic moves, but is additionally cut down such that
only the first move is allowed to be a nondeterministic one. Hence, we come to DFAs
with multiple initial states (MDFAs) which were introduced in[2] and recently studied in
[11,5]. The authors of the latter paper examine the minimization problem for MDFAs and
prove itsPSPACE-completeness. Their proof is a reduction from the finite state automata
intersection problem[1] which states that it isPSPACE-complete to answer the question
whether there is a stringx ∈ �∗ accepted by eachAi , where DFAsA1, A2, . . . , An are
given. As is remarked in[1], the problem becomes solvable in polynomial time when the
number of DFAs is fixed. We would like to point out that the number of initial states is
not part of the instance of the minimization problem for MDFAs discussed in[5]. Thus,
one might ask whether minimization of MDFAs with a fixed number of initial states is
possible in polynomial time. We will show in Section 3 that the minimization problem of
such MDFAs isNP-complete even if only two initial states are given. In analogy to NFAs
with fixed finite branching, certain decidability questions can be shown to be efficiently
solvable.
The paper is organized as follows. In the next section, we will provide and introduce the

necessary definitions and notations. Section 3 contains the proof that it isNP-complete to
minimize MDFAs with a fixed number of initial states. In Section 4, some details of this
proof will be useful to prove theNP-completeness of the minimization problem for NFAs

A. Malcher / Theoretical Computer Science 327 (2004) 375–390 377

with a fixed finite amount of nondeterminism. A short summary and some open problems
conclude the paper.

2. Preliminaries and definitions

Let �∗ denote the set of all strings over the finite alphabet�, � the empty string, and
�+ = �∗ \ {�}. By |w| we denote the length of a stringw and by|S| the cardinality of a
setS. We assume that the reader is familiar with the common notions of formal language
theory as presented in[7] as well as with the common notions of computational complexity
theory that can be found in[1]. LetL be a regular set; then size(L) denotes the number of
states of the minimal DFA acceptingL. We say that two finite automata are equivalent if
both accept the same language. The size of an automatonM, denoted by|M|, is defined
to be the number of states. A state of a finite automaton will be calledtrap statewhen no
accepting state can be obtained from that state on every input.
Concerning the definitions of NFAs with finite branching and MDFAs we follow the

notations introduced in[4,11].
A nondeterministic finite automaton over� is a tupleM = (Q,�, �, q0, F), with Q a

finite set of states,q0 ∈ Q the initial state,F ⊆ Q the set of accepting states, and� a
function fromQ × � to 2Q. A move ofM is a triple� = (p, a, q) ∈ Q × � × Q with
q ∈ �(p, a). A computation forw = w1w2 . . . wn ∈ �∗ is a sequence of moves�1�2 . . .�n
where�i = (pi−1, wi, pi) with p0 = q0 andpi ∈ Q for 1� i�n. It is an accepting
computation ifpn ∈ F . The language accepted byM is T (M) = {w ∈ �∗|�(q0, w)
∩ F �= ∅}.M is an (incomplete) deterministic finite automaton if|�(q, a)|�1 for all pairs
(q, a). The branching�M(�) of a move� = (q, a, p) is defined to be�M(�) = |�(q, a)|.
Thebranching is extended to computations�1�2 . . .�n,n�0, by setting�M(�1�2 . . .�n) =
�M(�1)·�M(�2)·. . .·�M(�n). Foreachwordw ∈ T (M), let�M(w) = min�M(�1�2 . . .�n)
where�1�2 . . .�n ranges over all accepting computations ofM with inputw. The branching
�M of the automatonM is �M = sup{�M(w)|w ∈ T (M)}. The set of all NFAs with
branching� = k is defined as NFA(� = k) = {M|M is NFA and�M = k}.
A DFA with multiple initial states (MDFA) is a tupleM = (Q,�, �,Q0, F) andM is

identical to a DFA except that there is a set of initial statesQ0. The language accepted by
an MDFAM is T (M) = {w ∈ �∗|�(Q0, w) ∩ F �= ∅}. An MDFA with k = |Q0| initial
states is denoted byk-MDFA.
Let A,B be two classes of finite automata. Following the notation of[8], we say that

A −→ B denotes the problem of converting a type-A finite automaton to a minimal type-B
finite automaton. Formally:
PROBLEM A −→ B.
INSTANCE A type-A finite automatonM and an integerl.
QUESTIONIs there anl-state type-B finite automatonM ′ such that

T (M ′) = T (M)?

3. Minimizing MDFAs is computationally hard

In this section, we are going to show that the minimization problem fork-MDFAs is
NP-complete. Throughout this section,k�2 denotes a constant integer.

378 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

Lemma 1. k-MDFA−→ k-MDFA is inNP.

Proof. The problem is inNP, since ak-MDFA M ′ with |M ′|� l can be determined non-
deterministically and the equalityT (M) = T (M ′) can be tested in polynomial time as
is shown below. At firstM andM ′ are converted to DFAs in the following manner. Let
M = (Q,�, �, {q10, q20, . . . , qk0}, F). Then, we definek DFAs as follows:

M1 = (Q,�, �, q10, F),M2 = (Q,�, �, q20, F), . . . ,Mk = (Q,�, �, qk0, F).
We observe thatT (M1) ∪ T (M2) ∪ . . . ∪ T (Mk) = T (M) and we construct a DFÂM
as the Cartesian product ofM1,M2, . . . ,Mk acceptingT (M1) ∪ . . . ∪ T (Mk) in the usual
way. A DFA M̂ ′ can be constructed fromM ′ analogously. Both constructions can be done
in polynomial time. Since the time complexity of the inequivalence problem of two DFAs
is inNLOGSPACE ⊆ P [10], we can test the equivalenceT (M̂) = T (M̂ ′) in polynomial
time. �
TheNP-hardness of the problem will be shown by reduction from the minimum in-

ferred DFA problem which was shown to beNP-hard in[3]. In [8] theNP -hardness of the
minimum inferred DFA problem is used to prove that the minimum union generation prob-
lem isNP-complete.
PROBLEM Minimum inferred DFA[1].
INSTANCE Finite alphabet�, two finite subsetsS, T ⊂ �∗, integerl.
QUESTION Is there anl-state DFA that accepts a languageL such that

S ⊆ L andT ⊆ �∗ \ L?
Such anl-state DFA will be calledconsistentwith S andT .
The essential idea of the reduction in[8] is to design a languageL5 depending onS and

T such thatL5 can be decomposed into the union of two DFAs with certain size bounds if
and only if there is a DFA being consistent withS andT and satisfying a certain size bound.
The difficult part is the “only-if”- portion. To this end, the notions of a “tail” and a “waist”
are introduced, i.e., a sequence of states connected with #-edges only and ending at some
state with no outgoing edges or with at least one outgoing edge, respectively. With the help
of these two elements inL5, it is possible to show that exactly one DFA contains a tail or a
waist, respectively. Then it is not difficult to construct a DFA consistent withS andT .
We now want to adopt the basic ideas of the above construction. We have to show that

a modified languageL′
5 is accepted by ak-MDFA if and only if there is a DFA being

consistent withS andT and satisfying a certain size bound. To apply the above result, our
goal here is to decompose thek-MDFA into two sub-DFAs whose union is the languageL5
from [8]. To this end, the beginning of all words inL5 is suitably modified. This enables us
to show that there are two initial states such that from each of these states either all words
ending in the tail or all words ending in the waist are accepted. This fact finally leads to the
desired decomposition.
We follow the notations given in[8]. W.l.o.g. we may assume thatS ∩ T = ∅. Let #, $

and £ be symbols not in�. Let�′ = �∪{#,$,£},m = l+size(T ∩S), andt = max(k,m).
L′
1= T ,
L′
2= T ∩ S,
L′
3= {$,£}#tL′

2#
m(£#tL′

2#
m)∗,

A. Malcher / Theoretical Computer Science 327 (2004) 375–390 379

L′
4= $#tL′

1#
m,

L′
5=L′

3 ∪ L′
4.

The main task in the below proof of theNP-hardness ofk-MDFA −→ k-MDFA is to show
that aDFAconsistent withS andT can be constructed fromak-MDFAaccepting a language
L′
5 where both automata are satisfying certain size bounds. To this end,L′

5 is defined as the
union of two languagesL′

3 andL
′
4 which either contain awaist or a tail.Additionally, certain

symbols and another sequence of #-symbols, called “core,” are added to the beginning of
the languages. These elements help to show that there are only two essential initial states
fromwhich either all words containing subwords fromS ⊂ L′

1 = T or containing subwords
from L′

2 = T ∩ S can be accepted. Then it is shown how such a 2-MDFA can be divided
into two DFAs from which a DFA being consistent withS andT can be constructed.
We first show a technical lemma following[8].

Lemma 2. LetR be regular andM ′ a DFA consistent withS andT .
(1) size($#tR#m) = size(($#tR#m)+) = t +m+ 1+ size(R),
(2) size(L′

3) = t +m+ 1+ size(L′
2),

(3) $#tL′
1#
m = $#t (L′

2 ∪ T (M ′))#m.

Proof. Claims (1) and (3) can be shown similarly to the Claims 4.1. and 4.2. in[8].
Claim (2) can be shown similarly to the first claim.�

Lemma 3. k-MDFA−→ k-MDFA isNP-hard.

Proof. We first present the reduction and then show its correctness.
Let M1 = (Q1,�′, �1, q10, F1) andM2 = (Q2,�′, �2, q20, F2) be two minimal DFAs

such thatT (M1) = L′
3 andT (M2) = L′

4. W.l.o.g. we may assume thatQ1 ∩ Q2 = ∅.
We choosek − 2 additional states{q30, . . . , qk0} not inQ1 ∪Q2. Then we can construct a
k-MDFA:

M = (Q1 ∪Q2 ∪ {q30, . . . , qk0},�′, �, {q10, q20, . . . , qk0}, F1 ∪ F2).
For � ∈ �′ we define�(q,�) = �1(q,�) if q ∈ Q1, �(q,�) = �2(q,�) if q ∈ Q2, and
�(qi0,�) = �(q10,�) for i ∈ {3, . . . , k}. ThenT (M) = L′

5. The instanceS, T , l has been
transformed to the instanceM,3m + 2t + k. Let m′ = ∑

w∈S∪T |w| + l be the size of
the instance of the minimum inferred DFA problem, then it is easily seen thatM can be
constructed fromS, T , l in time bounded by a polynomial inm′. The correctness of the
reduction is shown by the following claim.

Claim 4. There is anl-state DFA consistent withS andT if and only ifT (M) = L′
5 is

accepted by ak-MDFAM ′ having at most3m+ 2t + k states.

“⇒”:
LetM ′′ be a DFA consistent withS andT and|M ′′|� l. LetM1 andM2 be the minimal

DFAs withT (M1) = L′
3 andT (M2) = $#t T (M ′′)#m. Then we have|M1| = t +m+ 1+

size(L′
2) = t +2m+1− l, |M2|� t +m+ l+1 and therefore|M1| + |M2|�3m+2t +2.

380 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

Considering the two symbols $,£ we can show analogously to[8] thatT (M1) ∪ T (M2) =
L′
5. Now we choosek− 2 additional initial states{q30, . . . , qk0} �⊆ Q1∪Q2 and construct a
k-MDFA M ′ = (Q1 ∪Q2 ∪ {q30, . . . , qk0},�′, �, {q10, q20, . . . , qk0}, F1 ∪ F2) in the above-
mentionedmanner.We thusobtain ak-MDFAsuch that|M ′|�3m+2t+k andT (M ′) = L′

5.
“⇐”:
Let M = (Q,�′, �, {q10, q20, . . . , qk0}, F) be ak-MDFA such thatT (M) = L′

5 and|M|�3m + 2t + k. We may assume thatM is minimal. We have to construct anl-state
DFA M ′ consistent withS andT . At first we show thatM can be modified such thatM
has the form depicted in Fig. 1. Then we prove thatM can be easily decomposed into two
DFA M1 andM2 such that|M1| + |M2|�3m andT (M1) ∪ T (M2) = L′

1#
m ∪ (L′

2#
m)+.

This situation is exactly the situation of the “if”-part in Claim 4.3 of[8]. Hence, we can
conclude that anl-state DFAM ′ consistent withS andT can be constructed.
(1) W.l.o.g.S �= ∅. If S = ∅, then any DFA accepting the empty set is a DFA consistent

with S andT . Hence, there is a one-state DFA accepting the empty set, and there is in
particular anl-state DFAM ′ consistent withS andT .

(2) Letw = $w1 withw1 ∈ #t S#m andw′ = w′
1w

′
2 withw

′
1, w

′
2 ∈ £#tL′

2#
m be twowords

inL′
5. Then there are initial statesq

i
0 andq

j
0 such that�(q

i
0, w) ∈ F and�(qj0 , w′) ∈ F .

We remark thatqi0 andq
j
0 may be identical.

(3) Claim:M contains exactly one waist, one tail and two distinct cores.
According to[8], a waist is defined as a sequence of statesq1, q2, . . . , qm such

that�(qi,#) = qi+1 for all i ∈ {1,2, . . . , m − 1} andqm is an accepting state and
has an outgoing £-edge. A tail is defined as a sequence of statesq1, q2, . . . , qm such
that�(qi,#) = qi+1 for all i ∈ {1,2, . . . , m − 1} andqm is an accepting state and
has no outgoing edges. A core is defined as a sequence of statesq1, q2, . . . , qt+1
such that�(qi,#) = qi+1 for all i ∈ {1,2, . . . , t} andqt+1 is nonaccepting and has
outgoing edges, but no outgoing £-edge. Obviously,M contains at least one waist,
one tail, and one core. We observe that all initial states from which a word inL′

5 can
be accepted have a $-edge or £-edge or both to the first state of a core. Consider the
above wordw = $w1. If we have exactly one core, then�(qi0,$) = �(qj0 ,£) and

hence�(qj0 ,£w1) = �(�(qi0,$), w1) = �(qi0, w) ∈ F which is a contradiction. If

M contains two cores which are not distinct, then there are initial statesqi0, q
j
0 , a

stateq ∈ Q, andx ∈ S such that�(qi0,$#i
′
) = q = �(qj0 ,£#

j ′
) with 1� i′, j ′ � t and

�(q,#t−i′x#m) ∈ F . Then�(qj0 ,£#j
′
#t−i′x#m) ∈ F—contradiction. IfM contains

more than two cores, more than one waist, or more than one tail, then|M| exceeds
3m + 2t + k, sinceM requires at least 2m states for waist and tail, 2t + 2 states for
two cores,k initial states, and at leastm� t states for an additional waist, tail, or core.

(4) W.l.o.g. we may assume thatw will be accepted fromqi0 passing through core1 and

the tail andw′ will be accepted fromqj0 passing through core2 and the waist. Let
qt = �(qi0, w) andqw = �(qj0 , w

′
1) denote the last states in the tail and the waist.

Let q1 = �(qi0,$) andq
2 = �(qj0 ,£) denote the first states of core1 and core2. By

q1c = �(qi0,$#
t) andq2c = �(qj0 ,£#

t) we denote the last states of core1 and core2.
Sincew is accepted passing through core1, we can conclude thatq2 = �(qw,£) is the
starting state of the loop.

A. Malcher / Theoretical Computer Science 327 (2004) 375–390 381

(5) Claim: All initial states have no incoming edges.
Let qp0 with p ∈ {1,2, . . . , k} be an initial state. We may assume that fromqp0 at

least one word inL′
5 can be accepted, otherwise all incoming edges can be removed

without affecting the accepted language. Now, assume thatq
p
0 has an incoming edge.

Then this must be a #-edge.We have to show thatq
p
0 �= qt andqp0 �= qw. If qp0 = qt or

q
p
0 = qw, thenqp0 ∈ F by definition ofqt andqw and therefore� ∈ L′

5—contradiction.
(6) Claim: �(q1,#t S#m) ⊆ F and�(q2,#t S#m) ∩ F = ∅.

By way of contradiction we assume that there is a stringx ∈ #t S#m such that
�(q1, x) �∈ F . Since $x ∈ L′

5, we then know that�(q
2, x) ∈ F and therefore

�(qj0 ,£x) = �(q2, x) ∈ F which is a contradiction. To show the second claim we
assume that there is a stringx ∈ #t S#m such that�(q2, x) ∈ F . Since�(qj0 ,£) = q2,

we have�(qj0 ,£x) ∈ F— contradiction.
(7) Claim: �(q2,#tL′

2#
m(£#tL′

2#
m)∗) ⊆ F .

We assume that there is a stringx ∈ #tL′
2#
m(£#tL′

2#
m)∗ such that�(q2, x) �∈ F .

Since £x ∈ L′
5, we know that�(q

1, x) ∈ F . We have�(qj0 , w
′
1£x) = �(q2, x) �∈

F . Then there must be an initial stateq ′
0 with �(q ′

0, w
′
1£x) = �(q1, x) ∈ F , in

particular�(q ′
0, w

′
1£) = q1. Then we have�(q ′

0, w
′
1£w1) = �(q1, w1) ∈ F which is

a contradiction.
(8) Claim:M can be modified to the form depicted in Fig.1. (The initial statesq30, . . . , q

k
0

are not included.)
At first we remove all edges from initial states to any other states. We choose two

different initial statesq10 and q
2
0 and then insert the following edges:q

1
0

$−→ q1,

q20
$,£−→ q2, andqi0

$,£−→ q2 for i ∈ {3, . . . , k}. We observe that due to (5), (6), and (7)
the modified automaton still recognizesL′

5. In particular,L
′
3 is accepted fromq

2
0 and

all words in $#t S#m are accepted only fromq10.
(9) We now look at the two DFAs obtained when considering only one initial state inM.
We define the set of reachable states as follows:

E(q10) = {q ∈ Q|∃x, x′ ∈ (�′)∗ : �(q10, x) = q ∧ �(q, x′) ∈ F }
E(q20) is defined analogously.
We first claim that there is no edge fromp ∈ E(q20) to a stateq from which qt

can be obtained. Assume by way of contradiction that there arep ∈ E(q20), q ∈ Q,
s ∈ �′, andu ∈ (�′)∗ such that�(p, s) = q and�(q, u) = qt ∈ F . Sincep ∈ E(q20),
there are stringsx, x′ ∈ (�′)∗ such that�(q20, x) = p and�(p, x′) ∈ F . Owing to
(8), we may assume thatx starts with £. We then know that�(q20, xsu) = qt ∈ F , but
�(q20, xsuxsu) �∈ F , becauseqt has no outgoing edges. Moreover,�(q10, xsuxsu) �∈
F , sinceq10 has no outgoing £-edge. Hencexsuxsu �∈ L′

5 which is a contradiction,
becausexsu ∈ L′

3 and thereforexsuxsu ∈ L′
3 ⊂ L′

5. Furthermore, we observe that
all edges from states inE(q10) to states inE(q20) can be removed. If we have such an
edge, all words passing this edge will be accepted in the waist and therefore are inL′

3.
Due to (7) and (8), these words can already be accepted fromq20. So, removing such
edges does not affect the accepted language. We observe that this modification yields
E(q10) ∩ E(q20) = ∅.

382 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

qt

qw

tail

waist

core

core

1

2

$

$,£

£

q2
c

q1
c

q2q2
0

q1
0 q1

Fig. 1. The modifiedk-MDFA M.

(10) Since the sets of reachable states are distinct, we then obtain two DFAsM ′
1 =

(Q′
1,�

′, �′
1, q

1
0, F

′
1) andM

′
2 = (Q′

2,�
′, �′

2, q
2
0, F

′
2) after having minimized the DFAs

(E(q10),�′, �, q10, F) and (E(q20),�′, �, q20, F). Due to (6) and (8), we know that
L′
4 ⊇ T (M ′

1) ⊇ $#t S#m andT (M ′
2) = L′

3. Furthermore,|M ′
1| + |M ′

2|�3m+ 2t + 2,
sinceQ′

1 ∩Q′
2 = ∅.

(11) Starting fromM ′
1 we define another DFAM1 by removingq

1
0 and the firstt states

of core1. We defineq1c as new initial state and observe thatL
′
1#
m ⊇ T (M1) ⊇ S#m.

Starting fromM ′
2 we define another DFAM2 by removingq

2
0 and the firstt states of

core2. We defineq2c as new initial state. The £-edge fromqw to q
2 is replaced by the

following edges: if�′
2(q

2
c ,�) = q for � ∈ �, we add a�-edge fromqw to q. It is easy

to see thatT (M2) = (L′
2#
m)+. Hence we haveT (M1)∪ T (M2) = L′

1#
m ∪ (L′

2#
m)+.

Moreover,|M1| + |M2|�3m.
(12) We have|M2| = size((L′

2#
m)+) = m+ size(T ∩ S) = 2m− l and therefore|M1|�

3m− |M2| = 3m− 2m+ l = m+ l. Removing the tail inM1 yields anl-state DFA
M ′ consistent withS andT .

This shows that the reduction is correct and thus theNP-hardness of the problem.�
Lemmas1 and3 imply the following theorem.

Theorem 5. k-MDFA−→ k-MDFA isNP-complete.

Corollary 6. Letk, k′ �2be two constant numbers.Then DFA−→ k-MDFA andk-MDFA
−→ k′-MDFA areNP-complete.

Theorem 7. LetM be ak-MDFA andM ′ be ak′-MDFA.Then the following problems can
be solved in polynomial time. Is T (M) = T (M ′)? Is T (M) ⊆ T (M ′)? Is T (M) ⊂ T (M ′)?
Is T (M) = �∗?

Proof. According to the construction given in Lemma1, k-MDFAs can be converted to
DFAs in polynomial time. Since the above-mentioned decidability questions are solvable
for DFAs in polynomial time[9,10,16], the theorem is proven.�

4. Minimizing NFAs with fixed finite branching is computationally hard

In this section, we are going to show that the minimization problem for NFAs with
branching� = k isNP-complete fork�3.At first we show that it is decidable in polynomial

A. Malcher / Theoretical Computer Science 327 (2004) 375–390 383

time whether or not an arbitrary NFA has branchingk for a fixed numberk. In general, it is
PSPACE-complete to decide whether or not an arbitrary NFA has finite branching[13].

Lemma 8. LetM be an NFA andk�2 be a constant integer. Then the question whether
M has branchingk can be solved in polynomial time.

Proof. We consider the language

Tk(M) = {w ∈ �∗|∃ accepting computation� of w with �M(�)�k}.
It is shown in[4] that a DFAMk acceptingTk(M) can be constructed. We reproduce the
construction and observe that it can be done in time polynomially bounded in|M| and that
the resulting DFA has size O(|M|k). Let�T = {[p, a, q] ∈ Q × � ×Q|q ∈ �(p, a)} be
the alphabet of triples corresponding to moves ofM. The set

R = {[q0, a1, q1][q1, a2, q2] . . . [qn−1, an, qn] ∈ �∗
T |n�1, qn ∈ F }

∪ {�|q0 ∈ F }
is then the regular set of all accepting computations ofM. Obviously, a DFA accepting
R is the “deterministic version” ofM with size(R) = O(|M|) that can be constructed in
time O(|M| · |�T |) = O(|M|3). We consider two homomorphismsf : �∗

T → �∗ and
g : �∗

T → {c, d}∗ such thatf ([p, a, q]) = a andg([p, a, q]) = � if |�(p, a)| = 1 and
g([p, a, q]) = c|�(p,a)|d otherwise. Furthermore,

Sk = {cj1d · · · cjt d|t�1, eachji�2, j1 · j2 · . . . · jt�k} ∪ {�}.
Sincek is a constant number, it follows that size(Sk) and size(g−1(Sk)) are in O(1) and the
corresponding DFAs can be constructed in constant time and O(|�T |) = O(|M|2), respec-
tively. Constructing the Cartesian product ofR andg−1(Sk), we obtain a DFA accepting
R ∩ g−1(Sk) of size O(|M|) in time O(|M|3). The construction of an NFAM ′ accepting
f (R∩g−1(Sk)) can be done by relabeling of the edges of the DFA forR∩g−1(Sk), and can
be performed in time O(|M|3). We observe thatM ′ has branchingk, |M ′| = O(|M|), and
T (M ′) = f (R ∩ g−1(Sk)) = f ({� ∈ R|�M(�)�k}) = Tk(M). Applying the construction
presented in[11], we can convertM ′ to ak-MDFA with at mostk|M ′|+1= O(|M|) states
in time O(|M|). Then, thisk-MDFA can be converted to a DFAMk with at most O(|M|k)
states in time O(|M|k) analogous to the construction of Lemma1.
SinceTk(M) ⊆ T (M), we haveT (M) \ Tk(M) = ∅ ⇔ �M�k. SinceMk is a DFA, we

can simply construct a DFAM ′
k accepting the complement�

∗ \ Tk(M).
�M�k ⇔ T (M) \ Tk(M) = ∅ ⇔ T (M) ∩ Tk(M) = ∅

⇔ T (M) ∩ T (M ′
k) = ∅.

SinceM is an NFA andM ′
k is a DFA, we can construct, in polynomial time, an NFÂM

of size O(|M| · |M|k) as the Cartesian product ofM andM ′
k acceptingT (M) ∩ T (M ′

k).
Due to the result in[9], the nonemptiness ofT (M̂) can be tested inNLOGSPACE ⊆ P. If
T (M̂) �= ∅, then�M > k. If T (M̂) = ∅, then we know that�M�k. To find out whether
�M = k, we constructTk−1(M) if k − 1�1. This can be done in polynomial time as well

384 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

as the test for inequivalence ofTk−1(M) andTk(M). If both sets are inequivalent, then
�M = k; otherwise�M < k. �

Lemma 9. NFA(� = k) −→ NFA(� = k) is inNP for k�2.

Proof. We first determine an NFAM ′ with |M ′|� l nondeterministically. Owing to
Lemma8, we can test whetherM ′ has branchingk in polynomial time. We next con-
vertM andM ′ to k-MDFAs M̂ andM̂ ′ with at mostk|M|+1 andk|M ′|+1 states applying
the construction presented in[11]. The equality ofT (M̂) andT (M̂ ′) can then be tested in
polynomial time analogous to the considerations of Lemma1. Hence the above problem is
in NP. �
TheNP-hardness of the problem will be shown by reduction from the minimum inferred

DFA problem similar to the proof for MDFAs. In detail, we want to transform an NFA
with fixed finite branchingk into a 2-MDFA acceptingL′

5. Owing to Lemma3, we then can
construct an appropriateDFAconsistent withS andT .An obvious, but essential observation
for NFAs with finite branching is that an accepting computation with minimum branching
does not contain a move with branching� > 1 which is located within a loop, because
otherwise the branching of the NFA would be infinite. Thus, we modify the languageL′

5
by adding loops at the beginning of all words. Therefore, we can show that a given NFA
with fixed finite branchingk has exactly one nondeterministic move with branchingk.
Furthermore, this move has to be the first move. It is then easy to convert this NFA to a
2-MDFA acceptingL′

5.
Letm = l + size(T ∩ S) andn = 5m+ 1. Then we define the following languages.
L′′
1 =L′

1,

L′′
2 =L′

2,

L′′
3 = {$,£}#m(#m+1)∗L′′

2#
m(£#m(#m+1)∗L′′

2#
m)∗,

L′′
4 = $#m(#m+1)∗L′′

1#
m,

Li = {($#ink−1)+} (1� i�k − 2),
L′′
5 =L1 ∪ L2 ∪ . . . ∪ Lk−2,
L′′
6 =L′′

3 ∪ L′′
4 ∪ L′′

5.

Lemma 10. Let R be a regular language, M ′ a DFA consistent withS and T , and
L = {$#m(#m+1)∗} ∪ L′′

5:
(1) size($#m(#m+1)∗R#m) = size(($#m(#m+1)∗R#m)+) = 2m+ 1+ size(R),
(2) size(L′′

3) = 2m+ 1+ size(L′′
2),

(3) $#m(#m+1)∗L′′
1#
m = $#m(#m+1)∗(L′′

2 ∪ T (M ′))#m,
(4) size(Li) = ink + 1,
(5) size(L)�nk + 2nk + · · · + (k − 2)nk + (k − 2)nk + 1+ (m+ 1).

Proof. Claims (1)–(3) can be shown analogously to those of Lemma2.Claim (4) is obvious.
To show (5) we use the Nerode equivalence relation≡L onL and prove that the index

index(≡L)�nk + 2nk + · · · + (k − 2)nk + (k − 2)nk + 1+ (m+ 1).

A. Malcher / Theoretical Computer Science 327 (2004) 375–390 385

Forx, y ∈ �∗,≡L is defined as

x ≡L y :⇐⇒ xz ∈ L⇔ yz ∈ L for all z ∈ �∗.

Let 1� i�k − 2; we define the following sets of strings:

Ai = {ai,0, ai,1, . . . , ai,ink−1} with ai,j = $#ink−1$#j and 0�j� ink − 1,
B = {b1, b2, . . . , bm+1} with bj = $#(k−2)nk−1#j and 1�j�m+ 1,
C = {c0, c1, . . . , c(k−2)nk−1} with cj = $#j and 0�j�(k − 2)nk − 1,
D = {�}.

Obviously,|Ai | = ink, |B| = m+ 1, |C| = (k − 2)nk, and|D| = 1. We have to show that
each two words fromA1 ∪ A2 ∪ . . . ∪ Ak−2 ∪ B ∪ C ∪D are not≡L-equivalent.
(1) Claim: Let x, y ∈ Ai such thatx �= y. Thenx �≡L y.

Let x = $#in
k−1$#i′ andy = $#in

k−1$#j ′
with 0� i′ < j ′ � ink − 1. We define

z = #ink−1−j ′
$#in

k−1 and obtain thatxz �∈ L andyz ∈ L.
(2) Claim: Let x, y ∈ B such thatx �= y. Thenx �≡L y.

Let x = $#(k−2)nk−1#i′ andy = $#(k−2)nk−1#j ′
with 1� i′ < j ′ �m + 1. Then

j ′ = i′ + r with 1�r�m. Let i′′ �0 be the minimal integer such that(k− 2)nk − 1+
i′ + i′′ −m is a multiple ofm+ 1. Then(k − 2)nk − 1+ i′ + i′′ = m+ t (m+ 1) with
t�1.We now setz = #i′′ and observe thatxz = $#(k−2)nk−1#i′#i′′ = $#m+t (m+1) ∈ L,
but yz = $#(k−2)nk−1#j ′

#i
′′ �∈ L, sincem + t (m + 1) = (k − 2)nk − 1+ i′ + i′′ <

(k−2)nk−1+j ′+i′′ = (k−2)nk−1+i′+r+i′′ = m+t (m+1)+r < m+(t+1)(m+1).
(3) Claim: Let x, y ∈ C such thatx �= y. Thenx �≡L y.

Letx = $#i′ andy = $#j ′
with 0� i′ < j ′ �(k−2)nk−1.Wesetz = #(k−2)nk−1−j ′

$
#(k−2)nk−1 and obtain thatxz �∈ L andyz ∈ L.

(4) Claim: Let x ∈ Ai andy ∈ Aj with 1�j�k − 2 andi �= j . Thenx �≡L y.
Let x = $#ink−1$#i′ andy = $#jnk−1$#j ′

with 0� i′ � ink−1 and 0�j ′ �jnk−1.
W.l.o.g. we may assume thati < j . We definez = #jn

k−1−j ′
$#jn

k−1 and obtain that
xz �∈ L andyz ∈ L.

(5) Claim: Let x ∈ Ai andy ∈ B. Thenx �≡L y.
Letx = $#ink−1$#i′ andy = $#(k−2)nk−1#j ′

with 0� i′ � ink−1 and 1�j ′ �m+1.
We setz = #ink−1−i′$#ink−1 and obtain thatxz ∈ L andyz �∈ L.

(6) Claim: Let x ∈ Ai andy ∈ C. Thenx �≡L y.
Letx = $#ink−1$#i′ andy = $#j ′

with 0� i′ � ink−1 and 0�j ′ �(k−2)nk−1. Let
j ′′ �0 be the minimal integer such thatj ′ + j ′′ − m is a multiple of
m + 1. Thenj ′ + j ′′ = m + t (m + 1) with t�0. We now setz = #j

′′+(m+1)(ink−1)
and observe thatyz = $#j

′+j ′′+(m+1)(ink−1) = $#m+(m+1)(t+ink−1) ∈ L, but xz =
$#in

k−1$#i′#j ′′+(m+1)(ink−1) �∈ L, sincei′ + j ′′ + (m+ 1)(ink − 1) > ink − 1.
(7) Claim: Let x ∈ B andy ∈ C. Thenx �≡L y.

Let x = $#(k−2)nk−1#i′ andy = $#j ′
with 1� i′ �m+ 1 and 0�j ′ �(k− 2)nk − 1.

We definez = #(k−2)nk−1−j ′
$#(k−2)nk−1 and obtain thatxz �∈ L andyz ∈ L.

386 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

(8) Claim: Let x ∈ A1 ∪ . . . ∪ Ak−2 ∪ B ∪ C andy ∈ D. Thenx �≡L y.
Let x ∈ A1 ∪ . . . ∪ Ak−2 ∪ B ∪ C, y = �, andz = $#m+(m+1)((k−2)nk−1). Then

xz �∈ L, sincem+ (m+ 1)((k − 2)nk − 1) > (k − 2)nk − 1, andyz = z ∈ L. Hence,
x �≡L y.

Thus,

index(≡L) � |A1| + · · · + |Ak−2| + |B| + |C| + |D|
= nk + 2nk + · · · + (k − 2)nk + (k − 2)nk + (m+ 1)+ 1

and (5) is proven. �

Lemma 11. NFA(� = k) −→ NFA(� = k) isNP-hard fork�3.

Proof. We first present the reduction and then show its correctness.
Let M1 = (Q1,�′, �1, q10, F1) andM2 = (Q2,�′, �2, q20, F2) be two minimal DFAs

such thatT (M1) = L′′
3 andT (M2) = L′′

4. Furthermore, we considerk − 2 minimal DFAs
Mi = (Qi,�′, �i , qi0, Fi) (3� i�k) acceptingL1, L2, . . . , Lk−2. W.l.o.g. we may assume
thatQ1, Q2, …, andQk are pairwise distinct. We observe that for 3� i�k the statesqi0
have no incoming edges and only one outgoing edge to a nontrap state, namely a $-edge.
Moreover,q10 has no incoming edges and only two outgoing edges to nontrap states, namely
a $-edge and a £-edge. We removeq10 fromM1 andq

i
0 fromMi for 3� i�k and construct

an NFAM = (Q,�′, �, q20, F) with

Q= (Q1 \ {q10}) ∪Q2 ∪ (Q3 \ {q30}) ∪ . . . ∪ (Qk \ {qk0}),
F = F1 ∪ F2 ∪ . . . ∪ Fk.

For� ∈ �′ and 1� i�k we define�(q,�) = �i (q,�) if q ∈ Qi . Furthermore,�(q20,£) =
{�1(q10,£)} and�(q20,$) = {�i (qi0,$)|i ∈ {1,2, . . . , k}}. Then,T (M) = L′′

6 andM is an
NFA with branchingk.
The instanceS, T , l has been transformed toM,5m+1+∑k−2

i=1 ink. Letm′ = ∑
w∈S∪T|w| + l be the size of the instance of the minimum inferred DFA problem. ThenM can

be constructed fromS, T , l in time bounded by a polynomial inm′. The correctness of the
reduction is shown by the following claim.

Claim 12. There is anl-state DFA consistent withS andT if and only ifT (M) = L′′
6 is

accepted by an NFAM ′ with branching�M = k that has at most5m + 1+ ∑k−2
i=1 ink

states. (See Fig.2).

“⇒”:
LetM ′′ be a DFA consistent withS andT and|M ′′|� l. LetM1 andM2 be the minimal

DFAs withT (M1) = L′′
3, T (M2) = $#m(#m+1)∗T (M ′′)#m. Furthermore,M3, . . . ,Mk are

minimal DFAs acceptingL1, . . . , Lk−2. Analogous to the proof of Lemma3and the above
considerations we can construct an NFAM ′ with �M ′ = k such thatT (M ′) = L′′

6 and
|M ′|�5m+ 1+ ∑k−2

i=1 ink.
“⇐”:

A. Malcher / Theoretical Computer Science 327 (2004) 375–390 387

qw

tqloop-core

loop-core

1

2

$

$

$-#-loop
$

#

#

tail

waist

q0 q1

q2

$,£

£

Fig. 2. The NFA(� = 3)M acceptingL′′
6.

Let M = (Q,�′, �, q0, F) be an NFA with branching�M = k, T (M) = L′′
6, and

|M|�5m + 1+ ∑k−2
i=1 ink. We may assume thatM is minimal. We have to construct an

l-state DFAM ′ consistent withS andT . In consequence of the definition ofL′′
6, we can

show that the nondeterministic moves ofM have to start inq0. Then,M can be converted
to a 2-MDFAM ′′ such that|M ′′|�3m+ 2t + 2 (settingt = m) andT (M ′′) = L′

5. Owing
to the proof of Lemma3, we then can conclude that anl-state DFAM ′ consistent withS
andT can be constructed:
(1) W.l.o.g.S �= ∅. Let w = $#mw1#m with w1 ∈ S andw′ = w′

1w
′
2 with w

′
1, w

′
2 ∈

£#mL′′
2#
m be two words inL′′

6.
(2) Claim: M contains exactly one waist, one tail, two distinct loop-cores, andk − 2
$-#-loops of lengthnk,2nk, . . . , (k − 2)nk.
A loop-core isdefinedasasequenceof statesq1, q2, . . . , qm, qm+1 such that�(qi,#) =

qi+1 for all i ∈ {1,2, . . . , m} andqm+1 is nonaccepting, has outgoing edges, in particu-
lar a #-edge toq1, but no outgoing £-edge. A $-#-loop of lengthjnk with 1�j�k−2
is defined as a sequence of statesq1, q2, . . . , qjnk such that�(qi,#) = qi+1 for all i ∈
{1,2, . . . , jnk − 1} andqjnk is accepting and has an outgoing $-edge toq1. Obviously,
M contains at least one waist, one tail, and one loop-core. Consider the above word
w ∈ L′

5. If we have exactly one loop-core, then there is a stateq ∈ �(q0,$) ∩ �(q0,£)
and�(q,#mw1#m) ∩ F �= ∅. Hence, we have that�(q0,£#mw1#m) ∩ F �= ∅ which
is a contradiction. IfM contains two loop-cores which are not distinct, then there is a
stateq ∈ �(q0,$#i)∩�(q0,£#j)with 1� i, j�m and�(q,#m−iw1#m)∩F �= ∅. Then
�(q0,£#j+m−iw1#m) ∩ F �= ∅ — contradiction. It is easy to see that the states of
the tail and the waist are distinct from those of an $-#-loop. Furthermore, the states of a
loop-core and a $-#-loop are distinct. Byway of contradictionwe assume that there exist
1�j�k−2 and a stateq ∈ �(q0,$#i)∩�(q0,$#jn

k−1$#j ′
) and�(q,#i

′
w1#m)∩F �= ∅

with 1� i�m, 1�j ′ �jnk − 1. Then�(q0,$#jnk−1$#j#i′w1#m) ∩ F �= ∅ which is
a contradiction. We now show that $-#-loops of different length have distinct states;
henceM containsk − 2 $-#-loops of lengthnk,2nk, . . . , (k − 2)nk. Assume by way
of contradiction that there is a stateq ∈ �(q0,$#in

k−1$#i′) ∩ �(q0,$#jn
k−1$#j ′

) �= ∅

388 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

with i �= j , i′ � ink − 1, j ′ �jnk − 1, and�(q,#jnk−1−j ′
$#jn

k−1) ∩ F �= ∅. Then,
$#in

k−1$#i′+jnk−1−j ′
$#jn

k−1 ∈ L′′
6 which is a contradiction. IfM contains more

than two loop-cores, more than one waist, more than one tail, or more than one $-#-loop
of the same length, then|M| exceeds 5m+1+∑k−2

i=1 ink, sinceM requires at least 2m
states for waist and tail, 2m+2 states for two loop-cores,∑k−2

i=1 ink states for thek−2
$-#-loops, one initial state, and at leastm states for an additional waist, tail, loop-core,
or $-#-loop.

(3) W.l.o.g. we may assume that the wordw will be accepted passing through loop-core1
and the tail andw′ will be accepted passing through loop-core2 and the waist. Let
qt ∈ �(q0, w) andqw ∈ �(q0, w′

1) denote the last states in the tail and the waist. By
q1 andq2 we denote the states obtained after having read $ and £ whenM passes
through the accepting computations ofw andw′

1. Sincew is accepted passing through
loop-core1, we can conclude that{q2} = �(qw,£) is the starting state of the loop
in L′′

3.
(4) All computations starting inq2 ∈ �(q0,£) and leading to an accepting state, thus

computations of words in

£#m(#m+1)∗L′′
2#
m(£#m(#m+1)∗L′′

2#
m)∗

have branching one. This is obvious, since even one move with a branching greater than
one would imply thatM contains accepting computations with infinite branching due
to the £-edge fromqw to q2.

(5) The loop-cores and $-#-loops contain no moves with branching greater than one, since
due to their loops there would be computations with infinite branching.

(6) All computations starting in�(q0,$)and leading to anaccepting state, thus computations
of words in $#m(#m+1)∗S′#m with S ⊆ S′ ⊆ L′′

1, L
′′
5, and $#

m(#m+1)∗L′′
2#
m(£#m

(#m+1)∗L′′
2#
m)∗, have branching one. Due to (4) and (5) the moves with branching

greater than one have to be located either in the states before entering the loop-core and
the $-#-loops, or in the states recognizingS′#m. First of all, we assume that all moves
with branching greater than one start before entering the loop-core and the $-#-loops.
Then we can shift the branching toq0: we remove any outgoing $-edges fromq0 and
insertk − 2 $-edges to the first states of the $-#-loops and two $-edges to loop-core1
and loop-core2. It follows that the modified automaton still recognizesL′′

6, but there
is at least one unnecessary stateq ∈ �(q0,$). Hence,M was not minimal which is a
contradiction. We now assume that there is at least one move with branching 2 within
the states recognizingS′#m. ThenL = {$#m(#m+1)∗} ∪ L′′

5 must be recognized by an
NFAwith a branching of at most�k/2�. Owing to Lemma10we know that a DFA forL
needs at leastnk+2nk+· · ·+(k−2)nk+(k−2)nk+1+(m+1) states.Analogous to the
considerations in (2), one can show that every NFA acceptingL with finite branching
containsk − 2 different $-#-loops of lengthnk,2nk, . . . , (k − 2)nk, a loop-core of
lengthm + 1 and an initial state. In comparison with the minimal DFA, an NFA with
finite branching can therefore achieve savings in size only through nondeterministic
moves that start in states which are not part of a loop. Subtracting the loop-states from
nk+2nk+· · ·+ (k−2)nk+ (k−2)nk+1+ (m+1), there remain(k−2)nk+1 states.
In [4] it is shown that the best possible reduction of states that an NFA with branching

A. Malcher / Theoretical Computer Science 327 (2004) 375–390 389

i can achieve in comparison with the corresponding minimal DFA is at most theith
root of the size of the DFA. Hence, an NFA acceptingL with branching�k/2� has at
leastnk + 2nk + · · · + (k − 2)nk + (m + 1) + ((k − 2)nk + 1)1/�k/2� states. Since
((k−2)nk+1)1/�k/2� �n2, we have that|M|� ∑k−2

i=1 ink+n2 which is a contradiction
to |M|�5m+ 1+ ∑k−2

i=1 ink = n+ ∑k−2
i=1 ink.

It follows that |�(q0,$)| > 1. Fromq0 we then have a $-edge toq1 and the first states
of the k − 2 $-#-loops. Furthermore, we can assume to have an $-edge toq2. If there
is no such edge, we can insert one without affecting the accepted language. We next
remove thek − 2 $-#-loops and reduce the two loop-cores to cores by removing their
#-loops. We then have an NFA with branching 2 with 3m + 2t + 1 states (t = m) accept-
ing L′

5. Now, we remove the $-edge fromq0 to q
1 and we insert an additional stateq ′

0
which has an outgoing $-edge toq1. Thus, we have a 2-MDFA with 3m + 2t + 2 states
acceptingL′

5. Owing to Lemma3 we can construct anl-state DFAM
′ consistent with

S andT . This shows the correctness of the reduction and thus theNP-hardness of the
problem. �
Lemmas9 and11 imply the following theorem.

Theorem 13. NFA(� = k) −→ NFA(� = k) isNP-complete fork�3.

Corollary 14. Let k�2 and k′ �3 be constant integers. Then the problemsDFA −→
NFA(� = k′) andNFA(� = k) −→ NFA(� = k′) areNP-complete.

Theorem 15. The following problems,which arePSPACE-complete when arbitraryNFAs
are considered, are solvable in polynomial time:
(1) Given twoNFAsM,M ′ with �M = k and�M ′ = k′. Is T (M) = T (M ′)? Is T (M) ⊆

T (M ′)? Is T (M) ⊂ T (M ′)? Is T (M) = �∗?
(2) Given anyNFAM and anNFAM ′ with �M ′ = k. Is T (M) ⊆ T (M ′)?

Proof. Claim (1) results from the fact that NFAs with branchingk can be efficiently
converted to DFAs whose size is bounded by a polynomial ink (Lemma8), and that
the decidability questions are efficiently solvable for DFAs. To prove (2) we observe that
T (M) ⊆ T (M ′) ⇔ T (M) ∩ T (M ′) = ∅.M ′ can be converted to a DFA of size O(|M ′|k)
and aDFA acceptingT (M ′) has thenO(|M ′|k) states as well.Analogous to the construction
of Lemma8, we obtain an NFAM̂ acceptingT (M) ∩ T (M ′) and test its emptiness. We
observe that the construction and the test can be performed in polynomial time.�

5. Conclusions

In this paper, we have shown that the minimization of finite automata equipped with
a very small and fixed amount of nondeterminism is computationally hard. In particular,
the minimization problems for DFAs with a fixed number of initial states as well as for
NFAs with fixed finite branching have been provenNP-complete. Hence, even the slight-
est amount of nondeterminism makes minimization computationally intractable whereas

390 A. Malcher / Theoretical Computer Science 327 (2004) 375–390

Table 1
Computational complexity results

DFA k-MDFA NFA(� = k) NFA
Emptiness P P P P
Equivalence P P P PSPACE-complete
Inclusion P P P PSPACE-complete
Universality P P P PSPACE-complete
Minimization P NP-complete NP-complete PSPACE-complete

equivalence, inclusion, or universality questions preserve their efficient solutions. The re-
sults are summarized in Table1.
Now the question arises whether there are extensions of the deterministic model at all

that preserve polynomial time minimization algorithms. Two candidates result from our
considerations. At first, the computational complexity of the problem NFA(� = k) −→
NFA(� = 2) remains open. The problem is inNP, but theNP-hardness cannot be shown
using the approach of Lemma11. Moreover, the two constructions in Lemmas3 and11
present finite automata which are not unambiguous. It is currently unknown whether unam-
biguousk-MDFAs or unambiguous NFAs with branchingk provide efficient minimization
algorithms.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman and Co., San Francisco, 1979.
[2] A. Gill, L. Kou, Multiple-entry finite automata, J. Comput. System Sci. 9 (1974) 1–19.
[3] E.M. Gold, Complexity of automaton identification from given data, Inform. Control 37 (3) (1978) 302–320.
[4] J. Goldstine, C.M.R. Kintala, D. Wotschke, On measuring nondeterminism in regular languages, Inform.
Comput. 86 (2) (1990) 179–194.

[5] M. Holzer, K. Salomaa, S.Yu, On the state complexity ofk-entry deterministic finite automata, J. Automata,
Languages Combin. 6 (4) (2001) 453–466.

[6] J.E. Hopcroft, Ann log n algorithm for minimizing states in a finite automaton, in: Z. Kohavi (Ed.), Theory
of Machines and Computations, Academic Press, NewYork, 1971, pp. 189–196.

[7] J.E. Hopcroft, J.D. Ullman, Introduction toAutomata Theory, Languages andComputation,Addison-Wesley,
Reading MA, 1979.

[8] T. Jiang, B. Ravikumar, Minimal NFA problems are hard, SIAM J. Comput. 22 (6) (1993) 1117–1141.
[9] N.D. Jones, Space-bounded reducibility among combinatorial problems, J.Comput. SystemSci. 11 (1) (1975)
68–85.

[10] N.D. Jones, E.Y. Lien, W.T. Laaser, New problems complete for nondeterministic log space, Math. Systems
Theory 10 (1) (1976) 1–17.

[11] M. Kappes, Descriptional complexity of deterministic finite automatawithmultiple initial states, J.Automata,
Languages Combin. 5 (3) (2000) 269–278.

[12] C.M.R. Kintala, D. Wotschke, Amounts of nondeterminism in finite automata, Acta Inform. 13 (2) (1980)
199–204.

[13] H. Leung, On finite automata with limited nondeterminism, Acta Inform. 35 (7) (1998) 595–624.
[14] A.R.Meyer,M.J. Fischer, Economy of descriptions by automata, grammars, and formal systems, IEEESymp.

Foundations of Computer Science, 1971, pp. 188–191.
[15] L. Stockmeyer, A.R. Meyer,Word problems requiring exponential time: preliminary report, Fifth Ann. ACM

Symp. Theory of Computing, 1973, pp. 1–9.
[16] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1,

Springer, Berlin, Heidelberg, 1997, pp. 41–110.

	Minimizing finite automata is computationally hard
	Introduction
	Preliminaries and definitions
	Minimizing MDFAs is computationally hard
	Minimizing NFAs with fixed finite branching is computationally hard
	Conclusions
	References

