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Abstract 

In Part I, Stirling numbers of both kinds were used to define a binomial (Laurent) series of 
integer degree in the formal variable x. The binomial series in turn served as coefficient oft” in 
a formal series that reasonably well reflects the properties of (1 + t)“. Analogously, generalized 
Stirling numbers (like central factorial numbers) are now used to define a kind of generalized 
Catalan series. By a different method, the Catalan series can be shown to generate a formal 
series that has the properties of z(t)“, where z(t)ll-~(t)~= t. As in the case of ordinary Stirling 
numbers, not all the necessary coefficients can be described by generalized Stirling numbers 
alone. But they can all be explicitly expressed as an ordinary double sum of powers and 
factorials. 
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1. Introduction, and a word on notation 

Special formal power series are usually an umbra of special (analytical) functions. 

To make them visible, discrete mathematicians are forced to use familiar but ambigu- 

ous notation. That practice can be confusing to the uninitiated. For example, if 

1 denotes the multiplicative identity in some field K (of characteristic 0), the short 

power series 1 +x and its translations E’(1 +x) = 1 +(x + l)= 2 +x, and 3 +x, . . . 

are well-defined members of K [ [xl], and so are their reciprocals l/(1 +x), 

1/(2+x), 1/(3+x), . . . . But 1/(2+x) is no longer a translation of l/(1 +x), because 

l/(1 +(l +x)) cannot be defined. There is no translation operator on K [ [xl], even 

though some power series (all polynomials) can be translated. Then again, 

f(l/(l +(x/2))) is straightfoward and equals 1/(2+x). We exchange this notational 

inconsistency for another if we work with formal (lower) Laurent series, where a whole 

group of translations can be defined (Section 2, (i)). We pay for this by distinguishing 

between the polynomial 1 +x and the series x translated by 1. I denote the latter by 

{x+ l}, and it equals x+ 1 +:X-‘-%X-~+ ... . It adds to the confusion that 
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{x+1}-’ is the reciprocal of 1 +x, and not of {x+ l}. Instead, 

{x+1}-‘(x+1)=1+$x-2-$x-3+ ... . Here is a list of possible notations, all 

‘pragmatic’ except for the first and last one. 

~‘{x}-l={x+l)-l=l=l_=ll__=~(_~)‘x-i-~. 
1+x {x+1} x1+1/x i>g 

Of course we cannot expect 1 + {x + l} to equal (x + 2}, but on the other hand it is 

easy to check that 

1 

l+{x+l}=i>l c 
(_l)i+ix-i l+$ -i=&Zk &. 

( ) 

In comparison, the more complicated construction (1 + t)“eK [x] [[t]] is reason- 

ably well-behaved. We discussed in a previous paper how (1 + t)” can be extended 

using ‘Factorials and Stirling numbers in the algebra of formal Laurent series’ [9]. In 

that process the part played by the nth degree x-polynomials which occur in the 

expansion of (1 + t)” as coefficient of t” is taken by (lower) Laurent series of degree n. 

The resulting double series (1 + t)iX) has (1 + t)” as projection into K [x] [[t]], but also 

possesses the ‘right’ properties 

(1 +t){“+d)=(l ++)(l +t)d, D,(l+r)iX)=(l+t)~“~ln(l+t), 

~(l+t)(“}=x(l+t)(“_‘}, (1 +t)‘d”‘=((l +t)d){X), 

where (1 + t)d and ln( 1 + t) are in K [ [t]]. In the expression (1 + t)‘“‘, I enclosed x in 

braces without any translating. I will use the braces for formal Laurent series 

whenever necessary to avoid confusion. 

The formal variable t in (1 + r)iXi can be replaced by any other formal power series of 

order 1. In a direct approach to our problem - the formal powers z(t){“} when 

z(t)“-z(~)~=c - we would solve for z(t)~K[[t]] first [lo, Problem No. 2121, and 

substitute z(t)- 1 for t in (1 +t) ix). But the technical difficulty of finding all integer 

powers of z(t)- 1 can be avoided by the technique introduced in Section 2. That 

section is the framework for our ‘generic’ example, demonstrating how much of the 

structure is shared by ‘almost all’ sequences of lower Laurent series of binomial type. 

In particular, the orthogonality of the generalized Stirling numbers is such a structure. 

There is nothing new about the ‘Umbra1 calculus’ in Section 2 except perhaps the 

point of view. Other points of view may be preferred by the reader (transfer formula, 

dual operators, coalgebras, etc), so the general theory is not emphasized. At the end of 

Section 3 we introduce a larger class of applications from which the present problem 

has been selected as the ‘natural’ example. 

What makes z0 - zb = t so natural are the generalized Stirling numbers (= Bernoulli 

numbers of higher order) that occur in this connection. Their importance in the case 

a = -b has been demonstrated by Butzer et al. [2], and some aspects of the general 
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case have been studied in [8]. The first kind, f a9b(n, k), already shows up when we 

expand z(t)“, the projection of ~(t){~) into K[x] [[t]]: 

(x-.s~(u-b))=~~~~*b(~,k)xk. 

By orthogonality, 

(x-W@-4 
k 

p,btn k)kr 

> . 

must hold for the second kind, F”vb(k,n). We have shown in [S] that 

F“sb(n, k)= c ~ za k (-l)k-i(. +(k_i)b) 
i=. i!(k-i)! 

(1) 

The two different parameters a and b can be replaced by a single parameter 

c:= b/(a - b), and we will do that frequently. However, the combinatorial interpreta- 

tions [S] of_Pb(n, k) and Fapb(n, k) in terms of colored permutations and partitions 

show that there are arguments for keeping two separate parameters a and b. Of all 

those interpretations we only want to mention the partitions of an n-element set into 

k blocks, all of odd cardinality, which are counted by F-l*‘(n, k)/2’. 

Variations of these numbers have been studied earlier in the literature; for example, 

see [3,6,15]. In particular, the noncentral Stirling numbers of Koutras [6] take the 

part of ordinary Stirling numbers in the expansion of (1 + t)(x+d}, where dEK is the 

noncentrality parameter (Section 4.3). The following schematic diagram explains the 

function of both generalizations. An arrow stands for the word ‘generate’ 

Stirling numbers + bionomial series {i} -+ (1 + t)‘“‘, 

noncentral numbers + {“id} + (1 +t)fx+dj, 

factorial numbers + Catalan series + z(t)+). 

2. Background material 

We recall some definitions and results from [9]. 

(a) K((x)),:={C,,,kix’lki~K; there is an ncZ such that ki=O for all i>n} (the 

K-algebra of lower Laurent series). 

(b) IfCi,zkix’EK((x))<, then deg(CiGzkixi):= max{ilki #O}. 

(c) 9(x, t):= {Cntz L(x)t”lfn(x)~K((x))< and deg(f,(x))-,-co as n+-co} (the 

K-algebra of continuous double series). 

(d) Iff(x)=Clez kix’EK((x)), , then f(x)+:=Ciao kix’ is the projection off(x) into 
K[x] (the polynomial part off(x)). 

x(x- 1) . ..(x-n+ 1) if n>O 

l/((x+ 1) ... (x-n)) 
if n<O (falling factorial powers). Each factor 
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l/(x+i) has to be understood as the lower Laurent series x-‘(l/(l+(i/x))) so we 

better write {x}(“) for negative n. 

(f) n! :=( - l),+ ‘/( -n- l)! for all negative integers n. 
(g) L 1 I:= n!/(i!(n - i)!) f or all integers n and i (the Roman coefJicient). 
Note: In general, L:J #L”;‘1+L~::l. For negative II and i>O, L;l=(l). 

(h) D,xk/k!:=xk-‘/(k- l)! for all kEZ (the ‘derivative’ on K((x)),). 

(i) {x+d}“:=Edx”:=edDx ~“=&~,L11x~d”-~ for all kEZ, dEK (the translation op- 

erator on K((x)),). For negative n, {x + d}” = (x + d)” = x”( 1 + d/x)” in the usual sense 

(use (g) above). 

(j) eY’(t/(e’- l))“=:C,,,B~‘(y)t”/n! 

(the Bernoulli polynomials B?‘(y) of order x in y). 

It is convenient to use the notation L nl where L nl equals n for all n # 0, and 

LO]:= 1. Hence, Lnl=n!/(n- l)! for all nEZ. 
The following exercises on translations are easy to check: 

(x+d)-l=~(-l)‘-‘x-‘d’-‘=ll-_= 1 

i>l 
d 1+x/d l+(x+d-1) 

for all dEK. Only for negative n, {x +d}-’ {x+d}“= {x+d}“-l (see (i)). Therefore, 

{x + d}‘“’ =(x + d)‘“’ and {x+d}-l{x+d}(“)=(x+d-l}(“-l) (2) 

for all negative integers n. 
A delta operator Q on K((x)), is a continuous linear operator on K((x)), such that, 

for all f(x)~K((x))~ , 

deg(Qf(x))=degCf(x))-l (degree reducing), and 

E”Qf(x) = QE”f(x) for all deK (translation invariant). 

D, is an example of a delta operator. Every delta operator Q can be expanded 

in powers of D,, Q=#,)=&,,ykDk,. We are interested in sequences 

{qn(x)EK((x))G Ideg(q,(x))=n, neZ} such that 

Qqn(x)=Lnlqn_l(x) for all nEZ. (3) 

Solutions to such a system are called Shefir sequences (in K((x)),). For every delta 

operator Q there is always exactly one Sheffer sequence that is of binomial type, i.e. 

q,(x+d)=C [:lqn-i(x)qi(d)’ for all nEB, dEK. 
i20 

The generating function (a recursive matrix [ 11) of such a sequence of binomial type is 

in 9(x, t), and has the form 

2 q”(x)t”/n! = 1 x”P(t)“/m! =: e{x)p(r), 
rnEZ 

(4) 

where p(t) is the compositional inverse of y(t) (y(L),.) = Q). For proofs and more results 

see [ll]. 
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If we write (@)k for the coefficient of the kth power of the variable in a formal series 

4, we can derive from (4) that 

(4.)rn_<Brn)” 
n! m! 

(5) 

for all integers m < n. Lagrange inversion [5] tells us that (yk), = (k/n)( p-“) _k for all 

n > k 2 1. Thus for such values of n and k 

<+k>-“_~_l).-k<~k>~ 

n! k! 

The coefficients in {q,,(x)+EK[x]In=O, 1, . ..} and {q_,(x)EK((x)),ln=O, 1, . ..} are 

very closely related as we saw above. In fact, they always form an orthogonal pair. 

Theorem 2.1. Zf {qJx)EK((x))< InEZ} IS a sequence of binomial type, then 

((-1)“-k(q-k)-n)n,k=1,2 ,... and ((qk)i)k,i=l,Z ,... 

are an orthogonal pair, i.e. for all positive integers i 

Proof. Let Q=y(DJ denote the delta operator associated with {q,(x)EK((x)), (nEZ}, 

and let b(t) be the inverse of y(t). Apply (5) and (6). For all integers 1 d i<n 

6i,“=~(gl).(Bi~k=~(-l)“-‘(q-k)-.~(Yt)i~. q 
k=i k=i 

Because of this orthogonality we can easily find the inverse basis transformation 

between {x”} and {q”(x)}. 

Corollary 2.1. Zf {q,(x)EK((x)), InEZ} 1s a sequence of binomial type, then for all 

integers n 3 0 

x”= i qk(X)+(--l)“-k(q-k)-n, 

k=O 

and for all n > 0 

x-“= c +k(X)(-l)n-k(qk)n. 

k2n 

The second expansion in the corollary above is a special case of Corollary 2 in 

[12, p. 1593. 

There is ‘almost always’ an easier way to determine the coefficients (q,J,,, than using 

(5). The following theorem carries some of the results for ‘Sequences of polynomial 

type with polynomial coefficients’ [7] from K[x] to K((x)),. 
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Theorem 2.2. Suppose, {q,(x)EK((x)), [rt~Z} 1s a sequence of binomial type with 

associated delta operator Q = y(L),) and generating function e{x}fic*). The following 

statements are equivalent. 

(9 (q2)1 z 0, 

(ii) <q-1L2 f 0, 

(iii) (Y’)~ # 0, 

(iv) <P>z + 0, 
(v) there exists a polynomial sequence {r,(x)EK [x] (n = 0, 1, . . . } of binomial type 

such that for all integers m < n 

Proof. (ii) and (iv) are equivalent because b(t) and y(t) are an inverse pair. (i)o (iv) because 

of (5), and (ii)o(iii) because of (6). In [7] we have demonstrated that (iv) is equivalent to 

the existence of a sequence (r”(x)EK[x] In =O, 1, . ..} of binomial type such that 

(B”>.=(B>;r,-,(m)l(n-m)! (7) 

for all integers n>m. Substituting (5) gives (iv+(v). 0 

3. The construction of ~(t)(~’ 

If the series z(t)EK[ [t]] solves for given a, bEK, a # b, the equation za-z*= t, then 

the powers z(t)” are explicitly known [lo, Problem No. 2121 for all positive integers n. 

But what should we expect from the symbol z(t)X? There are at least two immediate 

answers: We hope that 

Z(t)x+=-Z(t)x+*= z(t)“z(t)a-Z(t)XZ(t)*=Z(t)xt, (8) 

and we would also like z(t)” to equal eX’“L(f). Knowing z(t)” we try 

x z(t)“= c ~ 
.>ox-nb 

(9) 

and check by straightforward verification that (8) holds. Does this z(t)” really agree 

with eX’nZ(‘), which would allow us to say that z(t)(dx)=(z(t)d)x? It is best to answer this 

question before one knows In z(t), because the only way to go for now is substitution 

of its compositional inverse ear -ebr for t. This reduces the problem to a simple 

question: is z(eaf - ebt)x = ex’? 

Lemma 3.1. Zf 

(x-nb)/(a-b) 

n > 

then z(t)X=ex’“‘(‘). 
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Proof. 

= C g ~&((-nb)/(a-b))n!P.I(X,n) (see (1)) 
k,O I 

Now that we have straightened out any possible doubts about the nature of z(t)” we 

will use the symbols f(t)” and f(t)‘“} only in the sense e”‘“f”kK[x][[t]] and 

e(xi’“rcr).5S(x, t), respectively.’ 

Let iFb denote the general difference operator 

Pb has the representation y(D,) = eaDx - ebDX That In z(t) is the compositional inverse . 

to y(t) gives us the important information that 

(10) 

where {qJx)InEH} is the sequence of binomial type associated with Fb. 

Theorem 2.2 can be applied for determining this sequence, because 

y(t)=(a-b)t+(a’-b2)t2/2+ ... is of the right form as long as a2 # b2. In this case, 

there exists a polynomial sequence {r,,(x)} of binomial type such that 

(4.)m=@--b)” .!, r,-,(m) L 1 
for all integers m < n (Theorem 2.2(v)). The polynomials P”,*~(x):= (x/(x - n))r,(x - n) 

are again of binomial type (see [13]), and solve the umbra1 equation r,(x) =q&“vb(x)), 

as we have shown in [7, Theorem l(k)]. The same theorem also shows that 

c 
II20 

p”sb(x)t”/n!=ts)‘=($$$)‘. (11) 

We can now express P~.~(x) in terms of Bernoulli polynomials, 

(a-b)-“pyJ(X):=Bp 2 =B~)(-CX)=p;+c’C(X)) ( > n=O, 1 2 *.a, 

where c = b/(a - b). We call them generalized Stirling polynomials because 

p.‘vo(x)=p,(x), the basic Stirling polynomial as defined in [14,9]. The generalized 

1 In general, the logarithm of a formal power series z(t)EK[[t]] is defined as long as z(t) has the constant 

term 1 and contains only powers that are multiples of the same positive integer. 
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Stirling polynomials can be easily expanded in terms of basic Stirling polynomials by 

comparing coefficients of t’ in 

That gives the expansion 

(12) 

If a=- b then only even powers of t occur in the generating function 

(2at/(e”‘-e-O*))“, and we can obtain a polynomial sequence {&(x)ln =O, 1, . . . > of 

binomial type by defining 

(13) 

i.e., 0:(x)/n! =p$“-“(x)/(2n)!. 

To sum up: Theorem 2.2 tells us that the lower Laurent series q,,(x) in (10) can be 

written as 

qn(x)=(a-b)m”~x”-i nri yppb(n) 
ia i 1 . 

for all integers a.’ It follows from Eq. (9) that for n>O 

These polynomials are sometimes called Catalan polynomials. Therefore I want to 

call 

qx):= 1 (y-i)x”-’ 
i,. z!(n-i)!n 

@“(-cn)=q,(x(a-b))/n! 

the Catalan series (of degree nEH, and translation CEK). Hence 

C,(x)‘=X x-nc ( > ’ x-nc n 

and 

(14) 

(15) 

’ For i>O the polynomial pi”.“(x) has a root at 0 thus the expression ((n-i)/n)p?*(n) 
(=(a-b)“((n-i)/n)Bp’(-cn)) makes sense even if n=O. For i=O the expression is identical 1. 
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We defined in [9, p. 571 the binomial series 

for all integers n. What is the relationship between the Catalan and the binomial 

series? Is there an analogy to the polynomial situation? To answer these questions we 

introduce a family of linear operators on K((x)), which reduce by 1 the degree of 

translated powers: 

(X+c)-‘{x+c}“:={x+c}“-’ for all nE.Z. 

Lemma 3.2. For all integers n, 

C,(x)=x(X-nc)-’ ‘inC + 
i I 

B~)(O)x{~-nc)-~ -EF)(-nc) 

n!n 

Note that B’“‘( -cx) is zero for negative n. Only for such n is 

(X+c)-‘{x+c}:={x+c}-‘{x+c}“(see(2)). S o we get for all n < 0 the familiar form 

n!C,(x)=x(X-nc)-‘{x-nc}(“)=x{x-nc-l}(”-’), (16) 

in complete analogy to the polynomial case. With careful Laurent series interpretation 

we could even write 

x {x-nc}'") 1 x 
C”(x)=Cx_ncj nl =-- 

(-l)“(-n)! 

n {x-nc} (x-nc-n)(-") 

=; &(ny-1)-l 

for negative n. 

(17) 

Proof of Lemma 3.2. The lemma is true for n=O because of C,(x)= {;I}. Let n # 0. 
First, we write L n - il instead of n-i in (14) and get 

C”(x):=CL,n-ilx”-i~I”‘(_cn)_~~~~cn). 
i,. z!(n-i)!n 

Substitute (12): 

c,(x) + B!?( - cn) 
n!n 

c 
Ln-klpk(n) = 

k,. k!(n- 1 -k)!n 
x{x-ncj”-k-l 

=x(X_nc)-~~ (n-k)!‘k(n) {x-nc}“-k+ 
pJn)x{x-nc}-’ 

k=O k!(n- 1 -k)!n n!n 

h(n)x{x--cl-' q 

n!n 
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The ‘disturbance’ (@‘(0)x {x - nc} -I - B$,“‘( - nc))/(n! n) should remind us of the 

notational inconsistencies mentioned in the introduction. Yet z(t)(“) has all the right 

properties, as we show next. 

Theorem 3.1. (1) D,z(t)(“} = z(t)fx) In z(t), 

(2) z(t) (x+d) =z(t)f”}z(t)d for all deK, 

(3) ~z(t)‘“‘=xz(t)+‘~ &z(t)=qjy!gqp 

(4) z(t) idxi =(z(t)d)‘“’ for d # 0. 

Proof. (1) D,z(t)~“~=D,e(x~‘“‘(‘)=~ncz $Zj+i(lnz(t))“=z(t)(X)lnz(t). 

(2) By the binomial theorem, 

z(qix+d) = c 
nsz 

qn(‘z:di)tn=C 5 C K]qi(x)qn-i(d)' . 
nez i<n 

(3) $z(t)‘“’ =I ..Z$n(lnz(t))“-‘&lnz(t)=xz(t)ix-’i&z(t). 

For the second form use that t =z’-zb, and therefore 

(4) z(t){dx} =J&$(d In z(t))” =J&&(ln z(t)d)” (Lemma 3.1). 0 

The first three statements of the theorem should be seen as duality results in the 

sense of [4,15]. First, we stated that the t-operator ‘multiplication by In z(t)’ is the 

dual of the x-operator D,. Next, x-translation Ed is dual to multiplication by z(t)d. 

Finally, multiplication by x is dual to the t-derivative followed by multiplication by 

az(ty- bZ#. 

The same method that we used above to construct z(t)@) can be applied to find 

a Z(t){‘) such that ulZ(t)al + ... + uNZ(t)ON = t, if the constants (in K) satisfy the three 

conditions 

ii %=O, iil 4% f 0, 

These conditions ensure that y(t)=C~cluieaif is of the right form to apply 

Theorem 2.2. If P,(x) denotes the polynomial that plays the part of piVb(x), then 
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4. Some generalizations of Stirling numbers 

4.1. The a, b-factorial numbers of the first kind 

Combining the Eq. (14) and (15) allows us to define the connection coefficients 

f’ +‘*‘(n, i) for any nonnegative n as follows: 

=x(x-nc-l)(“-“. 
i=O 

Obviously, f’*‘(n, i)=s(n, i), the Stirling number of the first kind. For general 

c = b/(a - b) we call the coefficients 

f(l.b(n,i):=(a-bb)-‘f’+‘,’ (n,i)=(a-b)-” (18) 

the a, b-factorial numbers of the first kind to distinguish them from other generali- 

zations of the Stirling numbers. The matrix (f”vb(n, k))n,k=O, l,,,. transforms the basis 

{x”ln=O,l, . ..} into the basis 

{&$$l)u-“1 k=O, 1, . ..} 

in K[[x]]. It follows from Corollary 2.1 that the transposed of this matrix is also 

a basis transformation, but in K[l/x]. For all n>O, 

(-k-l) 

(- l)“-kf”*b(k, n). 

The a, b-factorial numbers are not well-suited for recurrence relations with a con- 

stant number of terms, and fixed a and b. If there are positive integers u and u such that 

ua + ob =O, then pvb(n, k) can be written as a sum of at most u +u+ 1 terms. Such 

recurrence formulas are known for the Stirling case (a = 1, b = 0) and the central case 

(a = -b, see [2]). At the next level of complexity we get (proof omitted): 

2Tf ‘~-2(n,k)=f’~-2(n-3,k-3)+3(n-2)f’~-2(n-3,k-2) 

+3(n-3)f”-*(n-3,k-1)-2(n-3)*(2n-3)f*-*(n-3,k). 

4.2. The a, b-factorial numbers of the second kind 

If k is a positive integer, the connection coefficients F1+c~c(n, k) in the identity 

c F1+c~c(n,k)x-“:=x{x+kc-l}~-k-l)=(-k)!C-k(x) (see (16)) 
n>k 
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are the Stirling number of the second kind for c = 0 (up to a factor (- l)“-k). In 

general, 

F”‘b(n,k)=(a-b)“F’+c’c(n,k)=(a-b)k ; &?k(-k) 0 
are the a, b-factorial numbers of the second kind, and F ‘*‘(n, k) = S(n, k). Theorem 2.1 is 

the origin of the orthogonality of the two kinds of Stirling numbers, 

k=i 

So we could define Fnpb(n, k) via the inverse relation as we did in the introduction. 

The generating function for the second kind is easy to calculate from (11): 

“F. k&‘. FLlvb(n, k)xkt”/n! =exp(x(e”‘-eb’)}. 
, , 

(19) 

4.3. Other generalizations of Stirling numbers 

The 1988 review of Charalambides and Singh [3] on Stirling numbers con- 

tains more than 400 references. Among those are many generalizations of Stirling 

numbers. For example, some ‘generalized Stirling numbers’ are defined as the 

connection coefficients s(n, k( {ai>) and S(n,kJ(ai}) between {xkJk=O, 1, . ..> and 

{(x+ao)(x+aI.... ‘(X+Uk_l)lk=O,l,...}, h { .} ’ g w ere a, is a iven sequence ofconstants 

a0,4,... [3, Eqs. (4.15) and (4.16)]. But they are related. For instance, 

(- l)“-k-j(nb)j-ks(n, j 1 {ia}). 

Koutras [6] defined the noncentral Stirling numbers s,(n, k) and S&z, k) by expanding 

(x)(“)= f sd(n, k)(x-d)k and (x-d)” = i &(n, k)(x)fk) 
k=O k=O 

(see also [3, Eqs. (4.1) and (4.2)]). Here we have the simple relationship 

f l+c~c(n,k)=s_,_,,,(n-l,k-l) and Fk-d*-d(n, k) = k”Sd(n, k). 

In view of recurrence relations, the noncentral Stirling numbers are the natural 

extension of ordinary Stirling numbers. If we generate a matrix (a(n, i))n,o, isz through 

the recurrence a(n, i + 1) = a(n, i) + (i- d)a(n - 1, i) and the initial values ~(0, i) = 1 for 

all iEZ’, and a(n, 0) = 0 for all n > 1, then 

a(n, i) = 
i 

Sd(n-i, -i) for all i <O, 

Isd(i,i-n)l for O<n<i, 

analogously to the Stirling case in [9, p. 551. The closeness of ordinary to noncentral 

Stirling numbers is also reflected in their respective double series, (1 + t)(“) and 

(1 + tp+*1. 
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In [15, (6.21)] the ‘generalized Stirling numbers’ Sa,p(n, k) are defined, such that 

F”,b(n,k)=(a-b)kS,_b,kb(n,k), i.e., S,,B(n,k)=cr-kk-“F”k’B,a(n,k). 

5. Identities 

5.1. The coeficient matrix of z(t) iX) 

In Theorem 3.1 we confirmed that for d # 0 the expected identity ~(t)~~~}=(z(t)~)~~~ 

holds. Here is another observation about z(t) tdx}. the generating function (11) yields . 
d-“p”,‘b(~)=p$d*b’d(~), and therefore 

z,, b(t)‘dx’ = za,d, b,d(t)‘xl 3 

where we indicated the dependence of z(t) on a, b in an obvious way. 

If we define the coefficient matrix ([,,,.)EK~~~ through the expansion 

z(t)(X) =: cc 
meZ neZ 

r,..~tY 

then (&,,,) is a recursive matrix in the sense of [l]. Such matrices can be multiplied, 

and the coefficient matrix of l/(l-{x}(e”‘-eb’)):=~,,zxm(e~‘-eb’)m is inverse to 

(i,, .). Hence, 

z(t)(“) x 
1 

1- {x}(e”‘-eb’) 
=eL+ 

in matrix interpretation. We know the upper triangular matrix (&,,,.) from (14), 

r,,.=(a-b)-“~l)nUIP,(n)/(n-m)!=(a-b)-m~B!”,(-bn)/(n-m)!, 

and for completeness we give an explicit expression for (c,,.). In the case of negative 

indices we get the simple sum 

[_,,_.=(a-b)“%p=“,,(-n)/(m-n)!=fiPb(m,n) 

1 n 

=n(m- l)! k=O c (-l)n-k(ak+(n-k)b)m 

for all 1 <II < m. Thus we know the values of the generalized Stirling polynomials for 

each degree at any negative integer. By extrapolation we find almost all other values: 

n-m 

Ln,.= c m(a - b)-“- j (2n-np”’ 

j=. (n-m-j)!(n-m+j)! n+j 

j (-1)k 
X c 

k=ok!(j-k)! 

(ka+(j-k)b)“-“+j 
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for all integers n 2 m, except n = 0 (c,,. = 0 if n cm). The restriction n # 0 is necessary, 

because we cannot obtain the values (m/O)pzb(0) by extrapolation! Of course, iO,e = 1. 

For the basic Stirling polynomials we found (m/O)p,(O) in [9], and for m>O we 

get via (12) 

where B1, B2, . . . are the ordinary Bernoulli numbers, B, = B:)(O). 

5.2. Factorial numbers 

For 0~ k<n, the explicit representation ck,n=(k!/n!)f(lvb(n, k) results in 

That formula is well-known for Stirling numbers (a = 1, b=O) and central factorial 

numbers (a = l/2, b= - l/2) [2]. 

Closer to combinatorics is the following sum for f’ +‘.‘(n, k). We saw that for 

ma0 

@Z(t))“= C L. t”= 1 t”$f”*b(n,m)= Cgp*b(i, 1) m, 
n2m n2m . ( ial ’ > 

The coefficient (-I)“-‘(n(l+c)-l)(“-‘) of the linear term in (15) equals 

f’ +c*c(n, 1)/n!. Hence, 

kit 
c l&g y’>*i . ..k.=m, 

lk, t +nk,=n 

(all kia0 in the above formula). For c=O this is a well-known statistic on permuta- 

tions, where ki is the number of cycles of length i. Starting the same way, we can 

alternatively express f’ +c*c(n, m) as 
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where all li 3 1. Finally, there is a third sum of products for the same number: 

This identity follows from fl+c,c (n,k)=~_~ _“Jn- 1, k- 1). Koutras derived the 

above sum for noncentral Stirling numbers of the first kind in [6]. 

The a, b-factorial numbers do not directly generate the coefficients [_,,, when 

m and n are nonnegative integers. But these coefficients still can be expressed in terms 

of a, b-factorial numbers. The access to this road is given by the ‘upgraded binomial 

theorem’ which is property (iii) in [9]: if a # -b, then 

x+d+un 
x+d+unP~~b(x+d+un) 

n 
n x+ui 

= co ; j~F*~(x + ui) 
i=. i x+w 

d+u;ln_i)P:“i(d+u(n-i)), 

for all d,u,uEK, n=O,l,... . Special choices of the parameters yield identities for 

a,b-factorial numbers of the first kind, the second kind (in [S] without proof), and 

mixed identities. We apply the latter to find a representation for i_,,, in the case 

a # -b, choosing u=O, u=l, x=-m-n-v, and d=n+v, where v is any non- 

negative integer. 

L,” 

=(a_h)_nnf (n+v)!(i+v-l)! 

i=,(n+m+v-l)!(n+v+i)! 
Pb(n+m+v, i+v)fvb(n+i+ v, n+ v). 

A similar identity can be proven if a= -b, using the polynomials B:(x). The above 

formula can be used for n=O to expand the ordinary Bernoulli numbers 

B,,m=2,3 ,... . 

Identities that express peb(n, k) in terms of Stirling numbers of the first kind are 

given in [8]. Ibidem, there are several identities derived from the generating function 

(19) for Pb(n, k), including the explicit formula (1). Two additional examples are: (i) 

for all a, b, dE K, 

Pb(n,k)=x r F”vd(i,j)Fd*b(n-i,k-j). 
i, i 0 

The factorial numbers on the right-hand side can be made into Stirling numbers 

by choosing d = 0. (ii) The second result is equivalent to an identity of Verde-Star 

[15, (6.26)]: 

Pb(n, k)=t y (dk)“-iF”-d*b-d(i,k). 
i=k 0 
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5.3. Catalan identities 

The Catalan series are of binomial type, and therefore 

C,(X+d)=C Ci(X) 
iin 

~_~~n-ij(“-~“_ri)‘> 

for all integers n. In particular for negative n there are interesting ways of writing this 

identity, using (17). We leave this to the reader. 

a c+ l,c=Ecd is the delta operator associated to the sequence {C,(x)1 ne:Z}, 

C,(x+c+l)-C,(x+c)=Ln+Z1(x), 

and { {x-cn}‘“‘In~Z} is a Sheffer sequence for the same operator (see [9, p. 601). If 

{G(X)) and {s,(x)) are Sheffer sequences for the same delta operator, {q.(x)} of 

binomial type, then 

s.(x+d)=CL1]4i(x)s.-i(d)i 

i<n 

by the binomial theorem for Sheffer sequences [ll, Theorem 121. The theorem also 

holds true in the form 

S.(X+d)=CLl]si(x)4n-i(d)+. 
i<n 

Now we can generalize in two ways an identity which is usually written for Catalan 

numbers: 

Again, the first equation could be further investigated for negative n. 
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