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1. INTRODUCTION 

Let E and F be nonempty sets. A multt$nction D : E -+ F is a subset of 
E x F with domain equal to E; equivalently Q is a mapping (or function) 
from E into the coliection of non-empty subsets of F. Multifunctions have 
many diverse and interesting applications in control problems and the 
theory of contingent equations (for example, see [5-7,8-10,14,15-18,21-23, 
25, 26, and 31]), in mathematical economics [I, 1 I], and in various branches 
of analysis (for example in the study of subdifferentials of convex functions 
[29]). By now the theory of integration of multifunctions has been rather well 
developed and the applications of this theory to control problems and 
mathematical economics have been discussed [I, 8, 11, 15, 16, 18, 19, 20, 
and 30, 311. It is our purpose in this paper to develop a differential calculus 
for a reasonably generous class of multifunctions, and to point out some of 
the applications. The calculus is developed by taking advantage of some 
ideas used in [I 11, especially RHdstrGm’s embedding theorem [33], to give our 
definition of the derivative of a multifunction. By means of RbdstrBm’s 
embedding principle we are able to convert the discussion into one concerning 
differentials of ordinary functions f : E --f F, where E and F are normed linear 
spaces [12]. At least two steps have been taken toward developing a differential 
calculus for multifunctions, one by Bridgland [5] and another by Hukuhara 
[18]. Our theory subsumes that of Hukuhara and Bridgland. A discussion 
of their results and a comparison with those of this paper are given in 
Section 4, and some examples are included to illustrate differences. In 
Section 2 we give the notation and terminology to be employed throughout 
the paper. Also in this section is a description of those aspects of Ridstrom’s 
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embedding operation which we shall need later on. A number of examples of 
differentiable multifunctions are presented in Section 3, and finally in 
Section 5 we give some applications. 

2. PRELIMINARIES 

Let F be a real normed linear space. The symblol 9(F) will be used to 
denote the collection of all non-empty, closed, bounded, and convex subsets of 
F. Whenever the normed linear space F is understood we shall just suppress F 
and write .B for a(F). If A and B are subsets of F, there is defined 
A + B = (a + b 1 a E -4, b E B) and 1\A = {ha 1 a E -4}, where A E R and R 
denotes the field of real numbers. The symbol c0(~4) denotes the convex 
hull of 4, for A CF. If F is reflexive,’ then d(F) with the addition defined 
above is a commutative semigroup which satisfies the cancellation law [33]. 
Moreover, if OL, p are real scalars, -4, B E S?(F) then 

g-4 + II) = CL4 + cd, or(/3A) = (@)a, 14 = -4, 

and if 01, /? > 0, then (a + /3) 4 = a-4 + /3/l. Note that the assumption that 
F is reflexive is used to show that A, B E B(F) implies -4 + B E d(F), and the 
convexity of the elements of .9(F) is used both in the proof of the cancellation 
law and in the proof of (a + /3) A = ~4 + &4, 01, /3 >- 0. Moreover, the 
proof of the cancellation law also uses the fact that elements of i@(F) are 
closed and bounded subsets of F. 

If X and Y are sets, if H C X x Y, and if d C X, then H[il] denotes the 
set {y E I’ 1 3.~ E A : (x, y) E H}. Let (X, p) be a metric space, and define 
JE = I@ i , x2) ) p(x, , x.J < .s}. Thus if A C X, then J&A] is an “e-neighbor- 
hood of A.” If F is a normed linear space with metric p determined by the 
norm, and if -4, B are bounded subsets of F, then the Hausdorff distance [2] 
between -4 and B is denoted by d,(A, B) which is defined by the relation 

d,(A, B) = inf{e > 0 1 ],[A] 1 B, and JE[B] 3,4}. (2.1) 

We observe that if F is complete, then (a(F), dH) is complete. The proof of 
this assertion is essentially the same as the proof of (5.6) in [I 1, p. 3621. One 
quickly establishes that a Cauchy sequence of non-empty closed and bounded 
sets in F must converge to a closed and bounded set in F (see [24, p. 3141 
or [27, Prop. 4.1, p. 1611). Price’s inequality [32, (2.9) p. 41, 

4zbW co(B)) < &(4 B), (2.2) 
1 In the results that follow the requirement that F be reflexive can be replaced by 

the assumption that F is a B-space if we agree to deal only with the subcollection 
X(F) consisting of those elements of S?(F) w K are compact. 41~0 the completeness h’ h 
of F intervenes only when we want J(F) to be complete. 
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where A and B are closed, bounded, non-empty subsets of F, then implies 
that a Cauchy sequence in g(F) must converge to an element of 9(F). 

Rgdstr8m’s embedding theorem [33, Theorem 21 tells us that in case F 
is reflexive, there is a real normed linear space 23(F) (or simply 23 when F 
is understood) and an isometric mapping n : a + 8, where a is metrized 
by dH, such that ~(9) is a convex cone in b. Furthermore addition in 23 
induces addition in 98 and multiplication by nonnegative scalars in s induces 
the corresponding operation in a. The b can be chosen minimal in the sense 
that if !B, is any other real normed linear space into which a has been 
embedded in the above fashion, then 23, contains a subspace containing 99 
which is isomorphic to b. It is appropriate to describe in some detail the 
space ‘$3, since we must take advantage of some of its peculiar properties in 
the sequel. An equivalence relation - is defined on 92 = 9 x 9 
by stating that (A, B) - (C, D), if A + D = B + C. The equivalence 
class containing (A, B) is denoted by (A, B). The space 8 is taken 
to be the quotient space gs/-, where addition in ‘$3 is defined by 

(A,B)+(C,D)E(A+C,B+D), 

and if 01 > 0, then ar(A, B) = (ou2, OLB) while if (Y < 0, then 

With addition and scalar multiplication so defined b becomes a real linear 
space. The embedding rr : 99 + 8 is given by m(A) = (A, 0), A E a, i.e., 
(A, 0) is the equivalence class {(A + D, D) 1 D E a}. We shall adopt the 
convention of denoting r(A) by a when A is an element of g!, and hence the 
convex cone ~(9) = 4. A metric bH on b is defined by 

b((A, B), CC, D)) = &(A + D, B + 0 

The zero element of b is the equivalence class {(D, D) ) D E @ which will be 
denoted by (0,O). Since dH is translation invariant and positively 
homogeneous, the relation ll(A, B)ll = b,((A, B), (0,O)) actually defines 
a norm on b such that b,((A, B), (C, D)) = ll(A, B) - (C, D)& 

A function f : E -+ F, where E and F are arbitrary normed linear spaces is 
said to be equal to o(ll h 11) if 11 f (x)~~/~~ h 11 + 0 as 11 h II ---f 0. 

Let F be a reflexive Banach space, and let E be a normed linear space. 
A multifunction, Q : G + L%(F), where G is an open subset of E, is defined 
to be m-d$j%rentiable at x,, E G if the function, fi : G -+ 23(F), x -+ a(x), 
x E G is differentiable at x0 E G. As usual 52 is rr-d@erentiahle on G if it is 
n-differentiable at every point of G. Thus Q is n-differentiable at x,, E G means 
that there is a continuous linear mapping D(x,) : E ---f 8 such that 

J-34 - f&o) - IQl(xo)(x - x0) = 4 X - x0 II). (2.3) 
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If we write I = (A,, , B&, dx E E, and d,, , B,, E SY, then in 
terms of the Hausdorff metric (2.3) means 

d,(Q(x) + B,-,, ) Q&J + &,J = 4l A” - so 0 (2.3’) 

If E is finite dimensional with basis .$i , 5, ,..., 5, , then As == C d.v’E, , 
Ax E E. If@x,)(&) = (a,, , O>, i = 1, 2 ,..., n, then we say that Q is conicn& 
dzferentiable at .ro E G and we have 

$‘(w,)(Ax) = c AZ(Ac, ) 0). 

We should mention that d(F) need not be complete when F is complete 
[ 11, p. 3631, but nonetheless if F is complete, then so is a(F) and hence d(F). 
Even though 23(F) is not complete most of the basic rules of the differential 
calculus [12, Chap. VIII] can still be applied to the mapping x --f a(x), x E G, 
and we shall feel free to do so in the subsequent sections of this paper. 

Remark. It would be interesting and useful to have these embedding 
results for certain collections of closed, convex, and non-empty subsets of F, 
where F is finite dimensional with t1 ,..., 5, as basis. For example the set 
w:E+ of all non-empty, closed, and convex sets d C F such that a E A, 
a = x aif, imply a” ,>, 0, i = 1, 2 ,..., n, is interesting. If addition and scalar 
multiplication (with nonnegative scalars) in Vt+ are defined as before, 
then all the data needed to extend Radstrom’s embedding result to VE+ 
(with the uniform topology determined by the norm on F [27, p. 1531) are 
fulfilled except the crucial cancellation law. For example, take F = R2, 
f, = (1, 0), e, = (0, 1). Define sets A = {(s, y) / y = 2x, x > 0}, 
B~{(.r,3?)1y=“,“~O},andC-A+B.Then~~,ehaved+C=B+C 
and yet d f B. 

3. EXAMPLES OF DIFFERENTIABLE MULTIFUNCTIONS 

We shall next exhibit some examples of n-differentiable multifunctions. 
Although very simple, these examples illustrate the notion of rr-differen- 
tiability and are useful in the applications discussed in Section 5. 

EXAMPLE 3.1. Let E be a normed linear space, F a reflexive Banach space. 
Let A be a fixed element of W(F) and Y a differentiable mapping, T : G -+ F, 
where G is an open subset of E. Consider the multifunction Q : G -+ S?(F) 
defined by Q(X) = {Y(X)} + A, x E G. Thus Sz is a fixed set moving along a 
differentiable curve Y in the space F. It is easy to see that Q is r-differentiable 
with &(x,)(dx) = ({r’(x,)(dx)}, O>, x0 E G, Ax E E, since 
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It remains to note that Ax -+ ({r’(xo)(Ax)}, O} is a bounded linear operator. 
That the operator is additive in Ax is clear, and the homogeneity follows from 
the fact that (OrA, 0) = ar(A, 0) for every a! E R whenever A = {u} is a 
singleton set in F. Finally we have 

II<woO)(~~N9 WI = II ~‘@o&w d II r’@o)ll II Ax II, AxEE. 

If in this example E is finite dimensional, then J2 is conically differentiable. 
In fact if e1 ,..., 5, is a basis for E, and Ax = 1 Ax8.f, , then 

~‘(~,)(A4 = x AxW’(~o)(ti)L 0). 

EXAMPLE 3.2. Let E, F, G, A be as in Example 3.1. Let g be a differ- 
entiable mapping from G into R such that g does not change sign on G, i.e., 
g(x) > 0, x E G or g(x) < 0, x E G. Let Q : G + L@(F) be the multifunction 
defined by Q(X) = g(x)-4, x E G. We consider first the case where g(x) > 0, 
N E G. In this case we have n(g(x)A) = (g(x) A, 0) = g(x)(A, 0), which 
implies that Q(x,)(Ax) = g’(xo)(Ax)(A, 0), x0 E G, Ax E E. On the other 
hand for OL < 0, we have (olA,O) = (+--A), 0) = 01(0, -A). Conse- 
quently, if g(x) < 0, x E G, then we have 

4&W) = <g(x) 4 0) = &)<O, --Ah 

from which we deduce that &(x0)(0x) = g’(x,)(Ax)(O, -A). If E is finite 
dimensional with basis E1 , (a ,..., 5, , then D is conically differentiable at 
.x0 E G, whenever g 3 0 and g’(xo)(&) 2 0, i = 1, 2,..., n (respectively, 
g < 0 and g’(x,)(fJ < 0, i = 1, 2 ,..., n), and in fact in either case we have the 
relation &“(xo)(Ax) = C Axi(g’(x,)([J A, 0) for Ax = C Axif% E E. 

From the foregoing we infer that if g is differentiable on G, then 52 is 
n-differentiable on Gf = g-l(O, co) and on G- = g-‘( -co, 0). The Q will 
also be differentiable at points r. E G, where g(x,) = 0 if there is a neighbor- 
hood U of x0 such that g(x) > 0 for each N E U, or g(x) < 0 for each x E U. 
In addition if x0 is a point of G such that every neighborhood of x0 contains 
points where g is positive and also points where g is negative, then 52 is not 
z-differentiable at x0 unless A is a singleton point set. 

The requirement that g not change sign on G if Sz is to be r-differentiable 
may appear somewhat strange. However, the reason the condition is necessary 
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for n-differentiability can perhaps best be seen by considering a special case 
of Example 3.2. Let E = G = R, 1etF = R2, and define Q(t) = ta, , where 
o2 is the unit disc in R2. One might very well expect this multifunction to be 
differentiable. However, in view of the preceding paragraph this multifunction 
is not differentiable at t = 0. In fact we have that a’(t,)(dt) = dt(u, , 0) 
for t, > 0, and SZ’(t,)(dt) = dt(0, -u2), for t, < 0, but fi is not differ- 
entiable at t, = 0 even though the right- and left-hand derivatives both exist 
at t, = 0. It is interesting to interpret this geometrically. The graph of the 
multifunction Q in R x R2 consists of a cone whose vertex is at the origin 
and whose axis is the t-axis (i.e., R x {(O, 0))). The cross sections of the cone 
through (t, 0, 0) parallel to the plane (0) x R2 are the discs to, . We see that 
the behavior of this multifunction is similar to that of the real-valued function 
t + ! t / which has a corner at t, = 0. In fact note that the graphs of 
J-2, t +tu2,tER and fi,t + / t [ u2 , t E R are precisely the same. An 
additional comment about a multifunction of this type will be made in 
Example 3.3. 

The next example supports the correctness of our formulation of the defi- 
nition of the derivative of a multifunction inasmuch as it seems reasonable 
that Theorems 3.1, 3.2, and Corollary 3.1 of Example 3.3 ought to be true 
for any satisfactory theory of differentiation for multifunctions. 

EXAMPLE 3.3. This final example is somewhat more complicated notation- 
ally than the previous ones. In essence we shall consider multifunctions which 
are cross-products of compact intervals of real numbers, where the endpoints 
of these intervals are differentiabIe real valued functions. In order to 
investigate the n-differentiability of such multifunctions some auxiliary 
results and notation are needed. 

If [a’, &I, j = I,...) n are compact intervals in R, then the product 
nj”=, [a’, bj] is in 3(Rn). Addition and scalar multiplication on such sets is. 
evidently described by the following relations: 

and 

409/29/2-2 
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It will be useful to have some estimates on the Hausdorff distance between 
two sets which are n-fold products of compact intervals. In the computations 
we use the Euclidean norm on Rn. 

LEMMA 3.1. 

Proof of (a). Denote the sets ny=, [ai, bj] and nT=, [Zj, 6~1 in i8(Rn) by A 
and A respectively. Choose an arbitrary l > d&A, A); then by (2.1) we 
have JJA] 3 Aand /,[A] 3 A. If & < c?i, we get from JJAJ 3 A the relation 
E > 8 - uj = j dj - uj I. On the other hand, if a’ > 8, then J,[A] 3 A 
implies that E > uj - a’j = 1 8 - uj I. Thus for j = I,2 ,..., n, we have 
E > 1 uj - cij I. Similar arguments show that E 3 j bi - @ 1, j = 1, 2 ,..., n. 
Consequently, the right-hand side of (a) does not exceed c. Since E > d&A, A) 
was arbitrary this proves (a). 

Proof of (b). Define for j = 1,2 ,..., n 

Xl i = di - (I .i - zi 1 + 1 bi _ jJ1 I) 

3-j = B + (1 f2j - a”3 1 + 1 6’ - & I), 

and put X = n,“=, [zcij, Q]. Evidently X 3 A and since xii < uj, ~2 3 bj, 
j = 1, 2,..., n, X also contains A. Define e = C:=, (I uj - cii I + / bi - 6j I); 
then since 

[ gl (I d - I 1 + 1 bj - U I)a]l” <’ f (I d - 1 1 + 1 63 - & I), 
3=1 

we have A C XC JE[A]. I n a similar manner one can show that ],[A] 3 A. 
Hence E 3 d&A, A), which proves (b). 

Now let uj, bj be real-valued mappings defined on an open set G C Rm 
such that u’(x) < e(x), XE G, j = 1, 2,..., n. Define the multifunction 
Q : G -+ B(Rn) by the relation 

Q(x) = fi [d(x), c?(x)]. 
j=l 
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Suppose Sz is rr-differentiable at x,, E G. Then since P is finite dimensional, 
there exist Ai(xo), B&C,,) E a!(P) such that 

&o)(Ax) = F Axi <&(xo), &@o)), (3.1) 
a=1 

for all Ax = (Axl, 4x2,..., Ax”) E P. Now let us assume further that 

for i = 1, 2,..., nz (This is always true if n = 1, since a(R) consists only of 
compact intervals). By direct calculation we obtain the relation 

1; $(xo + A-4 - Q(xo) - f AxYA(xo), &(xo)ill 
2=1 

(3.3) 

where 

wo’ = a’(.~~ + Ax) + c Ax2ci&xo) - 1 Axia,Q,), 
A+‘>0 A.c’<O 

wlj = b~(x, + Ax) + 2 Axzb,i(xo) - c Ax”b&,), 
Ar’>O As’<0 

woJ = aJ(x,) + c A - X~CZ,J(X,) - C Adci((xo), 
Ax’,0 A.r’<O 

w3J = ~J(x,) + c Ax%,j(~,) - 1 Ad~j(~o), 
Ax’20 AZ* <o 

forj = I, 2,..., n. From Lemma 3.1(a) we determine that the right-hand side 
of (3.3) is greater than or equal to maxj,I,2,...,n (1 woi - w2J /, 1 wlj - w8J I}, 

and consequently this expression is o(lj Ax I/), since Q is n-differentiable at x0 . 
Now if we observe that 

1 woj - W?i 1 = 1 d(xo + Ax) - aJ(xo) - tz Ax’(a<~(xo) - CJ(xo))l 

j wlj - w2j j = ) &(x0 + Ax) - b’(x,) - $ Ax”(bf(xo) - &(xo))l , 

j = 1, 2,..., 11, then the following theorem will thereby be proved: 
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THEOREM 3.1. Let G be an open subset of Fz. If the multifunction 
x -+ Q(x) = nIi”=, [u’(x), b@)], x E G, is rr-d#erentiable at x0 E G and sf 
o(x,)(Ax) satisfies (3.1) and (3.2), then the mappings aj, bJ : G + R are 
ds@tentiable at x,, , j = 1,2 ,..., n, and their da$%rentials are given by 

aj’(xJ(Ax) = 5 Ax$~~~(xo) - &J(xe)) 
i=l 

b+J(Ax) = 1 Ax”(b,i(xJ - &(x0)), 
i=l 

for j = 1, 2,..., n and Ax = (Axl, Ax2 ,..., AXE). 

Happily, there is a converse to Theorem 3.1, the proof of which uses the 
estimate in Lemma 3.1(b). 

THEOREM 3.2. Let G be an open subset of Rm, and let mappings 
ui, bj : G -+ R be given with aj < bj, j = 1,2 ,..., n. If the mappings 
ai, bi, j = 1, 2 ,..., n are ds~erentiable at x0 E G, then the multzfunction 
x -+ Q(x) = nj”=, [aj(x), bj(x)] is rr-dz#erentiable at x,, E G, and 

(1’) Q(xo)(Ax) = it Axi ( fi [~iTxo> + $ (x0), Pii + $ (x0)], 
i=l 

iJ [QlxO)9 Bi’(Xo)]), 

where the cQ(xo), ,t$j(xo) can be arbitrary real numbers satisfying 

dxO) d Bi’txO> 

%j(Xo) + axi aaj (X0) < Pii + g (xO), 

i= I,2 ,..., m,j= 1,2 ,..., n. 

Proof. Let 0$(X0), p((xo) be chosen subject to (2O), and let F(xo, AX) 
denote the right-hand side of (lo). Then )I fi(x, + Ax) - J&x,) - P(x,, , Ax)11 
is exactly the quantity on the left-hand side of (3.3) if in (3.2) we take 

4(x0) = aii(xO) + $ (xO), bii(xo) = ,&j(x 0 ) + E (x0) 
aXa 

$(x0) = a((xo), &(x0) = Mxo), 
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i = 1, 2,..., m, j = 1,2 ,**-, n. Hence using (3.3), Lemma 3.1(b), and the 
assumption that the functions ui, 6j are differentiable at x,, we obtain 

l!Q(x, + Ax) - Qxo) - F(x,, L!ix)l~ 

+ ) bj(x, + AX) - b&J - f Axi $ (.Qj) 
i=l 

where dx = (dxl, A.9 ,..., dx”l) E RF”. 
Let us note that in Theorem 3.2 one may choose CX~~(X,,) = ~zl(~O) = 0, if 

&z~/&+(x,) < &Y/a+,), and if &~/M(x,,) > %3/&z(~,,), one may take 
%j(.rg) = -&2J/~d(x,), /3EJ(.qJ = -i3b~/&+(.qJ, i = 1, 2 ,..., m, j = 1, 2 ,.,., n. 
In particular, then, for 12 = 1 we have 

f2’(r,)(dx) = y+uxi ([& (x0), g (x0)], 0) .’ 

+ Z’-)dx’ (0, [ - & w, - g (,,]), 

the sum Et+) being taken over those i for which a(b - a)(~~)/&” > 0, and 
the sum x(-j being taken over the complementary set of indices i. Thus, 
if 

(a@x~)(x,) < (abp)(xo) 

for i = 1, 2,..., m, then we have that Q(X) = [u(x), b(s)] is conically differ- 
entiable at x0 . 

As an immediate corollary to Theorems 3.1, 3.2 we have: 

COROLLARY 3.1. Let G be an open subset of RF”, and let mappings 
a, b : G 4 R be given satisfying u(x) < b(x), .x E G. Then the multifunction 
x -+ Q(x) = [u(x), b( x )] is x-dz@rentiuble at x0 E G if and only if a and b are 
dz&entiuble at x0 E G. 

Let us return to the discussion in Example 3.2, and consider the multi- 
function t --+ Q(t) = tul , where ui = [ - 1, 11. We have shown that 
Q is n-differentiable except at t = 0, and fi’(t,)(dt) = Ot(a, , 0) for 
to > 0, Q(t,)(dt) = dt<O, -ui) for to < 0. Note that Q(t) = [u(t), b(t)], 
where u(t) = -1 t 1, b(t) = 1 t 1. Hence Corollary 3.1 gives a complete 
analysis of the r-differentiability properties of this multifunction. 
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4. OTHER DEFINITIONS FOR DERIVATIVES OF MULTIFUNCTIONS 

We now compare n-differentiability of multifunctions with two other 
types of differentiability discussed by Hukuhara [18] and by Bridgland [5]. 
If F is a reflexive Banach space, and A, B E L@(F), then the Hukuhara difference 
A h B (if it exists) is defined to be the C,EG?(F) such that C + B = A 
[cf. 18, p. 2101. It is to be noted that in general 

A”B#A+(-l)B=A-B, 

and that A 1 B exists only if some translate of B is contained in -4. Actually 
our remarks in this section are for F = Rn, since that is the context in which 
Hukuhara’s and Bridgland’s results were developed. However, the notion of 
the difference A 1 B is useful in Section 5 so we gave above a more general 
definition than we need at the present time. In the remainder of this section 
we take F = Rfi. Hukuhara [18] gave the following definition. 

DEFINITION. Let I be an interval of real numbers. Let a multifunction 
Q : I + 4?(Rn) be given. D is Hukuhara dzaerentiable at t, E I if there exists 
Qz-Q(to) E Wn) such that the limits 

and 

lim .n(tO + At) h in 
4 t-10+ At (4.1) 

4\%+ 

L?(t,) h G’(t, - At) 
At ’ 

both exist and are equal to D,$(t,). 
Of course, implicit in the definition of DJJ(t,,) is the existence of the differ- 

ences .Q(t, + At) * Q(t,) and Q(t,,) ?- Q(to - At), for all At > 0 sufficiently 
small. Using the difference quotient in (4.2) is not equivalent to using the 
difference quotient in 

lirn ‘(to + At) h Q(to) 
4t-w At ’ 

(4.2’) 

contrary to the situation for ordinary functions from I into a topological vector 
space. In general the existence of A h B, A, B E a(Rn) implies nothing 
about the existence of B ?- A. Thus we raise the question of which of the 
limits (4.2) or (4.2’) is preferable for defining the “left-hand derivative of Q 
at to” ? In [18] Hukuhara defines the integral of a continuous multifunction 
F : [a, b] -+ 9?(Rn) and shows that D, JzF(s) ds = F(t). One must use (4.2) 
rather than (4.2’), if this type of result is to be true as the following simple 
example shows: Let A E &‘(Rn) and define F(t) = A, t E R; then for any 
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t 3 0, we have siI;(s) ds = t/l. Taking Q(t) = tA. t >, 0 we see that the 
difference quotient in (4.2’) does not exist. 

Differentiability in the sense of Hukuhara implies conical (n-) differen- 
tiability. Before proving this let us observe that if A h B exists for some 
A, B E 93(W), then 

(A, Oj - (B, 0) = (A &- B, 0). (4.3) 

LEMMA 4.1. If a multifunction J2 : I -+ .2’(Rn) is Hukuhara differentiable 
at t, E I with derivative D,,Q(tJ, then Q is rr-difJerentiable with 

Q(to>(At) = AUW&), O?, At ER. 

Proof. Using (4.3) one obtains for At > 0, 

Ii f&to + At) - Q(t) 
I! At 

- (DJ?(t,), O>(/ = dH (‘” _L $1 ‘- ‘(%!, D#(to)), 

and consequently both sides of the equality converge to 0 as At -+ Of. 
Similarly for At < 0 we have (with k = -At), 

!i 
ak? + At) - ‘&,) _ (D Q(t ) 0)~s 

At h 09 
I’ 

= ii Q(to) - f&to - k) 

k - <D#(t,), o;// 

=I 4 ( 
Q(t,) 2 L?(to -- k) 

k l WtoJj, 

and the last term converges to 0 as k + Of. Hence the lemma is proved. 
The following result is interesting and can be used to show that the converse 

of Lemma 4.1 is false 

PROPOSITION 4.1. If the multifunction L? : I + g(Rn) is Hukuhara 
di@rentiable on I, then the real-valued function t -+ diam(Q(t)), t E I is non- 
decreasing on I. 

Proof. If Q is Hukuhara differentiable at a point to E I, then there is a 
S(t,) > 0, such that Q(t, + At) 1 !S(t,) and @to) !!- Q(t, - At) are defined 
for 0 < At < S(t,). Since ;2 h B, A, B EL%(R~) is defined only if some 
translate of B is contained in A, then A A B exists only if diam(A) > diam(B). 
Let t, , t, E I be fixed with t, < t, . Then for each 7 E [tl , tJ there is a 
S(T) > 0 such that diam(Q(s)) < diam(Q(T)), for s E [T - S(T), 71, and 
diam(Q(s)) > diam(Q(T)), for s E [T, T + S(T)]. The collection 

{I, 1 T E [tl , tz], I, = (7 - s(T), T + s(T))}, 
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forms an open covering of [tl , tz]. Choose a finite subcover IT, ,..., ITN 
with ~~ < 7,+, ; then there results diam(Q(Q) < diam(Q(7,)) and 
diam(Q(7,)) < diam(Q(R(t,)). There will be no loss in generality to assume 
IT, n IT,+1 f 0 i = l,..., AT - 1. Thus for each i = l,..., N - 1, there 
exists an Si E 1,. n I?<+, with Ti < si < ri+l , and hence 

’ diam(Q(7,)) < diam(Q(s,)) < diam(S2(ri+J). 

Therefore we have diam(Q(t,)) ,< diam(Q(t,)), which proves the proposition. 

Remark. Note that the existence of the limits in (4.1) and (4.2) was not 
used in the proof of Proposition 4.1. In fact instead of the hypothesis that Q 
is Hukuhara differentiable on I one could substitute the assumption that for 
each t ~1 the differences Q(t + df) h Q(t) and Q(t) 1. Q(t - At) both 
exist for all sufficiently small At > 0. 

It should also be pointed out that the fact that a multifunction Q : I + 9?(Rn) 
is Hukuhara differentiable on I and diam(Q(t)) > 0 for t E I need not imply 
J? is monotone with respect to set inclusion. For example, if Q(t) = [t, 2t] 
0 < t < I, then &Q(t) = [1,2], 0 < t < 1, and yet Q(t,) $ J2(t,) and 
S2(t,) Q Q(t,) for any t, , t, , 0 < t, < t, < 1. 

One can show that if Q : I- g(R*) is conically differentiable on I, and 
if the Hukuhara differences Q(t + At) K-Q(t) and Q(t) !!- Q(t - At) exist 
for each t E I, provided At > 0 is sufficiently small, then D is Hukuhara 
differentiable. Moreover, if &(t)(dt) = At(Q’(t), 0), t E I, At E R, then 
D&2(t) = Q’(t). However, in general Q : I + .%(R”) r-differentiable on I 
does not imply Q is Hukuhara differentiable on I as the following example 
shows: Let D,, be the closed unit ball in Rn, and consider the multifunction 
t -+ Q(t), t E (0,2?r) where, 

Q(t) = (2 + sin t) a, . 

This function is n-differentiable on (0,27r) and Q(t)(d) = (dt)(cos t)(u, , 0), 
t E (0, 2n), At E R. In view of Proposition 4.1 Q is not Hukuhara differentiable 
on (0, 2~7) since diam(Q(t)) = 2(2 + sin t) is not non-decreasing on (0,27r). 

If S C B*, where A and B are sets and BA denotes the set of all functions 
from A into B, then we use S[a] to designate the set {p(a) 1 rp E S}. If I = [0, T] 
is a compact interval of real numbers, then C(I, Rn), or simply C(I), denotes 

the Banach space of al1 continuous functions from I into R” with the norm of 
uniform convergence on I. In [S] Bridgland gave the following definition. 

DEFINITION. Let S be a non-empty compact subset of C(I). Then S 
is said to be Huygens differentiable at t, E I if there exists (DS)(t,) E 3?(R”) 
such that 

&z+ k di#[q, + 4, S[hJ + WW(&,)) = 0, (4.4) 
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and 

q&l - 4 -I- ~@w,)) = 0. (4.5) 

(D.S)(t,), if it exists, is called the Huygens derivative of S at t, . 

Huygens differentiability of compact sets in C(I) is also related to the 
conical differentiability of multifunctions in a manner shown by the following 
remarks. 

LEMMA 4.2. If S is a non-empty compact subset of C(Z) which is Huygens 
dQ+rer~tiable on I with Huygens derivative (DS)(t), for t E I, and ;f L? is the 
multifunction defined by Q(t) = co(S[t]), t E I, then Q : I+ B(R”) is conically 
dz~erentiuble on I nndfi(t)(At) = At((DS)(t), 01, t E I, At E R. 

Proof. Since S is a compact subset of C(I), it follows that S[t] is a compact 
subset of Rn for each t ~1. Hence co(S[t])EB’(R”), t El. Now (DS)(t)E@Rn), 
f E I, and so !(DS)(t), O> E $(R”), t E I. Thus for At :> 0 rve have by (2.2), 

11 g(t + At) - o(t) __- - 
II At Ws>(t), O?l! 

= it d&co(S[t + At]), co(S[t]) + At(DS)(t)) 

= +t dH(co(S[t + At]), co(S[t] + At(DS)(t))) 

< A+ dH(S[t + At], S[t] + At(DS)(t)) ---f 0 as At + Of. 

Similarly, for At < 0 and k = -At > 0 we have 

1 
II 

fi(t + At) - Q(t) 
At - - W’s)(t), O>i/ 

-< k d&S[t], S[t - k] + K(DS)(t)) + 0 as k + O+. 

Actually Bridgland’s definition of differentiability is essentially equivalent 
to conical differentiability. Lemma 4.2 gives the sense in which we mean that 
Huygens differentiability implies conical differentiability. Conversely if 
8 : I -+ B(Rn) is conically differentiable on I, then Theorem 5.1 in Section 5 
says that there is a compact, convex S C C(I) such that S[t] = Q(t), t E I. 
Thus if &(t)(At) = At(Q’(t), 0), t ~1, At E R, then (DS)(t) = Q’(t), t EI. 

Bridgland uses the Huygens derivative mainly to prove a theorem con- 
cerning the Huvgens derivative of the indefinite integral of a multifunction, 
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i.e., if F : I + 9(Rn) is measurable and integrably bounded, and if one 
defines St(F) = {q : I + R” Iv(O) = 0, rj integrable on 1, and +(t) E F(t) 
a.e. onl}, then St(F) is a compact, convex subset of C(I) and (DSt(F))(t) = F(t) 
a.e. on I. Thus in this situation the multifunction t --+ Q(t) = (S,(F))[t] is 
conically differentiable almost everywhere on 1, and .@(t)(dQ = At/F(t), O), 
for almost every t ~1 and every dt E R. Noting that S,(F)[t] = f&F(s) ds, 
where the integral on the right-hand side of the equality is Aumann’s integral 
[I], one sees the connections between the results given in Section 5 (speci- 
fically Lemma 5.6 and Theorem 5.3) and those given by Bridgland [5], 
Hermes [16], and Hukuhara [IS]. 

5. APPLICATIONS 

In this final section we give some miscellaneous results and applications 
of the differential calculus for multifunctions. 

LEMMA 5.1. Let F and G be reflexive Banach spaces. Let U : F - G 
be a continuous linear mapping which maps elements of S?(F) into closed 
sets in G. Then the induced mapping I? : d(F) + B(G) defined by 
U : (C, D> + (U(C), U(D)) is a continuous linear mapping. 

Proof. It is easy to verify that I? is linear. Let (C, , 0,) be a null sequence 
in b(F). Then given E > 0, there is a positive integer no such that n 2 n, 
implies Jn[Cn] 1 D, and j,JD,J 3 C, , where X = e/( 1 + 11 U II). The linearity 
of U now reveals that JJU(C,)] 1 U(DJ and JJU(D,)] 1 U(C,), whenever 
n > n, . This shows that Z?((C, , 0,)) is a null sequence, thereby proving I? 
is continuous. 

COROLLARY 5.1. Let F and G be reflexive Banach spaces. Let U : F -+ G 
be a continuous linear mapping which maps elements of g(F) into closed sets in G. 
Let E be a normed linear space, let W be an open subset of E and let Q : W+ &?(I;) 
be r-d@-rentiable. Then the composite function @ : x -+ U(Q(x)), x E W is also 
~-differentiable. 

Proof. It suffices to show that the mapping & : x -+ 6(x), x E W, is 
differentiable. Observe that 6 = 0 0 fi, where l? is the induced linear 
mapping defined in Lemma 5.1. Whence & : W + d(G) is differentiable 
and&’ = Do&. 

Remark. If E is finite dimensional with basis [r, 6s ,..., &, then 
Corollary 5.1 has the following interpretation. Given 

x E W, &)‘(x)(&) = (Ci, , Dix), i = 1, 2 ,..., n and Ax = C Axz5‘i 
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the corollary implies 

&‘(X)(dX) = C AX” (U(C*,), U(DiZ))* 

LEMMA~ 5.2. Let F be a uniformly convex Banach space [34, p. 1081. 
Let T be a first countable topological space. Let Q : T - S?(F) be a continuous 
multifunction. Then there is a unique function f : T -+ F satisfying 

itf(t)li = WI u II I u E -Q(t)), f(t) E Q(t), t E T, (5.1) 

and f is continuous. 

Proof. The Milman-Pettis theorem [34, p. 1091 says F is reflexive. Thus 
Q(t) is weakly compact for each t E T. The existence and uniqueness of the 
function f : T --f F satisfying (5.1) follows from Theorem 2 of [34, p. 1101. 
Thus we need only verify that f is continuous. Let t, be a sequence in T 
converging to to . Then by the continuity of 52 the sequence Q(t,) converges 
to Q(t,). Given E > 0 pick an integer n, such that.n > n, implies 

IJal)l~ J-J(h) and lEP-4tJl am (5.2) 

Thus for n > n, , there exist g(tn) E Q(t,) and g*(tiE) E Q(t,) such that 
lif (4J - gkJll -< E and IIfW - g*&Jll < l . Consequently we have that 
llf(toN < II g(t,)ll < E + Ilf Ml and IlfWll d lIg*(tn)ll G E + IlfkJl, for 
n > n, . Combining these inequalities there results j /If (&)I1 - 11 f (to)11 1 < E, 
for n >, n,, , and whence lim I( f (tpL)ll = 11 f (to)]]. If f (tn,) is any subsequence of 
f(tJ which converges weakly to ua E F, then a sequence, ok , of convex 
linear combinations of the f (tn,) converge strongly to u,, [13, Cor. 14, p. 4221. 
Observe that for any E > 0, J$2(to)] is closed and convex. Given E > 0 the 
relation (5.2) is true for all sufficiently large n. Thus uI; E Jc[Q(to)] for all 
sufficiently large k, and hence u,, E J,[Q(t,)]. Since E > 0 was arbitrary, it 
follows that u0 E O(t,), and this together with the weak lower semicontinuity 
of the norm [34, p. 2121 imply that 

lim infIIf(tn,)ll = IlfkJll 2 II u. It 3 llf(to)ll. 

Moreover, in view of the fact that the element in Q(to) of minimal norm is 
unique we have f (to) = u. . Thus we have shown that if any subsequence of 
f(tn) converges weakly to u. , then II,, = f (to). The sequence f (tn) is bounded 
because IIf --f Ij f (t,)ll, and therefore relatively weakly compact; this 

1 This lemma 1s still true if the Q(t), t f T are only assumed to be non-empty, 
closed, convex subsets of F, if it is understood that the collection of non-empty, 
closed subsets of F has the uniform topology determined by the norm on F [27, 
Def. 1.6, p. 1531. 



262 BANKS AND JACOBS 

together with the preceding sentence is enough to show !jf(tlz) -f(t,)j! -+ 0 
in view of [13, Ex. 28, p. 741. 

The next lemma is similar to a result obtained by Filippov in the finite 
dimensional case [14, p. 6141. 

LEMMA 5.3. Let F be a Hilbert space. Let A, B be giz!en elements of S?(F). 
Let D denote the Hausdorff distance d,(A, B). Let a and b be the unique elements 
in A and B, respectiztely, satisfying 

and let /3 = max(l/ a 11, 11 b II). Then there results 

I II a II - II b II I < Q (5.3) 
and 

11 a - b I/ < [D2 + 4/3D]1’2. (5.4) 

Proof. From the definition of d,(,4, B) = D, we have that for every 
positive integer n 

JD+~I#I 3 B and JD+dBl ’ A* 

Consequently there is an a, E A such that 11 b - an 11 6 D + l/n, 
and there is a b, E B such that 11 a - b, I/ ,< D + l/n. One then obtains 
II b II < II b, II < D + l/n + II a II and II a II d II a, II ,( D + l/n + II b II, which 
together yield / jl a // - I/ b II / < D + l/n. Since n is an arbitrary positive 
integer we have proved (5.3). In order to prove (5.4) we consider two cases: 
(i) 2/l < D and (ii) 2/3 3 D. In Case (i), we have 

II a - b II d II a II + II b II < 26 < D < [D* + 4/3D]1’2. 

Thus we turn our attention to Case (ii). Using the same a,, and b, as above 
we have that 

II 
a+b a, + a --~ = 

2 2 Ii 
II b 1 an I’ < D/2 + 1/2n, 

and this implies that 

Ilall <ii-l! < D/2 + 1/2n + /I y 11. 

Hence we have that 11 a + b /I 3 211 a I/ - D - l/n for every positive integer 
A, and we conclude that I/ a + b /j > 211 a (1 - D. In a similar manner one can 
establish that II a + b 11 3 211 b /I - D, and hence 1) a + b/I > 2p - D 2 0. 
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Therefore we have 11 n + b /I* > 4fi* - 4pD + D*. From the parallelogram 
law we find that 

11 a - b I;* = 2j/ a II* + 2/j b ]I2 - jja + 6 ii* 

< 2// a I/* + 211 b II* - 4fl* + 4150 - D” 

< 21; a I/* + 2/l b II2 - 411 a (j 11 b :I + 4/3D - Dz 

= 2(11 u Ii - 11 b !I)’ + 4/?D - D” 

and this completes the proof of the lemma. 

THEOREM 5.1. Let T be a locally compact Hausdorfl space, and let F be a 
Hilbert space. Let C,( T, F) denote the family of all weakly continuous functions 
from T into F, and let C&T, F) have the topology of uniform convergence on 
the compact subsets of T[3, Pt. 2, p. 2781, where F is given the weak topology 
(i.e., the o(F, F*)-topology). If Q : T -+ g(F) is a continuous multifunction, 
where A?(F) is (as usual) metrized with the Hausdorff metric determined by the 
norm on F, then there is a compact, convex set SC C&T, F) such that 
S[t] = Q(t), for every t E T. Moreover, the set S can be chosen so that it is 
strongly equicontinuous. 

Proof. The space C,( T, F) is actually a topological vector space if addition 
and scalar multiplication are defined in the usual way. For each x E F there is 
a uniquely defined function fr : T-F determined by the relation 

II .t” -fz(t)ll = min{ll x - u II I u E Q(t)>,fJt) E Q(t), t E T. 

The family {fi I x E F} is strongly equicontinuous at each t,, E T. Let U(t,) 
be a compact neighborhood of t, . Then due to the continuity of Sz, there is 
a TV > 0 such that jl x j/ < p, .r E Q(t), t E U(tJ. Thus 11 fJt)ii <, TV for x E F, 
t E U(t,J. From Lemma 5.3 we infer that 

iIf&) -f&d < [D;t, + 4c~D,,o]~‘~, t E U(t,). (5.5) 

where dn(Q(t), Q(Q) = d&2(t) - x, l&t,) - X) is denoted by Dtto . Con- 
sequently the relation (5.5) implies that the set S’ = (fz 1 x E F} is strongly 
equicontinuous at each t, E T. It is clear that S’[t] = Q(t) for each t E T. We 
define S to be the closure in C&T, F) of the convex hull of S’. Certainly 
co(S) is strongly equicontinuous at each t,, E T, since S’ has this property. 
Hence given E > 0 and t, E T, there is a compact neighborhood V(t,) of t, 
such that t E V(t,) implies 11 f(t) -f (t,,)ll < E, for all f E co(S’). On the other 
hand, if {f= ,01 E A} is a net in co(S’) converging to g in C&T, F), then the 
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weak lower semicontinuity of the norm on F, 11 * /I, [34, p. 2121 and the 
inequalities, l/jJt) -ja(t,)ll < E, OL E A, t E Vo), imply that iI&) - g(to)ll < E, 
for t E V(to). Hence S is strongly equicontinuous at each to E T, and this is 
more than enough to ensure that S is equicontinuous at each to E T, when S 
is considered as a subset of C,(T, F). Thus Ascoli’s theorem [3, Pt. 2, p. 2901 
can now be applied to give that S is a compact, convex subset of C&T, F). 
Evidently S[t] = Q(t), for each t E T. 

Remark. If in the above theorem one takes F = Rn and T = I, I an 
interval in R, then C,( T, F) is just C(I, R”) with the usual topology of uniform 
convergence on compact subsets of I. For Q : I -+ g(Rn) continuous, the 
theorem then guarantees the existence of a compact convex S C C(1, Rn) such 
that S[t] = Q(t) for each t E I. 

Given a r-differentiable multifunction x + Q(X), x E E, it is of interest to 
know if one can determine a differentiable function (selection) x -+j(~), 
x E E, such that f(x) E Q(x), f or each x E E. We have not achieved a really 
satisfactory answer for this at this time. In certain finite dimensional situations 
one can show that the centroid of Q(X), x E E is such a selection. It is only 
natural to ask under what conditions the minimal norm selection in (5.1) is 
differentiable. A simple example shows that even under very nice circum- 
stances the selection in (5.1) is not differentiable. Define Q : R --f a(R) by 
the relation Q(t) = t + [0, 11, t E R. Then Q is Hukuhara differentiable 
(afortiori conically differentiable and a-differentiable) at each t E R. However, 
the selection defined in (5.1) is f(t) = t, for t > 0, f(t) = 0, --I < t < 0, 
andj(t) = t + 1, t < -1, which is not differentiable at 0 and -1. The next 
theorem provides some partial information on this problem. 

THEOREM 5.2. LetFbeauniformlyconvexBanachspace, andletQ : R-+a(F) 
be a continuous multifunction. Let f be a continuous selection, f: R-F, f (t) E Q(t), 
for each t E R. Let t, E R be a point at which the following condition-s are satisjed: 
(lo) Q is conically differentiable at to , (2O) There is a 6 > 0 such that for each t 
satisfying 1 t - to 1 < 6, either Q(t) 2 Q(t,) existsandf(t) -f(to)~Q(t)~Q(t,J, 
or Q(t,) h Q(t) exists and f (to) -j(t) E sZ(t,) h Q(t). Then j is dz&rentiabZe 
at to , and $l?(to)(dt) = dt(A, 0), then f ‘(t,)(dt) E dtA. 

Remark. In the example immediately preceding this theorem one sees 
that the j, Q satisfy all the hypotheses of this theorem except (2O) and this fails 
to be fulfilled only on [-I, 01. However, in this example j is a continuous 
selection which is differentiable on (-1,O) even though (2”) of Theorem 5.2 
is not satisfied in (- 1, 0). This shows that in general condition (2O) of 
Theorem 5.2 is not necessary in order that a continuous selection be differen- 
tiable. 
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Proof of Theorem 5.2. In view of Lemma 5.2, the relation, 

II f w - f (to) - (t - tcl) z(t)ll = min{ll f (t) - f(t,) - (t - t& II I .v E -41, 

z(t) E A, t E R, 

defines a unique continuous function z : R ---f F. We first establish that 

ll.f(t) -f(t,) - (t - to) @)I1 G II fi(t) -J%,) - J%t,)(t - t,)lk (j.6) 

for 1 t - t,, 1 < 6. In order to do this observe that 

llQf) -f&to) - Q(t~)(t - to)11 = dff(Q(t), @to) + (t - f&l), t > f,) , (5.7) 

and 
II Q(t) - fxb) - -@(t,)(t - 44 

= 4z(Q(t) + (to - t) 4 f&f,)), t < f” - (5.7’) 

We only verify (5.6), for t > t, ; the proof for t < t, is similar. If 
6 > t - t, > 0, then (2O) implies that either f (t) -f (to) E D(t) h a(t,), or 

f(t,) -f(t) E Q(t,) h Q(t). If f (t) -f (to) E Q(t) 1 Q(t,), then one obtains 
(5.6) immediately from (5.7) and the identity, 

d&2(t), q&J + (t - to) A) = 4&w A QGO), (t - to) 4 

On the other hand, if f (to) - f(t) E Q(t,) h Q(t), then (5.6) results from 
(5.7) and the identity, 

We also have the inequality, 

!If (t) -f(to) - (t - to) 4to)ll 
d llf (t) -f(t0) - (t - to) z(t)li + I t - t0 I ii x(t) - 4tdI, 

and this combined with (5.6), hypothesis (lo), and the continuity of .z at to 

yield the conclusion that /j f(t) - f(t,) - (t ~- to) z(t,)li = o(l t - to I). 
Hence f is differentiable at to and f ‘(t,)(b) E dtL4, At E R. 

As was mentioned in Section 2 the completeness of the reflesive normed 
linear space F does not imply that the corresponding normed linear space 
B(F) is complete, and this presents a minor difficulty when discussing the 
integration of multifunctions [I I]. Let I = [u, b] be a compact interval of real 
numbers and let m denote Lebesgue measure on I. We want to discuss 
briefly some applications of the differential calculus for multifunctions to 
integrals of multifunctions, Q : I - a(F), where F is a reflexive Banach space. 
The integral as defined by Debreu in [l l] is essentially what will be used here. 
However, in [l l] Debreu is assuming that the multifunctions are compact 
valued while requiring F to be only a Banach space. The main results of 
Section 6 of Debreu’s paper are needed here and, indeed those results are 
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true for the situation which is discussed here. In fact Debreu’s proofs can be 
used virtually without change. We indicate below how the results we need 
can be obtained in a little more direct manner. First we shall consider d($‘) 
to be a subspace of its completion $B(F), which is a Banach space. Thus we 
say Sz : I -+ &%3(F) is integrable (Lebesgue measure 711 on I is understood) if 
Q : Z + B(F) is integrable in the sense of [13, Chapter III], and the integral 
of fi is denoted by Jrfi(t) dt or Sifi(t) dt. 

LEMMA 5.4. Let F be a reflexive Banach space, aftd let Sz : I + S?(F) be 
integrable. Then J1 J&t) dt belongs to the co12vex cone m(I) A?(F) = d(F). 

Proof. As we mentioned in Section 2, the completeness of F implies S(F) 
is complete. Thus d(F) is a closed convex cone in B(F), and the lemma follows 
from the convexity theorem [4, p. 2031. 

LEMMA 5.5. Let F be a rejexive Banach space, and let Q : I + g(F) be 
integrable. Then there is a sequence of measurable simple functions $ : I ---f C&F) 
such that ??Jt) ---f fi( ) t a.e. on Iand 11 $(t)j/ < j/ .@t)lj,for every t E I. Moreower, 
SI 11 s,(t) - J’&)ll dt + 0, as n -+ a. 

Proof. The first part is an immediate consequence of Corollary 1 (and 
its proof) appearing in [4, p. 1781. The last result follows from the preceding 
one and the Lebesgue dominated convergence theorem (see [4, p. 1371 or 
[13, p. 1511). 

In view of the lemmas it makes sense to define I1 Q(t) dt to be the A E g(F) 
such that slfi dt = (A, 0). The integral JIG(t) dt is connected to Aumann’s 
integral [l], ST Q(t) dt = {Srf(t) dt ) f : I + F, f (t) E Q(t), Vt E 1, f integrable}, 
by the following lemma: 

LEMMA 5.6. If F is a reflexive Banach space, and ;f D : I -N g(F) is 
integrable, then J, Q(t) dt = ST Q(t) dt. 

Proof. Debreu’s proof of 6.5 in [I I] can be applied almost without change. 
However, in order to verify statement (i) in [l 1, p. 3671 one should use the 
above Lemma 5.5 and Castaing’s criterion for weak compactness of subsets 
of integrable functions taking their values in a reflexive Banach space 
[C. Castaing, “Un theoreme de compacite faible dans LE1” (Theorem 2), to 
appear] rather than Corollary 11 of [13, p. 2941 which is proved only for 
scalar functions. 

THEOREM 5.3. If F is a rejexive Bfnach space, and if 52 : I + a(F) is 
integrable, then the function t -+ F(t) = Ja “I”) ds, t E I is conically d#erentiable 
almost everywhere on I. Moreover, z$fi(t) = J,,~(s) ds, thenP(Q(At) = At&t,), 
for almost every t, E I. 
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Remark. Finite dimensional versions of this theorem have been given by 
Bridgland [5], Hermes [16], and Hukuhara [18]. 

Proof of Theorem 5.3. The result can now be easily obtained from 
Theorem 8 in [13, p. 2171. 

THEOREM 5.4. Let E be a normed linear space, and let F be a reflexive 
Banach space. Let Q : I x E -+ S?(F) be a multifunction such that: (1”) For 
each fixed x E E, the multifunction t + Q(t, x), t E I is integrable; (2”) There is 
a set NC I, m(N) = 0 such that for eachJixed t E I\N the mapping x + Q(t, x) 
is rr-diflerentiable; and (3”) There is an integrable function v : Z -+ R such that 
II aJ=%> x)/ax II < 94th f or each x E E, and t E I\N. Then the function 
x + G(x) = sl Q(t, x) dt is rr-d@zrentiuble and 

&(x,)(Ax) = j-, g (t, x)(Ax) dt, 

for each x,, , Ax E E. 

Proof. We first verify that for fixed x, x,, E E, the mapping 
t --f (aQax)(t, x0)(x - x0) is integrable. The assumption that for fixed 
t E I\N, x + Q(t, x) is x-differentiable implies that x + a(t, x) is Gateaux 
differentiable, i.e., 

lirn 8(t, xO + 7n(X - ‘0)) - b(t, xO) _ a~ 

n+m 7, 
- ax (6 x0)(x - xo), t E I\N (5.8) 

for any sequence TV f 0, 7, -+ 0, as n -+ co. Thus (5.8) and (lo), (2”), and (3”) 
imply that for fixed x, x0 E E, t -+ so/ax (t, x0)(x - x0) is integrable. From 
the mean value theorem [12, p. 1561 one obtains that 

<2~~x-xo~\&),t~I\N. (5.9) 

We also have that if x,, is any sequence in E such that x,, + x0 with x,, # x0, 
then II @t, x~) - fi(t, x0) - &)/ax (t, x0)(x, - xo)[j/l] X~ - x0 (1 is a null 
sequence for t E I\N. From the inequality, 

/I w - Go) - ,,z (h x)(x - x0) dt Ij 
< s, I/ JfF(t ,x1 - @t, xo) - 2 (t, x0)(x - xo,il 4 (5.10) 

40912912 -3 
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inequality (5.9), and the Lebesgue dominated convergence theorem [13, 
p. 1511, we infer that 

converges to 0, as n -+ co. Therefore the right-hand side of inequality 
(5.10) is o(I] x - x0 /I), and the conclusions of the theorem follow. 

We turn now to a few more examples. 

EXAMPLE 5.1. This example comes from linear control theory. Consider 
the control system, 

2 = A(t)x + B(t)u, (5.11) 

where the rr x n matrix function, t --t A(t), t E [0, T], and the II x m matrix 
function, t -+ B(t), t E [0, T] are bounded and measurable on [O, T]. If 
u : [0, T] -+ R” is integrable, then there corresponds a unique absolutely 
continuous function (response) x(*, u) : [0, T] + R” satisfying (5.11) a.e. 
on [0, T] and the initial condition 

x(0, u) = x0 . 

Moreover, there is an absolutely continuous fundamental matrix solution of 
B = A(t)X, X(0) =I=n x n identity matrix, and the variation of param- 
eters formula gives 

x(c 4 = xc+0 + j: x-y53 B(5) u(5) a]. (5.12) 

Let fzf, bj, j = 1, 2 ,..., m be functions mapping [0, T] x R” into R” and 
such that u3 < bi, j = 1,2 ,..., m. Then let Q : [0, T] x Rp - a(P) be the 
multifunction defined by 

Q(t, A) = fi [a’(& A), b~(t, A)], (t, A) E [0, T] x R*. 
j==l 

Let C([O, TJ, Rn) be the Banach space of all continuous functions from 
[0, T] into Rn with the norm of uniform convergence on [0, T]. In optimal 
control problems the admissible integrable controls u : [0, T] - R” are often 
constrained by side conditions of the form u(t) E Q(t, A), t E [O, T] or 
u(t) E Q(t, x(t, u)) (with p = n), t E [0, T], or, indeed, by combinations of 
these two types of side conditions. It is of some interest then to consider the 
multifunction F : [O, T] x Rp --f a(R”) defined formally by the relation, 

m 4 = x(t)[3c, + j: -wZ) B(5) w, 4 d5], (5.13) 
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where the integral (if it exists) is understood in Debreu’s sense described 
above, and likewise with p = 12, we consider the induced multifunction 
F : [0, T] x C([O, T], P) -+ 9’(P) defined formally by the relation, 

w, 4 = W[% + J: X-y!) B(5) Q(5, x(f)) d(]. (5.14) 

We shall show that under suitable conditions &/at (t, A) (resp. @/Ct (t, .v)) 
exist a.e. on [0, T], for each fixed h E RP (resp. for each fixed 
s E C([O, T], R”), p = n), and i@/aA(t, h)(resp. a#/& (t, A)) exist, for all 
t E [0, T] and all A E RP (resp. all s E C([O, T], R”), p = n). We give the 
assumptions only for the case of the multifunction (t, “v) 4 F(t, .r), 
(t, x) E [0, T] x C([O, T], R”) since the hypotheses needed to obtain the 
desired differentiability result for the multifunction in (5.13) are entirely 
similar. Taking p = II we require (1”) For each fixed A E Rn the functions 
t--j a’(t, A), t + &(t, A), t E [0, T] are integrable; (2”) There is an I\’ C [0, T], 
m(N) = 0 such that for each fixed t E [0, T]\N, h + a’(t, A), A + &(t, A), 
X E R”, j= 1,2 ,..., n are differentiable; and (3”) There is an integrable 
function ‘P : [0, T] + R such that 

Hence in view of Example 3.3, D : [0, T] x Rn + .B(R”) satisfies conditions 
(1% (2% and (3”) of Theorem 5.4. Now consider the multifunction 

f&t, x) = Q(t, s(t)), (t, x) E [0, T] x C([O, T], R”). One readily verifies that 
fn also satisfies the conditions (lo), (27, and (3”) of Theorem 5.4. Let us 
define @ : [0, T] x Rn ---f SY(R”) by @(t, A) = X-l(t) B(t) Q(t, A). Thus if 
we invoke Corollary 5.1 and Theorem 5.4 we obtain 

$ (t, W4 = X(t) 1; g (5,4tWW)) d5, x, Ax E C([O, T], Rn), 

t E [O, T]. (5.15) 

By Theorem 5.3 we have that for each fixed x E C([O, T], Rn) the multi- 
function t - f: @(I, 43) d5, t E [0, T] is n-differentiable a.e. on [0, T], and 
the r-derivative can be calculated with the formula in Theorem 5.3. If 
X(t) = (q,(t)) is such that each of the functions t --+ xi,(t), t E [0, T], 
i,j = 1, 2 ,..., n changes signs only on a subset of [0, T] of measure zero, 
then the multifunction t -+ X(t) $,@(f, x(t)) dt, t E [0, T] is also n-diier- 
entiable a.e. on [0, T]. The partial derivative #/at (t, x) can easily be cal- 
culated, but the formula is tedious because of the complications discussed 
in Example 3.2, and we therefore omit the expression for &/at (t, x). The 
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condition that each Xij change signs only on a subset of [0, T] of measure 
zero can be met if, for example, t + A(t), t E [0, T] is analytic, since in this 
case, t -+ X(t), t E [0, T] is analytic. 

EXAMPLE 5.2. Consider the differential inequality, 

II 2 - go, “4II < f(4 x), (5.16) 

whereg : R x Rn + Rn and f : R x Rn -+ R, f > 0. Clearly, solving (5.16) 
is equivalent to solving the contingent equation 

$4 EW, x(t)), (5.16’) 

where F(t, x) = {g(t, 41 + f (t, x) 0, , where u,, is the closed unit ball in Rn. 
Thus according to Examples 3.1 and 3.2 the multifunction F arising in the 
contingent equation (5.16’) is r-differentiable (actually conically differentiable) 
on R x P if both g and f are differentiable on R x Rn. 

EXAMPLE 5.3. Let a, b : R -+ R be continuous nonnegative functions. 
Consider the scalar differential inequality 

0 < k(t) d a(t) + b(t) x(t), t b to 

x&J) = x0 3 0. (5.17) 

Thus (5.17) is equivalent to the contingent equation 

k(t) eF(t, x(t)), t 3 to 

x(to) = x0 3 0, (5.17’) 

where F(t, x) = [0, a(t) + b(t)x], t E R, x > 0. We use t -+ x(t, to, x0), 
t > to to denote a solution of (5.17) or (5.17’). From Gronwall’s inequality we 
have that 

where 

X exp (1: b(l) @), (5.18’) 

for t > to , x0 3 0. Let @(t, to, x0) = {y = x(t, to, x0) / t + x(t, to, x0) 
satisfies (5.17’)}, t > to, x0 > 0. From (5.18) and (5.18’) we have that 
@(4 to > x0) c [x0 , & to , x0)1, t b to , x0 > 0. Conversely one can establish 
that x0 and k(t, to , x0) belong to @(t, to , x0) for t > to , x0 3 0. The convexity 
of @(t, to , x0) then implies the reverse inclusion@(t, to , x,,) 1 [x,, , k(t, to , x0)], 
t > to, x0 > 0. Thus @(t, to, x0) = [x0, k(t, to, x0)], t > to, x0 > 0. From 
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the representation in (5.18’) (t, to, x0) + K(t, t, , zcg), t 3 t, , x0 > 0 is 
differentiable. Consequently (t, to, x0) + @(t, to, x0), t > to, x0 3 0 is 
r-differentiable, and since @(t, to, x0) = [x0 , k(t, to , x0)], one can calculate 
&‘(t, to , x,)(dt, At,, djc,) according to Theorem 3.2 of Example 3.3. We can 
summarize this example as follows: if a, b : R --+ R are continuous non- 
negative functions, and (t, to , 3~~) --+ @(t, to , x0), t 3 t, , x0 >, 0 is the multi- 
function defined above; then @ is r-differentiable, and &’ can be calculated 
from Theorem 3.2. 
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