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Modi�cation of the Kantorovich assumptions for semilocal
convergence of the Chebyshev method(
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Abstract

This study obtains two semilocal convergence results for the well-known Chebyshev method, which is a third-order
iterative process. The hypotheses required are modi�cations to the normal Kantorovich ones. The results obtained are
applied to the reduction of nonlinear integral equations of the Fredholm type and �rst kind. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Chebyshev’s method [2,4] is one of the best-known third-order iterative processes for the resolution
of nonlinear equations of the following form:

F(x) = 0:

The algorithm which de�nes it is one of the simplest which can be obtained for third-order point-to-
point iterative processes, as can be deduced from the characterisation given by Gander [6] for these
iterative processes. For example, if X and Y are Banach spaces and F :
⊆X → Y is a nonlinear
twice-di�erentiable Fr�echet operator de�ned on a convex, nonempty domain 
, the algorithm which
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de�nes Chebyshev’s method is given by

xn+1 = xn − [I + 1
2LF(xn)]F

′(xn)−1F(xn);

where, for x ∈ X; LF(x) is the linear operator de�ned as follows:
LF(x) = F ′(x)−1F ′′(x)F ′(x)−1F(x):

The properties of this operator can be seen in [7].
In general, the convergence of third-order methods has been proved in bounded conditions for

the operator’s third derivative [1] or else with a Lipschitz-type condition for the second derivative
together with the requirement that this be bounded [2].
This study has its origins in [8], in which a semilocal convergence result for the Chebyshev

method was proved when applied to continuous (K, p)-H�older twice-di�erentiable Fr�echet operators;
this supposed a milder convergence conditions for this method. In the study described here, we further
smoothen the conditions imposed on operator F . In Section 3 we prove a semilocal convergence result
which di�ers from that obtained in [8] because it does not need even the existence of the operator’s
Fr�echet third derivative. The only requirement is that the operator’s Fr�echet second derivative be
bounded and that a Lipschitz-type condition be veri�ed. In Section 4 we again improve the result
obtained, eliminating the condition that the operator’s Fr�echet second derivative be bounded. These
major improvements to the semilocal convergence results for Chebyshev’s method are principally
due to the technique used. The most commonly used technique is majorant sequences [1,2]; in this
study, we construct some real successions and so obtain certain recurrence relations which allow
us to check the convergence of the Chebyshev method while reducing to the minimum possible
the conditions required of the operator F . Furthermore, the error bounds which we obtain for the
application of the Chebyshev method are su�ciently competitive, a situation which we justify by
example in Section 3.
The results obtained are then applied to the resolution of particular nonlinear integral equations

of the Fredholm type and �rst kind.

2. Preliminaries

If we de�ne �n = F ′(xn)−1, we can write the Chebyshev method in the form

yn = xn − �nF(xn);
xn+1 = yn + 1

2LF(xn)(yn − xn):
(1)

Let us assume that F ′(x0)−1 ∈ L(Y; X ) exists for some x0 ∈ 
, where L(Y; X ) is the set of
bounded linear operators from Y into X . Moreover we suppose that
(c1) ‖�0‖6�,
(c2) ‖y0 − x0‖= ‖�0F(x0)‖6�.
(c3) ‖F ′′(x)‖6M; x ∈ 

(c4) ‖F ′′(x)− F ′′(y)‖6K‖x − y‖p; x; y ∈ 
; K ¿ 0; p ∈ [0; 1],
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We denote

a0 =M��; b0 = K��p+1; (2)

f(x) =
2

2− 2x − x2 ; (3)

g(x; y) =
x2

2
+
x3

8
+

y
(p+ 1)(p+ 2)

: (4)

and de�ne the sequences

an+1 = anf(an)2g(an; bn) and bn+1 = bnf(an)p+2g(an; bn)p+1:

Firstly, a technical lemma is provided whose proof is trivial.

Lemma 2.1. Let f and g be two real functions given in (3) and (4) respectively; and let p ∈ [0; 1].
Then
(i) f is increasing and f(x)¿ 1 for x ∈ (0; 12 );
(ii) For a �xed x ∈ (0; 12 ); g(x; y) increases as a function of y; and for a �xed y¿ 0; g(x; y)

increases in (0; 12 );
(iii) f(x)¡f(x) and g(x; p+1y)6p+1g(x; y) for x ∈ (0; 12 ); y¿ 0 and  ∈ (0; 1).

Some properties for the sequence {an} and {bn} are now provided.

Lemma 2.2. Let 0¡a0¡ 1
2 and f(a0)

2g(a0; b0)¡ 1. Then the sequences {an} and {bn} are de-
creasing.

Proof. From the hypothesis, we deduce that 0¡a1¡a0 and 0¡b1¡b0, since f(x)¿ 1 in (0; 12 ).
Now we suppose that 0¡ak ¡ak−1¡ · · ·¡a1¡a0¡ 1

2 and 0¡bk ¡bk−1¡ · · ·¡b1¡b0. Then,
0¡ak+1¡ak if and only if f(ak)2g(ak ; bk)¡ 1.
Notice that f(ak)¡f(a0) and g(ak ; bk)¡g(a0; bk)¡g(a0; b0). Consequently, f(ak)2g(ak ; bk)¡ 1.
Now, the fact of demonstrating bk+16bk is equivalent to proving that f(ak)p+2g(ak ; bk)p+1¡ 1.

Taking into account bk+1¿ 0 and following the previous reasoning, the result also holds.

In the following lemma, whose proof is obvious, we give su�cient conditions so that the real
sequences {an} and {bn} are decreasing.

Lemma 2.3. If 0¡a0¡ 1
2 and b0¡ ((p + 1)(p + 2)=8)(1 − 2a0)(a0 + 2)(4 − 2a0 − a20); then

f(a0)2g(a0; b0)¡ 1.

Lemma 2.4. Let us suppose that the hypotheses of Lemma 2:3 are satis�ed and de�ne = a1=a0.
Then
(i) = f(a0)2g(a0; b0) ∈ (0; 1);
(iin) an6(p+2)

n−1
an−16((p+2)

n−1)=(p+1)a0 and
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bn6((p+2)
n−1
)p+1 bn−16(p+2)

n−1 b0 for n¿1;
(iiin)

f(an)g(an; bn)6(p+2)
n f(a0)g(a0; b0)


=
(p+2)

n

f(a0)
; n¿0:

Proof. Notice that (i) is trivial. Next we prove (iin) following an inductive procedure. So, a16a0
and b1=b0f(a0)p+2g(a0; b0)p+16p+1b0 if and only if f(a0)¿1, and by Lemma 2.1 the result holds.
If we suppose that (iin) is true, then

an+1 = anf(an)2g(an; bn);

6 (p+2)
n−1

an−1f((p+2)
n−1

an−1)2g((p+2)
n−1

an−1; ((p+2)
n−1

)p+1bn−1)

6 (p+2)
n−1

an−1f(an−1)2((p+2)
n−1

)p+1g(an−1; bn−1) = (p+2)
n

an:

In addition, we have

bn+1 = bnf(an)p+2g(an; bn)p+1¡bn[f(an)2g(an; bn)]
p+16

(
an+1
an

)p+1
bn

and this is true since f(an)¿ 1. Now, as an+1=an6(p+2)
n
, (iin) also holds. Moreover,

an+16(p+2)
n

an6(p+2)
n

(p+2)
n−1

an−16 · · ·6((p+2)n+1−1)=(p+1)a0;

bn+16 ((p+2)
n

)p+1bn6((p+2)
n

)p+1((p+2)
n−1

)p+1bn−1

6 · · ·6(p+2)n+1−1b0 = 1 
(p+2)n+1b0:

Finally, we observe that

f(an)g(an; bn)6f(((p+2)
n−1)=(p+1)a0)g(((p+2)

n−1)=(p+1)a0; (p+2)
n−1b0)

6 (p+2)
n f(a0)g(a0; b0)


=
(p+2)

n

f(a0)
= (p+2)

n

�;

where �= 1=f(a0)¡ 1, and the proof is complete.

3. A �rst result of semilocal convergence

In this section we study the sequences {an} and {bn}, de�ned above and prove the convergence
of the sequence {xn} given by (1).
Notice that

‖LF(x0)‖6M‖�0‖‖�0F(x0)‖6a0; K‖�0‖‖�0F(x0)‖p+16b0;
‖y0 − x0‖6‖�0F(x0)‖6�¡R�

and

‖x1 − x0‖6
(
1 +

a0
2

)
‖�0F(x0)‖¡

(
1 +

a0
2

)
1

1− � �= R�:

since �¡�¡ 1, then y0; x1 ∈ B(x0; R�) = {x ∈ X | ‖x − x0‖¡R�}.
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In these conditions we prove, for n¿1, the following statements:
(In) ‖�n‖= ‖F ′(xn)−1‖6f(an−1)‖�n−1‖,
(IIn) ‖�nF(xn)‖6f(an−1)g(an−1; bn−1)‖�n−1F(xn−1)‖,
(IIIn) ‖LF(xn)‖6M‖�n‖‖�nF(xn)‖6an,
(IVn) K‖�n‖‖�nF(xn)‖p+16bn,
(Vn) ‖xn+1 − xn‖6(1 + an=2)‖�nF(xn)‖,
(VIn) yn; xn+1 ∈ B(x0; R�).
Assuming (1 + a0=2)a0¡ 1 and x1 ∈ 
, we have

‖I − �0F ′(x1)‖6 ‖�0‖‖F ′(x0)− F ′(x1)‖
6 ‖�0‖ sup

t∈(0;1)
‖F ′′(x0 + t(x1 − x0))‖‖x1 − x0‖6M‖�0‖‖x1 − x0‖

6
(
1 +

a0
2

)
a0¡ 1:

Then, by the Banach lemma, �1 is de�ned and

‖�1‖6 ‖�0‖
1− ‖�0‖‖F ′(x0)− F ′(x1)‖6f(a0)‖�0‖:

On the other hand, we obtain from Taylor’s formula

F(xm+1) =F(ym) + F ′(ym)(xm+1 − ym) +
∫ xm+1

ym
F ′′(x)(xm+1 − x) dx;

=
∫ 1

0
[F ′′(xm + t(ym − xm))− F ′′(xm)](ym − xm)2(1− t) dt

+
∫ 1

0
F ′′(xm + t(ym − xm))(xm+1 − ym)(ym − xm) dt

+
∫ 1

0
F ′′(ym + t(xm+1 − ym))(xm+1 − ym)2(1− t) dt: (5)

Then, for m= 0, if y0 ∈ 
 we have

‖�1F(x1)‖6‖�1‖ ‖F(x1)‖6f(a0)g(a0; b0) ‖�0F(x0)‖
and (II1) is true. To prove (III1) and (IV1), notice that

‖LF(x1)‖6M‖�1‖ ‖�1F(x1)‖6Mf(a0)2‖�0‖g(a0; b0)‖�0F(x0)‖6a1;

K‖�1‖ ‖�1F(x1)‖p+16Kf(a0)‖�0‖f(a0)p+2g(a0; b0)p+1‖�0F(x0)‖p+16b1:
In addition, we easily deduce that

‖y1 − x0‖6 ‖y1 − x1‖+ ‖x1 − x0‖6
[
f(a0)g(a0; b0) +

(
1 +

a0
2

)]
�

6
[(
1 +

a0
2

)
f(a0)g(a0; b̃0) +

(
1 +

a0
2

)]
�6

(
1 +

a0
2

)
[1 + �] �

6
(
1 +

a0
2

)
1

1− � �= R�
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and

‖x2 − x1‖6
(
1 +

a1
2

)
‖�1F(x1)‖:

Finally,

‖x2 − x0‖6‖x2 − x1‖+ ‖x1 − x0‖6
[(
1 +

a0
2

)
�+

(
1 +

a0
2

)]
�

=
(
1 +

a0
2

)
[1 + �] �¡

(
1 +

a0
2

)
1

1− � �= R�:

Then, y1; x2 ∈ B(x0; R�) and this proof holds by induction for all n ∈ N.
Now, following an inductive procedure and assuming

yn; xn+1 ∈ 
 and (1 + an=2)an ¡ 1 ; n ∈ N; (6)

the items (In)–(VIn) are proved.
We must now analyse the real sequences {an} and {bn} to study the sequence {xn} de�ned in

a Banach space. To establish the convergence of {xn} we only have to prove that it is a Cauchy
sequence and that the above assumptions (6) are true. We will now show that (1 + an=2)‖�nF(xn)‖
is a Cauchy sequence. We note that(

1 +
an
2

)
‖�nF(xn)‖6

(
1 +

a0
2

)
f(an−1)g(an−1; bn−1)‖�n−1F(xn−1)‖

6 · · ·6
(
1 +

a0
2

)
‖�0F(x0)‖

n−1∏
k=0

f(ak)g(ak ; bk):

We next analyse the factor
∏n−1
k=0 f(ak)g(ak ; bk). As a consequence of Lemma 2.4 it follows that

n−1∏
k=0

f(ak)g(ak ; bk)6
n−1∏
k=0

((p+2)
k

�) = ((p+2)
n−1)=(p+1)�n:

So, from �¡ 1, we deduce that
∏n−1
k=0 f(ak)g(ak ; bk) converges to zero by letting n→ ∞.

We can now state the following result on convergence for (1).

Theorem 3.1. In the conditions indicated for the operator F , let us assume that �0 = F ′(x0)−1 ∈
L(Y; X ) exists at some x0 ∈ 
 and (c1)−(c4) are satis�ed. Suppose that 0¡a0¡ 1

2 and b0¡ ((p+
1)(p + 2)=8)(1 − 2a0)(a0 + 2)(4 − 2a0 − a20). Then; if B(x0; R�) = {x ∈ X ; ‖x − x0‖6R�}⊆
, the
sequence {xn} de�ned in (1) and starting at x0 has; at least; R-order (p + 2) and converges to a
solution x∗ of the equation F(x) = 0. In that case; the solution x∗ and the iterates xn; yn belong to
B(x0; R�); and x∗ is the only solution of F(x) = 0 in B(x0; 2=M� − R�) ∩ 
.
Furthermore; we can give the following error estimates:

‖x∗ − xn‖6
(
1 +

a0
2
((p+2)

n−1)=(p+1)
)
((p+2)

n−1)=(p+1) �n

1− (p+2)n� �: (7)
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Proof. Let us now prove (6). As a0 ∈ (0; 12 ) then 0¡ 2− 2a0 − a20 and therefore
(
1 +

an
2

)
an ¡

(
1 +

a0
2

)
a0¡ 1:

In addition, as yn; xn ∈ B(x0; R�) for all n ∈ N, then yn; xn ∈ 
; n ∈ N.
So, (6) follows.
Now, we prove that {xn} is a Cauchy sequence. To do this, we consider n; m¿1:

‖xn+m − xn‖6 ‖xn+m − xn+m−1‖+ ‖xn+m−1 − xn+m−2‖+ · · ·+ ‖xn+1 − xn‖

6
(
1 +

an
2

)
�


n+m−2∏

j=0

f(aj)g(aj; bj) + · · ·+
n−1∏
j=0

f(aj)g(aj; bj)




6
(
1 +

an
2

)[

(p+2)n+m−1−1

p+1 �n+m−1 + · · ·+ 
(p+2)n−1
p+1 �n

]
�

6

(
1 +

a0
2

(p+2)n−1
p+1

)

(p+2)n−1
p+1 �n

[

(p+2)n[(p+2)m−1−1]

p+1 �m−1

+ 
(p+2)n[(p+2)m−2−1]

p+1 �m−2 + · · ·+ 
(p+2)n[(p+2)−1]

p+1 �+ 1

]

By the Bernouilli inequality: (1 + x)k ¿ 1 + kx, we have

‖xn+m − xn‖6
(
1 +

a0
2

(p+2)n−1
p+1

)

(p+2)n−1
p+1 �n

1− (p+2)nm�m
1− (p+2)n� �; (8)

then {xn} is a Cauchy sequence.
Now, by letting m→ ∞ in (8), we obtain (7).
From (7) it follows

‖x∗ − xn‖6
(
1 +

a0
2

)
�

(1− �)1=(p+1)
(


1
(p+1)

)(p+2)n

and therefore, {xn} has R-order p+ 2 at least.
To prove that F(x∗) = 0, notice that ‖�nF(xn)‖ → 0 by letting n → ∞. As ‖F(xn)‖6‖F ′(xn)‖

× ‖�nF(xn)‖ and {‖F ′(xn)‖} is a bounded sequence, we deduce ‖F(xn)‖ → 0 and then F(x∗) = 0
by the continuity of F .
Now, to show the uniqueness, suppose that y∗ ∈ B(x0; 2=N� − R�) ∩ 
 is another solution of

F(x) = 0. Then

0 = F(y∗)− F(x∗) =
∫ 1

0
F ′(x∗ + t(y∗ − x∗)) dt(y∗ − x∗):
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Using the estimate

‖�0‖
∫ 1

0
‖F ′(x∗ + t(y∗ − x∗))− F ′(x0)‖ dt6M�

∫ 1

0
‖x∗ + t(y∗ − x∗)− x0‖ dt

6M�
∫ 1

0
((1− t)‖x∗ − x0‖+ t‖y∗ − x0‖) dt

¡
M�
2

(
R�+

2
M�

− R�
)
= 1;

we have that the operator
∫ 1
0 F

′(x∗ + t(y∗ − x∗)) dt has an inverse and consequently, y∗ = x∗.

We now give an example to illustrate the previous results. We use a function quoted as a test in
several papers (see [5]).

Example 1. Let us consider F : C[0; 1]→ C[0; 1] to be the operator de�ned by

F(x)(s) = x(s)− s+ 1
2

∫ 1

0
s cos(x(t)) dt; (9)

where C[0; 1] is the space of all continuous functions de�ned on the interval [0; 1] with the sup
norm ‖ · ‖= ‖ · ‖∞:
If we choose x0 = x0(s) = s, it is easy to prove that

F(x0)(s) =
sin1

2− sin1 + cos1 s;

[F ′(x0)]
−1z(s) = z(s) +

∫ 1
0 z(s)sin s ds

2− sin1 + cos1 s:

F ′′(x)(yz)(s) =− s
2

∫ 1

0
cos x(t):z(t):y(t) dt:

Therefore the parameters appearing in Theorem 3.1 are

‖�0‖6 3− sin1
2− sin1 + cos1 = � = 1:2705964 : : :

‖�0F(x0)‖= sin1
2− sin1 + cos1 = �= 0:4953234 : : :

K =M = 1
2 ; a0 = 0:314678 : : :¡ 0:5, b0 = 0:155867 : : :¡

(p+1)(p+2)
8 (1− 2a0)(a0 + 2)(4− 2a0 − a20) =

2:105095 : : :. The conditions of Theorem 3.1 are therefore met and we obtain the solutions existence
domain B(x0; 0:655042 : : :) and its uniqueness, B(x0; 2:49309 : : :).
We give an upper bound C to number 1011‖x∗−x2‖, where x2 is the second iterate of (1). Carrying

out the same decomposition as Candela and Marquina in [4] and calculating the smallest value of n
so that ‖x∗ − x2‖ is of order 10−11, we get

‖x∗ − x2‖6‖x∗ − x4‖+ ‖x4 − x3‖+ ‖x3 − x2‖;
and C = 17013 500 is obtained. For the same function and iterative method, Candela and Marquina
obtained C = 37022683:427694 (see [4]), meaning that we have slightly improved on the result.
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Fig. 1.

Fig. 2. Cubic decreasing regions.

Fig. 1 shows the existence domain obtained for the solution, the initial point x0(s) and the solution
of (9), the line y = ks with k = 0:5224366093993515.
To �nish this convergence study of the Chebyshev method, we see that when p = 1 the cubic

decreasing regions (see [3,4] for de�nition) of the Chebyshev method are represented in Fig. 2,
where a0 and b0 are taken as coordinates. The dotted line represents the curve

b0 =
6(1− 2a0)(4− 2a0 − a20)

(2 + a0)2

obtained by Candela and Marquina and the continuous line represents our curve

b0 = 3
4(1− 2a0)(a0 + 2)(4− 2a0 − a20):

In consequence, our cubic decreasing region is bigger, and therefore the region of accessibility
for the Chebyshev method has been increased.
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4. Mild convergence conditions

Until now, the necessary conditions for the convergence of (1) have been established by assuming
that the second Fr�echet derivative of F is bounded in 
. Our goal in this section is to prove the
convergence of (1) assuming just that F ′′ is bounded only on x0.
Considering the notation used in the previous section, let F be as in the previously indicated condi-

tions and we suppose that conditions (c1), (c2), (c4) are satis�ed; we now give (c′3): ‖F ′′(x0)‖6N .
We suppose that a solution exists in (0; 12 ) of the equation

x = N��+ b0

[
2 + x

2(1− f(x)g(x; b0))
]p
; (10)

where b0, f and g are given in (2)–(4). We will denote ã0 as this solution, R̃=(1+ ã0=2)1=(1−�̃)
and �̃= 1=f(ã0).
We note that as ã0 is a solution to (10) it is veri�ed that ã0 = (N + K(R̃�)p)�� = M��, where

M = N + K(R̃�)p. De�ning the sequences {ãn} and {b̃n} as above,
ã0 =M��; b̃0 = K��p+1;

ãn+1 = ãnf(ãn)2g(ãn; b̃n) and b̃n+1 = b̃nf(ãn)p+2g(ãn; b̃n)p+1;

we obtain the same results as seen in the Preliminaries section for these sequences.
We note that in order to apply the argument of the previous section, we need to prove that F ′′ is

bounded in the points of the sequence {xn} and in the segments which join the points of sequences
{xn} and {yn} (see condition (IIIn) and (5)).
We will therefore prove �rst that ‖F ′′(x)‖6M for all x ∈ B(x0; R̃�). Let be x ∈ B(x0; R̃�), then

‖F ′′(x)‖6‖F ′′(x0)‖+ ‖F ′′(x)− F ′′(x0)‖6N + K‖x − x0‖p6N + K(R̃�)p =M:
Once this condition is proved, and given that

‖LF(x0)‖6N��6M��= ã0;

‖y0 − x0‖= ‖�0F(x0)‖6�6R̃�
and

‖x1 − x0‖6
(
1 +

ã0
2

)
‖�0F(x0)‖¡

(
1 +

ã0
2

)
1

1− �̃ �= R̃�;

that is y0; x1 ∈ B(x0; R̃�), the following conditions can be proved for n¿1 by analogy with the
previous section.
(In) ‖�n‖= ‖F ′(xn)−1‖6f(ãn−1)‖�n−1‖,
(IIn) ‖�nF(xn)‖6f(ãn−1)g(ãn−1; b̃n−1)‖�n−1F(xn−1)‖,
(IIIn) ‖LF(xn)‖6M‖�n‖ ‖�nF(xn)‖6ãn,
(IVn) K‖�n‖ ‖�nF(xn)‖p+16b̃n,
(Vn) ‖xn+1 − xn‖6(1 + an=2)‖�nF(xn)‖,
(VIn) yn; xn+1 ∈ B(x0; R̃�).
The following result is therefore proved.
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Theorem 4.1. Let F be as in the usual conditions. Let us assume that �0 = F ′(x0)−1 ∈ L(Y; X )
exists at some x0 ∈ 
 and (c1); (c2); (c′3) and (c4) are satis�ed. Let us denote ã0 = M�� and
b̃0 = K��p+1 and suppose that b̃0¡ ((p + 1)(p + 2)=8)(1 − 2ã0)(ã0 + 2)(4 − 2ã0 − ã20). Then; if
B(x0; R̃�) = {x ∈ X ; ‖x− x0‖6R̃�}⊆
; the sequence {xn} de�ned in (1) and starting at x0 has; at
least; R-order (p + 2) and converges to a solution x∗ of the equation F(x) = 0. In that case; the
solution x∗ and the iterates xn; yn belong to B(x0; R̃�); and x∗ is the only solution of F(x) = 0 in
B(x0; (2=M�)− R̃�) ∩ 
.
Furthermore; we can give the following error estimates:

‖x∗ − xn‖6
(
1 +

ã0
2
̃((p+2)

n−1)=(p+1)
)
̃((p+2)

n−1)=(p+1) �̃
n

1− ̃(p+2)n �̃ �; (11)

where ̃= ã1=ã0.

We can illustrate this result with the following example

Example 2. Let us consider F : C[0; 1]→ C[0; 1] with the operator de�ned by

F(x)(s) = x(s)− 1− 1
4

∫ 1

0

s
s+ t

x(t)11=5 dt; (12)

where C[0; 1] is the space of all continuous functions de�ned in the interval [0; 1] with the sup norm
‖ · ‖= ‖ · ‖∞. It is easy to prove

[F ′(x)(y)](s) = y(s)− 11
20

∫ 1

0

s
s+ t

x(t)6=5y(t) dt

and

[F ′′(x)(yz)](s) =−33
50

∫ 1

0

s
s+ t

x(t)1=5z(t)y(t) dt;

and we obtain that

‖F ′′(x)‖633
50

‖x‖1=5log 2: (13)

We can see that (13) depends on the norm of x, and it cannot therefore be bounded in 
; conse-
quently, condition (c3) is not satis�ed and therefore Theorem 3.1. cannot be applied. This problem
disappears if Theorem 4.1 is applied, which only requires that the second derivative be bounded in
the initial point x0. If we choose x0 = x0(s) = 1, we have

F(x0)(s) =− s
4
log
s+ 1
s
;

‖F(x0)(s)‖= log 24 :

The existence of �0 will now be proved and we will calculate the parameters appearing in Theorem
4.1:

‖[I − F ′(x0)]‖= max
s∈[0;1]

|y(s)− F ′(x0)y(s)|= 11
20 log 2 = 0:381231 : : :¡ 1:
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Table 1
Weights and nodes for the Gauss–Legendre formula for m= 8

j 1 2 3 4 5 6 7 8

tj 0.01985507 0.10166676 0.237233795 0.40828268 0.59171732 0.762766205 0.89833324 0.98014493
�j 0.10122854 0.22381034 0.31370665 0.36268378 0.36268378 0.31370665 0.22381034 0.10122854

Table 2
Solutions of (12)

i 1 2 3 4 5 6 7 8

xi 1.02415468657 1.07954327274 1.13201750646 1.17280585507 1.20186439201 1.22141388151 1.23360029059 1.23991266325

The Banach lemma gives the existence of �0 and we obtain

‖�0‖6 20
20− 11 log 2 = � = 1:61611 : : :

‖�0F(x0)‖= 5 log 2
20− 11 log 2 = �= 0:280051 : : :

K =N = 0:457477 : : : ; a0 = 0:383653 : : :¡ 0:5; b0 = 0:160518 : : :¡ ((p+ 1)(p+ 2)=8)(1− 2a0)(a0 +
2)(4 − 2a0 − a20) = 0:5647661 : : :. The conditions of Theorem 4.1 are therefore met and we obtain
the solutions existence domain in B(x0; 0:451426 : : :) and uniqueness in B(x0; 1:00849 : : :).
Finally, Eq. (12) is discretized to replace it by a �nite dimension problem. The integral appearing

in (12) is approximated by a numerical integration formula, using the Gauss–Legendre formula∫ 1

0
f(t) dt ≈ 1

2

m∑
j=1

�jf(tj)

for m= 8 where tj and �j are the known nodes and weights which appear in Table 1.
Denoting the approximations of x(ti); i=1; : : : ; 8, as xi we reach the following system of non-linear

equations:

xi = 1 +
ti
8

8∑
j=1

�j
x
11
5
j

ti + tj
; i = 1; : : : ; 8:

If we then use aij to mean 1
8 ti�j=(ti + tj), we can write the above system in the form

xi = 1 +
8∑
j=1

aijx
11=5
j ; i = 1; : : : ; 8: (14)

The solution which appears in Table 2 is obtained by using the Mathematica programme
Interpoling the function which passes through points (ti; xi) i=1; : : : ; 8, and knowing that x(0)=1,

we obtain the graph approximating to the solution (Fig. 3(a)). Fig. 3(b) shows that the solution
obtained is found in the solution existence domain located for the non-linear integral equation con-
sidered.



M.A. Hern�andez, M.A. Salanova / Journal of Computational and Applied Mathematics 126 (2000) 131–143 143

Fig. 3.
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