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A subspace M = L2(4)= A, is called an e-subspace if (i) dim M < % (it) L e M;
(iti) M < H *; (iv)for every fe A, such that (|f]*—1) is orthogonal to M, and
every ge M, | /gl = llg]. Definc the operator T by lT/')(:):_\"‘, Lfow)? Kz w)
dA(w), where K(z,w)=(1;n)(1—2w) ? is the Bergman kernel in 4. A subspace
M < A, sauslying (i), (i), {iii) s called a T-subspace if TM < M. It is proved
that M is an e-subspace if and only if M is a T-subspace. In particular, a finite
dimensional linear space M of polynomials i1s an e-subspace if and only if
M=span{z*} " | where k>0 and N>0 are integers. For k=1 this implies a
sharper form of a thcorem of H. Hedenmalm. ¢ 1993 Academic Press, Inc

INTRODUCTION

Let 4, be the Bergman space of holomorphic functions f{z)=3%; o 2*

in the unit disk 4={zeC:|z| <1} with the norm

1 i
n./'|,,p=(— (NG dA(:)) : (1)
mJy

where dA(z) is the Lebesgue area measure on 4. The Hardy space H,
consists of holomorphic functions in A4 such that

) 1 Pt 4 . ) Lip
“/” H, = sup (E.TE J“ |f(r(’l“)|p dO) < oC. (2)

O<r<t
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If p=2 both A4, and H, are Hilbert spaces, and

2 l 2 = 3
=5 | AR A =Yl ik + 1, (3)
‘1_1 S it 110_7 L2 3’
=5, |, 111 d=F 1), (3)

where f(¢") are the radial limit values of f.

The factorization theorem for H, is classical: every feH, can be
represented as a product f'=gh where g is an inner function, that is,
geH, and |g(¢®) =1 ae., and k is an outer function (see [1, p. 24]).
Thus f/g is holomorphic in 4, and | f/gll,, = (AP

For a long time a similar result for 4, was unknown and, moreover,
seemed to be implausible. However, in two recent papers [3, 2] a factoriza-
tion theorem was established for the Bergman spaces. In the first of them
[3] it was proved that for every divisor D in 4 (i.e., a finite or countable
set |z, } < 4 with corresponding “multiplicities” m, € N) which is a zero set
of a function in A4,, there is a unique (up to a constant unimodular factor)
function G, € 4,, with |G| ,,= 1, such that G, vanishes on D, and for
every f'€ A, that vanishes on D || f/G || ,, < | f]l 4,. In the second paper [2]
this result was extended to an arbitrary p>1. The function G, is the
solution of the extremal problem

sup{|/*ON : fed,, Ifl,<1 flp=0} (4)

where k is the multiplicity of D at 0 (if 0¢{z,}, k=0). A standard
variational argument shows that the function G =G, that realizes the
supremum in (4) satisfies

[ UGE—1) gtz) daz)=0 (5)
A

for every g e H, . The general pattern of proof in both papers was the same
and included two step: first it was proved that (5) implies |Ggll., > llgll 4,
for all ge H,, and then it had to be shown that G, has no extra zeros;
the proofs, of course, were quite different, as the Hilbert space technique of
[3] does not work for p # 2. The first step suggests that functions satisfying

(5) should be viewed as “inner functions” in A4,. Since a function Ge H, is
inner if and only if

Lo 6| o it _ ,
37 ) UGN = 1) gle™) o =0 (5)

for all ge H,, we thus obtain a common definition of an inner function in
both the Hardy and Bergman cases:
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DEeFINITION 1. A function Ge 4, (Ge H,) is called inner in A, (respec-
tively, H,) if |G|? =1 is orthogonal to H, , i.e., (5) (respectively, (5')) holds
forall ge H, .

DeFINITION 2. A function G € A4, is called a (norm-) expansive multiplier
if |Gll,=1and [Ggll,, >1lgl,, forallgeH .

If, for some fixed G e 4,, we consider the functional /; on H,

l(gy=10Ggl", . (6)

then Definition 2 simply means that G is norm-expansive if |G| 4,=1, and
g =1 is the point of minimum for /; restricted to the H_ part of the unit
sphere of A4,. On the other hand, a standard variational argument shows
that (5) expresses the fact that 1 is a critical point for /, at least for p> 1.
Thus, if G is an expansive multiplier then G is inner. However, the converse
is also true:

p*

THEOREM (Hedenmalm [3] for p=2; Duren, Khavinson, Shapiro, and
Sundberg [2] for an arbitrary p=1). If Ge A, is inner then G is a norm-
expansive multiplier:

“GgH»i,,}HgHA,,’ ngH,

In the case of H,, a norm-expansive multiplier G is an inner function,
ie., |G(e”) =1 ae., and therefore (7 is a norm-preserving multiplier.

Now a natural question arises. Let L be a subspace of 4, (or H,), le L,
and G be a norm-expansive L-multiplier, which means that ||G| =1 and
1Ggll 4,2 N8l ., for every ge L. The necessary condition for a minimum
implies that (5) holds for every ge L, that is, G is an “L-inner function.”
The problem is to characterize those subspaces L < A4, (or L < H,) so that
every L-inner function is a norm-expansive L-multiplier. Such a charac-
terization i1s obtained in this paper for 4, and H,, provided that L is a
finite dimensional subspace consisting of H_ functions. Our main focus 1s
on A,, which is a more interesting (and more difficult) case. One applica-
tion of the theory is a description of subspaces of polynomials having the
above property.

1. e- AND T-SUBSPACES: STATEMENT OF RESULTS

Let L = A, be a subspace. We call an element G e 4, a (norm-) expansive
L-multiplier if

(1) 1Glla,=1
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(1) gGe A, for every ge L;

(iti)  [|gGlla, 2 gl 4, for every ge L. (7)
Remark. In the terminology of [5], (7) means that G>>1 on L.
We call Ge 4, an L-inner function if conditions (i) and (i1) hold, and

! 2
- 061-1)gda=0 (8)
n

4

for every ge L. Note that condition (ii) implies the convergence of the
integral in (8).
DerFNITION 1. A subspace L < A4, is called an e-subspace if
(1) lel;
(1i) every L-inner function is a norm-expansive L-multiplier.
L is called an e*-subspace if L satisfies (i) and

(ii') every bounded L-inner function is a norm- expansive
L-multiplier.

Our first result is the following

APPROXIMATION LEMMA. Let Lc H_ ,dimL <o, 1€eL, and let Ge A,

be an L-inner function. Then there is a sequence {G, | of polynomials such
that G,— G in A,, and all G, are L-inner functions.

CoRrROLLARY., If LcH,, dimL<xc, and L is an e*-subspace of A,
then L Iis an e-subspace of A,.

Let K(z, w)=(1 —2w)~? be the Bergman kernel in 4. Convolution with
K{z, w)= K(w, z) is a bounded projector from L,(4, (1/n) dA) onto 4, for
I <p< o (see [6, p.122]), and is an orthogonal projector for p=2. The
following operator plays an important role in what follows:

1
(Te)z) = [ 1g0n)” K(z,w) dAw) 9)

We call T the quadratic Toeplitz operator because Tg= B(g, g), where
B(g. hy= T (h); here T (h) is the Toeplitz operator with the symbol g.

DepNITION 2. A subspace Lc A, is called Toeplitz-invariant, or a
T-subspace, if TLc L.

The main result of this paper is the following:

S80 111 1-6
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THEOREM 1. Let Lc H,, 1€ L, dim L <oc. Then L is an e-subspace of
A, if and only if L is a T-subspace.

Using this theorem it is easy to check that the subspace £, of all polyno-
mials of degree <n is an e-subspace of 4,. However, we can say more. The
following theorem describes all subspaces of polynomials that are
e-subspaces.

THEOREM 2. Let L be a finite-dimensional linear space of polynomials,
and 1€ L. Then L is an e-subspace of A, if and only if there are integers
k=1 and n>0 such that L=span{:z*; j=0,1, ., n}.

COROLLARY. Let M, =1 f(:*):feH,}. Then M, is an e-subspace of
A,.

Note that for k=1 we obtain Hedenmalm’s theorem (see above).

Although Theorem 1 gives a necessary and sufficient condition for a
finite-dimensional subspace L« H * to be an e-subspace of 4,, it is not
clear a priori how large the class of e-subspaces is. The next theorem shows
that this class 1s rather large. Let D be a finite divisor in 4, that is,
D=mya,+ - +m,a,, m,..m,eN, a,,..,a,€d. Set

Ly=span{l, K(z,a,), .. K, (z.a\), .., K(za,), .. K, (z4a,)}, (10)

where

o]

K (z,w) . Kz, w).

¥

on

THEOREM 3. L, is an e-subspace of A, for every finite divisor D.

All the above theorems have their analogues for the Hardy space H,.
Given a subspace L < H,, we call a function G e H, an L-inner function
if
(i) IGlum=1;
(i) gGe H, for every ge L;
(it}  (172n) [3* (1G(e™)* = 1) g(e®) dO =0, Yge L.
An clement Ge H, is called an L-multiplier if |gGll,, = lglly, for all
ge L. A subspace L = H, is an e-subpsace of H, if 1 € L and every L-inner

function is an L-multiplier.
Finally, we define the operator T by

- o
(Tg)(:)=§— lgte™ )’ Kiz, e") db,
m Yo
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where K(z,w)=(1—2w) ' is the Cauchy kernel. We call a subspace
Lc H, a T-subspace if L is T-invariant, ie., TLc L.

THEOREM 1'. Let L be a finite-dimensional subspace of H. such that
le L. Then L is an e-subspace of H, if and only if L is a T-subspace.

THEOREM 2. Ler L be a finite-dimensional linear space of polynomials
such that 1e L. Then L is an e-subspace of H, if and only if there are
integers k=1 and n >0 such that L =span{z¥:j=0,.,n}.

THEOREM 3. Let D be a finite divisor, and let L,, be defined by (10),
with K instead of K. Then L, is an e-subspace of H,.

A  comparison of Theorem2 and Theorem2’ shows that
L=span{z*:j=0,..,n} is an e-subpsace of both 4, and H,. We are
tempted to conjecture that there are no other finite-dimensional L« H

that are e-subspaces of both 4, and H,.
2. SOME PROPERTIES OF THE DIRICHLET SPACE
To prove our theorems we need several lernmas, some of them may be

of independent interest. Let f be an analytic function in 4, f=37 a,z*
Consider the operators:

(SN i=zf(z)=Y a, 25, a ,=0; (11)
. z}— (0 <

(RPVz) =L SO S (12)

(Df)z):=f"(z)=) (k+1)a,, =~ (13)

0

There are obvious relations between these operators:
RS=1, DSR=D.

Let f'e H,, and let U, be the least harmonic majorant of |f|*:

U(z) zed.

1 Jz" (1—1z?) Lf(e"™)? 40

o e — 2|2 ’

Put &,(z)=U,(z) — | f(z)|. The following result is due to H. Hedenmalm
[3]. To make our presentation self-contained, we prove it here. Qur proof
differs from that given in [3].
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Let &, be the space of analytic functions modulo constants in 4 with the

norm
Hf”yﬂz (% L L) dA(:))l”,

For p=2, we write &, =%; & is called the Dirichlet space.
LemMMma 1. If fe% then
D z)=(1—1z1") 3 (RS W) (14)
1

Proof. First check that both sides of (14) have equal Laplacians
ad = (1/4)(3%/ox? + @°/éy*). We have

oD, (z)= =2 f() = =11 ()

On the other hand,

21— 121) S (RN =85{Z :(R'jf)(:nhz I(SR’f)(:)I"}
1

I

(DRf)(z))? —Z {DSRfWz=)?

_M,\ —M\

(DRf)(2))?
S DR )= — 1)

This proves (14) if f is sufficiently smooth on 4. Replace f by f, = f(rz)
(0 <r<1). Since for fe H,

SN S gy A= 1217) 2 (z€4),

we obtain

S (1= 120%) [(RY )= )P<an'fn,,, T Y e

Jj=1 k=0

=Y nla= 112
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and

x

Y RN =Y RN
1

1

(1—1z1%)

<Y (1= 121 RIS = £))] (R + (R

<<Z(l—kPHRﬂf—ﬂNﬂP>h

X(Z 201 = 121 LHRI N + l(R’f,)(:)Iz]>
<=Ll QIO+ 204122 <20 0 1 = fil s

and this tends to 0 as r » 1. Thus @,(z) converges uniformly on 4 to the
right hand side of (14) as r — 1, while the pointwise limit of @,(z) is @ (=),
which proves the lemma.

Let .# be the set of points £ € @4 where f(z) and all (R/f)(z) have finite
radial limit values

lirn](R{/‘)(rg“):(R"f)(g“), Jj=0,12, ..
For each £e.# we can define

oy PRS2 [
‘h'(%)“rh-{nl 1=, " & ‘Df'(é)—lzlll(R_/)(CH, (15)

where ¢/cv is the normal derivative into 4, and the right hand side may be
equal to + oc. We have

x

2 2_1 if) 2 ___1_ " itt
11 =3 mlan* =X IR =50 | arte a0 (16)

1

If we replace f/ by f,, we can see that lg,ll,, / llg,||,, as r = 1. This implies
g, =g/, >0 (r—1)

The purpose of the next lemma is to justify application of the Green
formula in a special situation where the functions involved are not smooth
enough, as required by the classical Green formula.

Let ge H,, g(0)=0. Define g, =2 Re(zg) = zg + z£, and let V (z) be the
Poisson integral of g,(¢"). If ¥,=V,—g,, then

Y(z)= (1 — [zI*)[(Rg)(z) + (Rg M=) ], (17)
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where R is the “backward shift” operator (12). In fact, let g(z)=Y; b,z*.
Then it is easily seen that

£1(z)=2z* Re(Rg)(2). Ve(z) =2 Re(Rg)(z),

and (17) follows. Since H,-functions are o(1/(1 — {z|)}), formula (17) shows
that ¥, extends to a continuous function on 4 with ¥,=0 on é4.
Moreover,

W (rg) o N
e =tim TS ) <o rene) + TRD), (18)

and s, —s,ll, =0 (r—>1)

LEMMA 2. Let feZ, ge%,, and he H, . Then

(a)
2 . 2 - 1 :
[ P11 dae) +lim )| @) dA)
e
ZZ.[U |/1((),{’)|~Q/'("'“)d9§ (19)
(b)
2 [ 1A(=)1* Re g'(2) dA(z) + lim | —d—h,(.—)(’ Y (2) dA(z)
4 r1 Yy |dz
1 2n " w
:ZL {h(e™))? 5 (™) df; (20)
(c)
2 1 e ‘ i6)
[ B daE) =g [ he) g ) dos (21)
A Q
(d)
fpm
2| hG)Re g(2)dA) =7 [ (e s (™) db; (22)
P 4y

(e) The limits in (a) and (b) exist.

Proof. To simplify notation, let us agree that 4. means (h,)’, not (h'),:

d
hi(z)= = h(zy=rh'(rz).
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We have, for 0 <r <1, 0<p <1, by the classical Green formula,
[ I A = = [ 18 () 000, (2)
A} Kl
= = [ )P @, () dA(z)
P2 |
1 iy 2 6
+7 |h,(e)]" g, () db.

4, ’

Fixing r <1, we allow p to tend to 1. Since f,— f" in 4,, q, —¢q, in

L,(24), h,e H,, and @, — &, uniformly in 4, we obtain

[ AP 1P daE) [ 1 @) dacz)

1 o
=2 | hie™I g e do.
3%

«

Using the dominated convergence theorem we find that of the three
integrals above the first and the third tend to a limit as r — 1. Therefore the
second integral also has a limit, which proves the required relation.

(b) Since g< % < H,, we can construct g, = 2Re(Zg) and
¥,=V,—g,. Clearly, ¥, does not depend on g(0), so we can assume that
£(0)=0. We have

00V, = —20(zg+z§)= —2 Re g'(2).
Repeating the argument used above for proving (19) we easily obtain (20).
Here again the proof depends on two facts: s, —s, in L,(é4), and
¥, — ¥, uniformly on 4, as r — 1.
Parts (¢) and (d) are proved similarly.
COROLLARY. If fe %, ge %, and
| 1/ -2Re g2) 2y da =0
A
for all he H,, , then q,(e")—s,(e")=0 a.e.

LEMMA 3. Let fe€ @, gey, and let q(z) =q,(z) and s(z) =5,(z) be the
harmonic extensions to 4 of q,(&) and 5,(&), respectively. Then

! )
B,() = ¥y(2) <5 (1= 12)g(z) () (23)
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Proof. 1f f and g are smooth enough on A then (23) follows from
((D,(:)—‘P(:))/(l—!:fz) being subharmonic (Lemmal and (17)) with
boundary values (1/2)(g(&) — s(&)). Therefore

] 2
¢/;(3) - W,,,(Z) Sz (1— |5|“)(‘l1;(3) —S/,(-'-")),

where g,(z) and s, (z) are the Poisson integrals of g,(¢) and 5, (&), respec-
tively. Since g, - ¢, and 5, — s,(r — 1) in L,(d4), we have g.(z) = ¢,(z)
and s,(z) > s,(z) (r— 1) for ze 4. On the other hand, &,(z) - &,(z) and

¥,(z)— ¥z} as r - 1, which proves the lemma.

3. AUXILIARY LEMMAS

Let M < 4, be a finite dimensional subspace of A4, such that le M < 4,.
Denote M,={feM:f(0)=0} and define 7,,: M,— A4, by

(Tog)(z)=T(1+g)=)— Il + gl 2,

=lj 11+ g(w)]? (K(z, w)— 1) dA(w), (24)
T g

where T is the quadratic Toeplitz operator (9).

LEMMA 4. T, is a continuously R-differentiable operator from M, to A,,
and T((0) is the imbedding M, — A,.

Proof. For a fixed ge M, and variable he M, we have
Tolg+hy= | T3 o)+ Bor)J[1 -+ 500 + 7))
x [K(z, w) — 1] dA{w)
= T(g)+ | LA+ 090 + R0 + o)
x (K(z, w)— 1) dA(w)

+an Ih(w)|? (K(z, w) — 1) dA(w). (25)

If we consider 4, (and M) as normed linear spaces over the field R, then
the second term of the right hand side of (25) is an R-linear operator
Ty(g): My— A,. In fact, M c A, implies that 7, g and T,(g + h) are in A4,,
so T(g) is well-defined on M,. Since dim M,< o and T(g) depends
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linearly on he M,, Ty(g) is a continuous linear operator on M. The
convolution with the Bergman kernel K 1s the orthogonal projection from
L,(4, dA) onto A, and therefore

1 ,
“; [ O (KCoe) = 1) datn)| <UL+ 1

12

< Al % + 14K, (26)

Since M| is finite dimensional, the A, and 4, norms are equivalent on M.
Therefore there is a constant C such that the right hand side of (26) is
< C |[h%,. which proves that T(g) is in fact the derivative of T, at g.
Clearly, Ti(g) is continuous in g. Finally, since #(0)=0 if he M,, we
obtain

(T:,(O)h)(:):H LAOY) + B00) J(K (=, w) = 1) dA(w) = h(z),

Le., T4(0) is the identity operator. The lemma is proved.

Let LcH,,dimL<o, lel, Lo={feL:f(0)=0}, Ge A,. Pick a
basis [@,. @1, ... ¢,} in Ly, and define @: 4, - R>" by

(®h),=Re | |G +h]* g, dA,
A

(tb/z),,H:ImI G +h>@,dA.  j=1,2,...n (27)
A

(again we consider A, as a normed linear space over the field of real
numbers).

LEMMA 5. @ is a continuously differentiable mapping, and if G #0 then
@ is regular at 0, which means that ®'(0) is a bounded linear operator from
A, onto R*".

Proof. We have
[ 1G+h?g,da=] 1G> p,dA+ | (Gh+Gh)g,dA
A vA A

+J~ |h]? @, dA. (28)
A

The second term of this sum is a continuous R-linear complex-valued
functional on 4,. Hence
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~ - 1 _ -
(@'(0)h),=Re | (Gh+Gh) ¢, dA =3 | (Gh+ Gy, +d,) da.
A A

(fD’(O)lz),,“:lm‘[ (Gh+Gh) ¢, dA=—= [ (Gh+Gh)(o,~ ;) dA.
A “ vd

Suppose that @'(0) is not “onto.” Then there are constants o, %5, ..., %,,,
B, B2, ... B,€R, not all =0, such that

% ,}; [1, |1 (Gh+Gh)(p,; + ¢;) dA — if, L (G‘h+Gl%)(<p,—<p,)dA]=o
for all he A4,. Put 9 =3% (a,—if};} ¢,; then we get

f’ (Gh+ Gh)(¢ +¢)dA =0 (29)
for all he A,. Put ih instead of /1 in (29);
j (iGh — iGR)(@ + $) d4 = 0. (30)

A

Therefore
f Ghip+@)dA=0, YheA,. (31)
A
Put #A=Geg in (31). We obtain
[ 1GP1olPda= ~] 161 9* .
A A
This yields, if ¢ =u + v,
f IGI? u? dA = 0.
A

Therefore =0, which implies ¢ =const. Since ©(0)=0, ¢=0 and
ay=---=a,=f,=-.- =f,=0. The lemma is proved.
4. PROOF OF THE THEOREMS

Proof of the Approximation Lemma. The assumption is that Lc H, is
a finite dimensional linear space, 1 € L, and G e 4, is such that (8) holds
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for every gel, which implies, in particular, that [|G]j,, =4, Let
Ly={felL:f(0)=0}; we have

lj IGI2fdA—=0, V¥felL, (32)
Ty

Our goal is to show that G can be approximated by polynomials P so that
(P~ Gl 4, <& (£>0 arbitrary) and

L iprraa=0.  wreLs (33)
nJy

in fact, P/{|P| ,, will then be an L-inner polynomial approximating G. Pick
a basis {¢,..., ¢,} in L, and consider the mapping & defined by (27) of
A, into R*"; it follows from (32) that @#(0)=0. By Lemma 5, ¢'(0) is an
“onto” mapping, i.e., there is a 2n-(real) dimensional subspace M of A,,
say M =span{h,, .., h,,}, such that @'(0) M = R?". The restriction of @ to
M can be represented as @ =@’ (0)— @, , where @'(0) is an invertible
linear mapping from M onto R*" and @, is a nonlinear operator such that

sup{ | @ hllgmm:he M, ||h]| ,,<e} < Ce? (34)

(see (28)). Using von Neumann's series we deduce that @ is invertible in
a ball D,={heM:|h|,<e} if ¢ is sufficiently small. In fact, since
&(0) =0, that is equivalent to the existence of @ ' in a ball B;<=R?* of
radius 9, centered at 0, and this follows from the convergence of von
Neumann'’s series

@ =3 ([@(0)] ‘&) [¢(0)] '
j=0
for < C Y |(@'(0)) '| ', where C is the constant in (34). Fix such a §,
and find £> 0 so that @(D,) < B;. Then consider @,: M, — R?" defined by
(27) on M y={hy:he M} but with (G+h), instead of G+ h, where h,
and (G + h) is the Nth partial sum of the Taylor series of # and G + A,
respectively. Because of the finite dimension of M, (G + h), uniformly
approximates G + h in the A, metric if he D, and N — sc. We can therefore
choose A large enough to guarantee the existence of @, ' in B,,, by the
convergence of the corresponding von Neumann’s series. We thus obtain a
polynomial of degree N, P=P, = ,'(0)=(G + h),, satisfying (33). Also

1Py — Gl < lhnll g, 411G — Gyl 4, <8+ 116G — Gyl < 2¢,

provided that N is large enough. Since ¢ is arbitrary, we get the required
result.
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Proof of Theorem 1. Let L H, be an e-subspace of A4,, with
dim L <oc. Suppose that Tg¢ L for some gel. Let Tg=g,+ g,
where g,el and g,eL", g,#0. Note that g,(0)=0 since lelL.
As geH,, TgeA, and hence g,eAd,. Set M=span(L, {g,}).
My={feM:f(0)=0}; M, is a closed subspace of 4,. Let P: 4, M be
the orthogonal projection. Set

T:M,->M,, T,=PT,,

where T, is given by (24). It follows from Lemma4 that T, is a con-
tinuously differentiable operator, and 7(0)=/ (identity operator). Also,
7,(0)=0. Now, the implicit function theorem implies that 7 is invertible
in some neighborhood of 0. It means that there is an fe M, such that
T, = —eg,, if £e>0 is sufficiently small, and f= —&g,+ o(¢), where the
last term denotes an element in M, with the norm of order ¢2. Hence
Tof= —egr+be)h, and T(1 + f)=1+a(e)--eg,+ b(e)h, where a(e) and
b(e) are scalar functions of order & (since g,(0)=0), and k, is orthogonal
to M, with ||4.| ,, bounded as &« — 0. Moreover, #,(0)=0 and, therefore,
h, i1s orthogonal to L.

Put G=(1+ f)/I1+ fl ,,- Since /= —eg,+ o(e) and g,(0) =0, we have
i1+ fll=1+o0(¢) and G=1—g,+ o(s) where the last term denotes an
element with the norm of order at least ¢ Also, 1G4, =1

Now, for each #e L, h(0)=0, we have

1 -
= | 1GGE) hz)daz)
TV

1
:?[

Y

{G(=)]? dA(2) [ K(z, w)y h(w)dA(w)
b |
:L, J. h(w) dA(w) J [G(2)|? K(z, w) dA(z)
g Rl

=lj hw)(TG)(w) dA(w)
T

1 [ ——
=1 2 [ o) T 7306 di()

=+ /114 -,1; j h(w)(1 + a(e) — £g,(w) + b(e) h,(w)) dA(w)

=1+ £l ;2 [(1+a(e)) h(0)—elh, g2 +b(e){h, h,>]=0.
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Thus |G|* — 1 is orthogonal to all elements of L. At the same time

e
1G8I%, =~ | 1G1* Ig|* d4
LR

1
T J (1 —ega(z) + 0(e))(1 —ega(2) + 0(¢)) | g17 dA(z)

=182 == | (g2(2)+ 2 gl dA(2) + o)
L Ja

2 l 2
= 1gl3 =26 Re = [ g:(2) I&(2)1* dA(z) + ()
/4
2 ] bl
—~ g%, — 26 Re (;; j (=)
x dA(z) j Kz w) gz(w)dA(w)>+o(5)

1 —
= g%~ 26 Re — [ g,(w){TgI0w) dA(w) + ofz)

=|lgl% — 26 Re{g,, g + 820 +ole)
=lgl%, — 2 gl +oe) < | gll3,

for sufficiently small ¢>0. Therefore L is not an e-subspace. This
contradiction shows that TL < L if L is an e-subspace.

Conversely, let L be a T-subspace. By the Corollary to the Approxima-
tion Lemma, it is sufficient to prove that L is an e*-subspace of 4,. Let G
be a bounded L-inner function, and let

G(:)=L G(w) dw, g(:)zJ0 (TG)(w)dw—i.
Let he H, . We have

[ [ 2
;J (TG)(:)h(:)dA(:b:f h(z) dA() | 1GOI® K(w, 2) dA(w)

:]E IF IG(“.”Z h(W} dA(M)

Y4

and

[ (TG)(z) hiz) dA(z) = (TG)(0) - h(0) = [|G|%, h(0) = h(0).

1
T vy
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Hence for each he H, we have

f (G = (TG)z) = (TG)(z) + 1) h(z) dA(2) =0. (35)

Consider now @, — ¥, with @ and ¥ as defined in Section 2. Since G and
g belong to &, the Corollary to Lemma 2 can be applied to (35), which
yields

a
qG—.YQ:E((D(}—W’:,)ZO (36)
a.e. on 4. Combining now assertions (a) and (b) of Lemma 2 we obtain

[ 1GEN2 = (16) =) = TTOIE) + 1) =) dA()

= —lim J" ()2 (Dlz) — P (2)) dA(=). (37)

By Lemma 3, @;(z)— ¥,(z) <0, because of (36). Thus, the limit in (37)
(which exists) is <0, and

[ 16 = (16)=) = TG + 1) 1h=) dA) 20 (38)

for all heH,. Now, let helL. By the assumption, The L and
|G|?> — 1 L Th, since G is an L-inner function. We get

1 ,
~ [ (T6)(=) 1h(=)]? dAz)
T
1 2 ]
=—zf lh(:)l"dA(:)J IG(w)I? K(z, w) dA(w)
m™ vy E]
=lf 1G(w)|2 (ThY(w) dA(w)
n g

=lj (lG(w)lz—l)(Th)(w)dA(wH—lf (TH)(7) dA(w)
bia mYa

A

= (Th)(0) = |All,,

and similarly

! TN - 2
~ | TTGYE) 1hz)I? dA(z) = ),
14

A
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Thus (38) yields
Ly 2 2 2 3
= | VGG RN datz) = 141, = 1GAI%, — 1%, > 0,
which proves that G is an expansive L-multiplier. The theorem is proved.

Proof of Theorem 2. Let L=span{z*:j=0,1,..,n}. A simple com-
putation yields

{+1 -
I+s+1"

lJﬂ w! w]® K(z, w) dA(w) =
Ty
and

[ w2 Kiz, w) dA(w) =0, 150,520,

v

EN

Therefore, if f=37_, a,2* € L then

) n n n ,,’k(l—— +1
L R

j=0

So L is a T-subspace, and by Theorem 1, L is an e-subspace.
Conversely, suppose that L is an (n+1)- dimensiondl e-subspace of A,
whose elements are polynomials. L has a basis, {P, |} _,, such that

(i) Po=1,
() P0)=0,k=1,..n
(i) deg P, >deg P, |, k=1,.,n
Since L is an e-subspace, it is a T-subspace. Hence

n

TP]Z Z akPk'

k=0

It follows from (39) and (i) that deg TP, <deg P,. Therefore
A= - —x,,—O and TP, =const, which implies that P, is a monomial,
say, =*. Prove that P, espan{z¥:j=1,.,m} for m=1,..,n or, equiv-
alently, that span{P,, ... P,,} =span{1 ,_".. ., 2" Suppose that it has
already been proved that span{ P, .., P,} =span{l, %, .., =%}, Again (i1)
and (i) imply that deg TP, ,, <deg P,,, and therefore

TP,,,=span{P,, .., P, =span{l, % .. ="}
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The same argument shows that
T(P,,,+Q)espan{l, X, ., =%}
for every Qespan{P,, .., P,} =span|z* .. Z*]. Write
P, C)=az4 - +a,z, a,#0,

and set Q=az* If s>k(r+ 1) then T(P,, , + Q) contains =* * with the
coeflicient

s—k+1 s—k+1

k
b,\ k:Z ——*—‘—”_/a.‘wk+/+5‘a,
Pou s+ 1

a
Ly s—k+j+1

Since s —k >rk, b, , =0 for every %, which implies a,=0--a contradic-
tion. Thus deg P, ,=k(r+1). Set OQ=3'_, 2,z* If 1<j<k then the
coefficient b, (at z/) of the polynomial T(P, , , + Q) is equal to

ktr+ 1) . r

J+b _
b = aa;, ,+ A,ay ;T
! . N ES e ,;I Tkl +1

i=j

r

j+1r
+ Xy, -
,g‘&+j+! ke

Since b,=0 for every a={2,, .., 2,)€ C" we have

a,k+,»=a/k »/-:0., [:],...,r,j:l,...,k—l.

and therefore P,, espan{z*, .., z*"*"}. Since P,, ¢span{P,, ... P, }=
span{l, z*, .., z**}, we obtain

P — . K -k 1)
span{ Py, .., P, }=span{l, =5 _ KU+

The theorem is proved.

Proof of the Corollary to Theorem 2. Let fe M,, ie., f=/f(z*), feH”.
Let {P,} be a sequence of polynomials converging weak* to f If G
is an M,-inner function, G is inner on any space of polynomials
L=span{l,z* .., 2}, and, by Theorem 2, G is an expansive multiplier
for all P,(z*). Hence

NGA* gy = lim IGP (), 2 B (P e > DA

(The last inequality follows from Fatou’s lemma since clearly
P, (%) > f(z*) uniformly on compact subset of 4.)
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Remark. It can be shown that the above corollary remains valid if M,
is replaced by its closure M, in 4,: M, = {f(z*): fed,}.

Proof of Theorem 3. Let D=m,a,+ --- +m,a,. Obviously L, H_,
and dim Ly=m + --- +m,. Let feL,,

n ny
=2 XL buKi(za.

k=1 j=0

We have
f)= Y, bybK(z.a)K,z a)

0 <o

0O<igny
and

. j

l J Ki(w,a,) K(w,a)) K(z, w) dA(w):Ta—i (Ki(w, a,;) K{w, z)} |, _ .
n ow

J
=Y A4K(za)el,,
r=0

where

Ni—r+id S ; V g i
r=gjﬁ; K(z, a)) 1::4,:(] rtir bl

A — -
(1 -ala.\-)}7r+l+2

Thus TfeL,, and L, is a T- and, therefore, an e-subspace.

Proof of Theorem 1. The implication e-subspace=> 7-subspace is
proved by essentially the same argument as in Theorem 1. Now, let L
be a T-subspace. Note that for every geH, we have |g(&)°=

(Tg)(¢)+ (Tg)(&)— | gl ae. on 4. Therefore

G813 =57 | G Le(e)1* do
1o 02 ((F i PE RYNNN 2
=52 |16 (Texe™) + (Tl — lely,) db
=“g“iiz’
which proves Theorem 1'.

The proofs of Theorem 2' and Theorem 3’ also are quite similar to the
proofs of Theorem 2 and Theorem 3, respectively. We leave the details to
the reader.

RO 1T 1-7
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