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Abstract

Extending previous work in Randall-Sundrum type models, we construct low-energy effective actions for braneworlds with a
bulk scalar field, with special attention to the case of BPS branes. Holding the branes at fixed coordinate position with a general
ansatz for the bulk metric, and imposing the Einstein frame as a gauge condition, we obtain a scalar-tensor theory with only one
scalar degree of freedom related to the proper brane separation. The formalism is applicable even when there is direct coupling
of the bulk scalar and brane matter, as in the Horava—Witten model. We further show that the usual moduli space approximation
actually describes a non-BPS three-brane system.

0 2005 Elsevier B.V. Open access under CC BY license,
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1. Introduction

Braneworld models have become the focus of intense theoretical activity in the last few years (for recent reviews
see[1]). Much of the attention has been triggered by the Randall-Sundrum (RS) nj2Halgh a purely anti-
de Sitter bulk. However, to stabilize the brane separation, and hence the hierarchy solution of the first RS model,
Goldberger and Wisg3] introduced a massive bulk scalar together with brane potentials. Bulk scalar models
have also been suggested to alleviate the cosmological constant pidblé&ee, howevef5]), and for driving
inflation [6]. Thus, phenomenological considerations lead away from the RS models and towards something closer
to the five-dimensional reductidii] of Horava—WittenM -theory[8] that inspired them.

Among the models involving a bulk scalér one readily distinguishes two extreme cases. The first of these oc-
curs when the bulk (brane) potenti@(®) (V (®)) is dominated by the bulk cosmological constant (brane tension)
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with small residual potentials(®) (v(®)). The problem of obtaining a four-dimensional low-energy effective
action for such a situation has been addressed by Kanno and[§odiadeed, up to Kaluza—Klein corrections,
their two-brane effective action readily obtains by replaging, y) with its zero mode;(x) and integrating over

the fifth coordinater® = y using the first metric ansatz of Chif0]. This follows because at leading order in the
low-energy expansion the bulk scalar plays no role in determining the bulk geometry which is identical to that of
the RS model.

The opposite extreme occurs when the bulk scalar controls the bulk geometry. In the case that the potentials
U(®) and V(@) derive from a superpotentid/ (@) the solution of the static vacuum geometry reduces to a set
of first-order BPS-like equatiorf1]. The Horava—Witten model exempilifies this category. An additional feature
of the Horava—Witten model is that(®) is the volume modulus of the Calabi-Yau space, hence the scalar di-
rectly couples to matter, and in particular with the inclusion of nonrelativistic matter static bulk solutions do not
exist[12]. In the restricted case of nd-matter coupling, a low-energy effective action for BPS braneworlds has
been given if13,14]using the moduli space approximation. The moduli space approximation proceeds from the
static vacuum solution by replacing the Minkowski metrjg on the brane witlg,,, (x), wherex* are coordinates
tangential to the brane, and promoting the coordinate orthogonal to the positive/negative tension brane to a field
X®5(x); the result is a biscalar-tensor theory. Clearly one scalar corresponds to a relative displacement between
the branes, however the second scalar represents a centre-of-mass displacement that is spurious on a two-brar
orbifold. Indeed, perturbation theory evidences a single scalar mode for BPS firah&%e will say more on this
point anon. While the original moduli space approximation based on moving branes in a fixed background cannot
be used in the interesting case of the Horava—Witten model due to the dineetiter coupling, the alternate for-
mulation of Palma and David4] can. Then one is led to a remarkable conclusion: the Horava—Witten model is
cosmologically excluded due to the centre-of-mass njbde

In this Letter we pursue the low-energy effective action for BPS braneworlds from a different approach which
extends our previous treatmdi6] of RS type models. Specifically, we maintain the branes at fixed coordinate
x® =y, while taking a rather general ansatz for the five-dimensional metric that includes the graviton zero mode
guv(x). The other metric functions, and now the scafarare restricted by imposing the — 5 bulk Einstein
equation. A residual freedom is fixed by requiring that the resulting effective action be in the Einstein frame. There
is no centre-of-mass mode in this two-brane system. For an exponential superpotential the effective action can be
given in closed form, and the Horava—Witten model appears as a particular case.

The remainder of this Letter is organized as follows: in Sec?iame briefly review the construction of the static
vacuum solution following11]. Then, in Sectior3, we present our metric ansatz and analyze the constraints on the
metric functions. Sectiod gives our construction of the effective action in the Einstein gauge with the exponential
superpotential as an example. In Secttowe discuss the Jordan gauge analogoyd @ as well as the moduli
space gauge and show that the latter actually describes a different non-BPS three-brane system. Conclusions ar
presented in Sectiof An Appendix Agives the effective action for RS-type models.

2. Vacuum BPS branes

We begin with the actio§ = Spyik + Sprane With

1 1 1
Sbulk = 2— / d°x /2 [——R(S) + 5805 PPN - U(q))} @)
5) 2 2

1
Sbrane= —% dx V=84V (®P). 2)
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Only one brane is shown, the second being introduced below; throughout the Gibbons—Hawking surface terms are
left implicit. In vacuum, the metric and bulk scalar are chosen asthedependent forms

dSk =240, dxtdx’ —dy?,  d=d(y). ®)
The nonvanishing components of the Einstein tensor are

Geuv =€ A[34" —6(A")?], @

G (555 = 6(A")? (5)
and those of the bulk energy—momentum tensor are

_ 1
KT =M€ ZA[E@/)Z + U(cb)], (6)
1
(@) _ L 512
K5 T, = 2(95 ) =U(@), (7)

where prime denotes derivative with respectytorhe positive tension brane will be placedyat 0 so that the
Einstein equations are

e ?A[34" —6(4))?] = B@/)Z + U(@)} + e 2A07 (d0)5 (), ®

1
B(A")2 = 5(@’)2 ~U(®) )

with Ag = A(0), @9 = @(0). The @ field equation is

U (P) 8V(<1>)8
foRe 9P
Note it is more convenient to recast K@), by multiplying with €4, as

" — AN D =

(- (10)

1
34" —6(4)? = S(@)2+ U(§) + V(P03 (y), (11)
which combines with E((9) to yield
34" = ()2 + V(P0)8(»). (12)
Integrating Eqs(12) and (10)aroundy = 0 gives
6A’(0) = V(dy), (13)
aV(%o)
20’ (0) = , 14
=" (14)
where orbifold symmetry has been assumed. Givé®) in terms of a superpotentid¥ (@),
1fow(@)]? 1 2
D)= — — = 10 1
@)1= e | W@l (15)

one readily verifies that the Einstein equatiéh$), (12) and scalar field equatigii0) are satisfied away from the
brane if

A= éW(@), (16)
;o } oW (@) (17)

T2 9o
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In addition, the boundary conditions of E¢&3), (14)are satisfied if
dW(Po) 9V (Po)
ddy 3o

i.e., W(®p) is tangent toV (®@g). WhenW (@) = V (@) the boundary conditions are automatically fulfilled by the
solution of Eqs(16), (17) and the brane is BPS. As an example, for

W(®o) =V (®Po),

: (18)

W(P) =V (P) = Woe*(Po=P), (19)
do o
— = —— Woe#(®o=®) 20
0 > Wo (20)
integrating to
1 o?
D(y) =P+ —In{1— —Wpy ). (21)
o 2
Then
dA 1 W,
—= ga;zo’ (22)
so that
A(y) = Ao — ——In(1 o (23)
The integration constant will be chosen4gs= 0, hence
a2 a2
e AL — (1 _ 7Woy> . (24)

Clearly the limite — 0 reproduces the RS modg@], including the fine-tuning of the bulk cosmological constant
and brane tension, if we s&y = 6k wherek is the AdS curvature. The Horava—Witten model corresponds to
a = +/2, and the self-tuning mod@] to « = 2/+/3. Note, however, using EqE), (22) G (5)55 possesses a bulk
singularity. To avoid the naked singularity it is necessary to add a second brane at the other orbifold fixed point
y = < 2/a?Wo with
IV (P)  —dW (D)
a0, A,
It is this additional fine-tuning that undermines the self-tuning moféigls

V(Pp) = —W(Py),

(25)

3. Choosing a gauge

As in the RS models, the inclusion of matter entails a shift of branes from their vacuum positions—this is
the basis for the moduli space approximation. Instead, by a gauge transformation, the branes can be restored tc
their vacuum coordinate locatiofis5,17] at the price of introducing an* dependence in the metric itself. It is
advantageous to maintaigs),s = 0 and separate the graviton zero mege(x). At energies small compared to
the scale o we may neglect the Kaluza—Klein modes implicitgdp),,, [18]. Thus we consider the sufficiently
general ansatz

dSfs = ¥*(x. Ngu ) et dx’ = p*(r.y)dy*. (26)



J.E.Kimet al. / Physics Letters B 612 (2005) 293-303 297

Note thatds(x) = f(f ¢(x, y)dy measures the proper distance between the branes afftxed
The Christoffel symbols, Ricci tensor and Ricci scalar for the metriq).have been given ifl6]. There the
metric functions? andg are restricted byrs),,5 = 0 in theAdSs bulk. Here, due to the bulk scalar we rather have

YN\ (ou v’ @) /
G@Eus = Reus = 3[(;) <7> - (;)J =K 15,5 =Pu®- (27)
To deal with the nonvanishing right-hand side let us take
lI/(x,y)zeXp(—A(F(x,y))), @(x,y):q)(F(x,y)), (28)
whereA(z) and® (z) are solutions of EqE16), (17). That is to say
o LW o _LIW v’ Ly
T 200 HT 280 v) 6
Z 1 1/ ow)\?
—\ =) =ZWF + === F.F 29
<w>’u 6W ~“+12<aq>) K (29)
yielding
F/
W[F’M - F"L“} - W(p(—) —0. (30)
’ 2 /)
ThusF’/¢ can be at most a function efonly which is fixed to unity by the vacuum, i.e.,
p(x,y) =F'(x, ). (31)

Eqgs.(28), (30)are consistent with the perturbative res{is]. In the terminology o0f16] different choices of the
one free scalar functiof (x, y) are ‘gauges’. This is not to say that they necessarily describe the same physics,
however, as we will show.

4. The effective action in the Einstein gauge

For the metric Eq(26) the bulk action of Eq(1) is

N2 3,7\ /
%) _4(11”1/)
%

1 R
Sbuk = —— / d*x J=g / dy{——wzw 3¢V (W) W, + 6
K(5) 2 ©

1 5 1wt o,
+§l1’ ©g Q)’MCD’U_§7(¢) —UToU (D). (32)

Here we can omit the integral of the total derivative term which is cancelled by the implicit Gibbons—Hawking
terms. As in the RS cagd&6], we impose as a gauge condition that the coefficient of the four-dimensional Ricci
scalarr be identical to the vacuum solution:

llfz(p — e—2A(F) F/ — —2A(y)’ (33)
where we have used Eq&8), (31) Implicitly this determines ' (x, y) as
F(x,y)
dze A0 L 7(x) =0, (34)

1 In the case of the exponential superpotential one can find other solutions @7gnalogous t¢19].



298 JE. Kimet al. / Physics Letters B 612 (2005) 293-303

the integration functiof’ (x) being related to the radion. Observe the physical distance between the branes is
ds(x) = F(x,£) — F(x,0). (35)

Per definition

Nll—\

¢
_ 2 [g2am
= Ko / dy (36)
' 0
SO we may write
R
Sbulk = / d*x =g { o T Cbulk} (37)
with, using Eqs(15)—(17), (28), (31), (33), (34)

e74A(F)((F)/)2

4
2
Louk = — | dy}3e AV F' oV (A(F)) (A(F 6
bulk K(s)/ y{ € 8 ( ( )),u( ( )),v+ F’

1 o g 4A(F) ) _ T1/0w\2 w2
+5e PARTE gt (D (F))  (@(F)) , — s~ () )2 —eOF [é(ﬁ) _F]}

Z w w2
dy F’ {3e 2A(F)g;w< eZA(F)T)M> (__ezA(F)ru> 4 66 —4A(F)< >
K(S) 6 6

1 puir 19W ,, 1w
Ze wo(_29W 2aryp \(_2IW 2am)p
*3 § 2 aq> S ANYY) v

2
CLloam (PIWNT aam[ LW w?
2 290 8\ 9o 6
2 "¢ 2 1/% 2 109
W W W W
= — d _GZA(Z) R /’“)T T e_4A(Z) 38
Ko / 2{2 6 4\a0 ) |® + 3 " 2\9e (38)
F(x.0)

HereW = W (®(z)) and similarly foraW/a®. As 20W/ad)? = dW /dz the integral becomes a total derivative,
yielding

(39)

WeZAi|F(X ) [We—4A]F(x,€)
2K(5) F(x,0) K5 F(x,O)'

The latter terms in E(39) cancel with the brane potentials as expected since the vacuum solution does not admit
a net cosmological constant. As an example, we obtain for the experimental superpotential b®)Eqgsing
Eqgs.(24), (36)

1 120-p) oo (1 o2 L3 o)
K~ 2+3)KsWo 2 0
and by Eq(34)

Louk =g"" T T, [

2

2 1.2 2 32 (24302
[1—%W0F(x,y)} ) _<1_%W0y> : =(+76)WOT(X)E¢(X)' “h
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The complete effective action in the Einstein gauge is

Seft = / d*x V=g [—— + “)2(¢) s } + 50 456, (42)
where
3 1
w(P) = (43)

243021+ )B+9¢)

St describes matter on the positive tension brane at0 which feels the metri<g,§+,,)(x) =geuwx,0 =
W2(x, 0)gun (%),

2

W2(x,0) = [1+ ¢ (x)]za? (44)
and in the Horava—Witten model also couples to
_ %2
W(®(x,0)/Wo=[1+¢x)] 2+a2. (45)

On the negative tension braneyat ¢ corresponding t&~) the conformal factor is

2

W2(x, 0) =[B+p(x)] 22 (46)
and
_ 3%
W(D(x,0)/Wo=[p+¢(x)] 2+32. (47)

In the limit « — 0, EQs.(42)—(44), (46)go smoothly to the expression for the RS modelElL). Irrespective of

the value ofx, or whether® couples directly to mattef is the key parameter controlling the strength of the scalar
coupling: if the coordinate position of the second brane is sufficiently close to the bulk singularity one can satisfy
the constraints on scalar-tensor theof3], and the Horava—Witten value= 1 is cosmologically safe up to the
issue of nonrelativistic matt¢t2].

5. TheJordan and moduli space gauges

Oftenin scalar-tensor theories one gives priority to the Jordan frame, in which the motion of fiducial test particles
is geodesic, rather than the Einstein frame where the scalar and tensor fields are unmixed. One can impose the
Jordan frame on the positive tension brane as a gauge condition by taking

F(x,y)=yp(x) (48)

as in[10,18]for the RS modef. Proceeding from E(32) in this Jordan gauge a straightforward calculation now
yields

Ly

S — d _ d esz(Z)
bulk / XN — { —/ + 2K(5)

v W ZQO
Xe [We%;MA?—[——e“}}- (49)

2 see, howevef17] for some cautionary remarks.
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For the exponential super-potential, using Et)

71 o) 6 o2 142/302 1
— | dze Y = — (11— —Wyt = — , 50
K s ) ’ K5 Wo(2+ 30t2)[ ( 2 "° (p) } 2K0W] (50)

wherer is the Brans—Dickie scalar anly a bare gravitational coupling. Including matter, the effective action is
then

Seff=/d4x\/_|:_—+a;(w) g, }+S(+)+S(_), (51)
W=
VT 2raa—yy

Note w () drives ¢ to unity by the self-tuning mechanisfitO]. In this gauge matter on the negative tension
experiences a metric

(52)

g =01- YT g0 () (53)
and can be coupled to

2
W(®(lg))/ Wo= (1— ) 252 (54)

Per the gauge def|n|t|0@(+) (x) = g,.v(x) on the positive tension brane, and moreoles= Wy there which is to

say the matter is implicitly decoupled from the bulk scalar. Nor, for that matter, can radiation-scalar coupling be
recovered by a conformal transformation of the Jordan gauge effective action to the Einsteig frameg .. /v .

This makes the Jordan gauge unsuitable for the Horava—Witten model.

Within a given scalar-tensor theory the Jordan and Einstein frames describe identical physics, but the Jordan
and Einstein gauges are inequivalent even in the absence of direct coupling of the bulk scalar and brane matter.
The coordinate length appears directly in the Einstein gauge via the coupling parargetghereas in the Jordan
gauge it is subsumed . The two gauges only become conformally equivalent i 8 = 0. In that case) =
A+ t=1- X—SZ with x a conformally coupled scal§21].

Still, there is a subtlety withk = 8 = 0: « — 0 followed by?¢ — oo, 8 — 0 in the Einstein gauge describes the
second RS model. Although the coordinate distance is infinite, the AdS warp makes the physical distance finite.
Displacing the brane distorts the bulk geometry as reflected in the gcadgmaining in the effective actiofi 6].

Takinga — 0 followed by ¢ — oo in the Jordan gauge would yielid = 1, according to Eq(50), and no scalar
which is the wrong physics.

Next, we turn to the moduli space approximation. In the original vergi8h (see alsd22]) the Minkowski
metric of the static vacuum solution in Sectids promoted tag,,, (x) and the brane positions )5 (x) with

WD (x) = g5y (x, X% — xE°x (53 the induced metrics on the branes. The alternative formulati¢b4df
is equivalent to here imposing a moduli space gauge

F(x,y)=px)y —§(). (55)
The additional fielct represents the centre of mass displacement, or a local twist of the orbifold boundary condi-
tions[23]. Once again a straightforward calculation proceeding from(E2).yields®

Ks) 2K (5

z 1 W -~
Sbu|k=/d4xv {——/dze_ZA + g—[We‘ZAz,uz,u]; - [—e“‘f‘} } (56)
Z+

3 The precise form ifil4] obtains by a conformal transformatigp, — exp(2A(z1))gu. to the Jordan frame on the positive tension brane.
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Evidently the moduli space gaudguik, EQ. (56), is just two copies of the Jordan gau§guk, Eq. (49), glued
together. The Einstein gauge does not allow the shift ngoldet one could paste together two copies with scalars
¢ andg(). The key point is that where the joint is made one must impose Israel’s junction conditions, e.g., at
z=0

(AN =0, [([@'N=0, (57)

where[[ ]] denotes the discontinuity. One recognises (@) as the junction conditions for a tensionless brane.
This is not mere tautology: to discuss the centre-of-mass, as opposed to relative, motion of the positive and negative
tension branes requires a third observer brane. The catch is théBHds not BPS unles®/ (®) has a zerbor
the superpotential is a constant. W is constant, one ha&dSs, the RS model, and two conformally coupled
scalarsy ), x (), and through a conformal transformation only one scalar migée /x *)). Otherwise one is
not examining the advertised two-brane BPS system, but instead a nearly BPS three-brane system similar to the
Ekpyrotic model of23].

The ramifications of the moduli space gauge becomes evident by adapting the viewpoint of a freely falling
observer on the tensionless brane rather than the positive tension brane. For the exponential superpotential define

2 1+:%
(1— a—Woz+) _— wcosﬁ(i) (58)

2 2

2 1+5
(1— %Woz_> - wsink\z(%), (59)

and ignore brane matter so
Ry g 3 Vu¥o
— 4. /—o)l 27 KTV

SEﬁ_/d * g{ 2Ko - 2Ko<2+3012>[ v W’Mr’v]}' (60)

Such observers see a Brans—Dickie theory coupled to a ghost. The instability reflects that the tensionless brane
wants to sit at = —oo whereU vanishes. Like the apparent disappearance of the radion in the RS2 limit, this is
the wrong physics.

6. Conclusions

BPS braneworlds are much closer to striigtheory than the simple RS models. Our general Einstein gauge
effective action, Eqs(34), (37), (39)provide a simple treatment of the nonvacuum case without invoking the
problematic third brane of the moduli space approximation. It can be used even when there is direct coupling of the
bulk scalar and brane matter, unlike the Jordan gauge. The metric @&agould be used as a starting point for
calculating Kaluza—Klein corrections through the low energy expansion scii@hé&ettinga = 1 in Eqgs.(42)—

(47) one has a new basis to explore inhomogeneous Horava—Witten brane cosmology and, following the methods
of [21], also black holes.
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Appendix A. Non-BPS branes

Following [9], suppose the bulk potential is
U (@) = u(P) — 6k? (A.1)
and on the positive tension braneyat 0
Vo(®) = 6k + vo(P) (A.2)
while on the negative tension braneyat ¢
V(@) = —6k + ve(P) (A.3)

with u, vg andv, small. Neglecting the influence of the scalar on the bulk geometry one can r@place) with
the zero mode (x) at leading order. The metric functions for the RS geometr| &g

1/2

wx,y) = + o] P(x,y) =¥ %(x, y)e 2. (A4)

A simple calculation using Eq$§32), (36)gives

_ R 3 glw¢,u¢,v g’“’ 1 1—{-6_2“ )
CE T T A e Frg) T 2K T E(T ¢ Jutm)
k —
A (A 9o + (€% + $)%ve)]. (A.5)

Note the radior remains in the limi¥ — oc.
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