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Abstract

Extending previous work in Randall–Sundrum type models, we construct low-energy effective actions for braneworld
bulk scalar field, with special attention to the case of BPS branes. Holding the branes at fixed coordinate position with
ansatz for the bulk metric, and imposing the Einstein frame as a gauge condition, we obtain a scalar-tensor theory with
scalar degree of freedom related to the proper brane separation. The formalism is applicable even when there is direc
of the bulk scalar and brane matter, as in the Horava–Witten model. We further show that the usual moduli space appr
actually describes a non-BPS three-brane system.
 2005 Elsevier B.V.
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1. Introduction

Braneworld models have become the focus of intense theoretical activity in the last few years (for recent
see[1]). Much of the attention has been triggered by the Randall–Sundrum (RS) models[2] with a purely anti-
de Sitter bulk. However, to stabilize the brane separation, and hence the hierarchy solution of the first RS
Goldberger and Wise[3] introduced a massive bulk scalar together with brane potentials. Bulk scalar m
have also been suggested to alleviate the cosmological constant problem[4] (see, however[5]), and for driving
inflation [6]. Thus, phenomenological considerations lead away from the RS models and towards somethin
to the five-dimensional reduction[7] of Horava–WittenM-theory[8] that inspired them.

Among the models involving a bulk scalarΦ one readily distinguishes two extreme cases. The first of thes
curs when the bulk (brane) potentialU(Φ) (V (Φ)) is dominated by the bulk cosmological constant (brane tens
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with small residual potentialsu(Φ) (v(Φ)). The problem of obtaining a four-dimensional low-energy effec
action for such a situation has been addressed by Kanno and Soda[9]. Indeed, up to Kaluza–Klein correction
their two-brane effective action readily obtains by replacingΦ(x,y) with its zero modeη(x) and integrating ove
the fifth coordinatex5 = y using the first metric ansatz of Chiba[10]. This follows because at leading order in t
low-energy expansion the bulk scalar plays no role in determining the bulk geometry which is identical to
the RS model.

The opposite extreme occurs when the bulk scalar controls the bulk geometry. In the case that the p
U(Φ) andV (Φ) derive from a superpotentialW(Φ) the solution of the static vacuum geometry reduces to a
of first-order BPS-like equations[11]. The Horava–Witten model exemplifies this category. An additional fea
of the Horava–Witten model is thatV (Φ) is the volume modulus of the Calabi–Yau space, hence the scal
rectly couples to matter, and in particular with the inclusion of nonrelativistic matter static bulk solutions
exist [12]. In the restricted case of noΦ-matter coupling, a low-energy effective action for BPS braneworlds
been given in[13,14]using the moduli space approximation. The moduli space approximation proceeds fr
static vacuum solution by replacing the Minkowski metricηµν on the brane withgµν(x), wherexµ are coordinates
tangential to the brane, and promoting the coordinate orthogonal to the positive/negative tension brane
X(±)5(x); the result is a biscalar-tensor theory. Clearly one scalar corresponds to a relative displacement
the branes, however the second scalar represents a centre-of-mass displacement that is spurious on a
orbifold. Indeed, perturbation theory evidences a single scalar mode for BPS branes[15]. We will say more on this
point anon. While the original moduli space approximation based on moving branes in a fixed background
be used in the interesting case of the Horava–Witten model due to the directΦ-matter coupling, the alternate fo
mulation of Palma and Davis[14] can. Then one is led to a remarkable conclusion: the Horava–Witten mo
cosmologically excluded due to the centre-of-mass mode[13].

In this Letter we pursue the low-energy effective action for BPS braneworlds from a different approach
extends our previous treatment[16] of RS type models. Specifically, we maintain the branes at fixed coord
x5 = y, while taking a rather general ansatz for the five-dimensional metric that includes the graviton zer
gµν(x). The other metric functions, and now the scalarΦ, are restricted by imposing theµ − 5 bulk Einstein
equation. A residual freedom is fixed by requiring that the resulting effective action be in the Einstein frame
is no centre-of-mass mode in this two-brane system. For an exponential superpotential the effective actio
given in closed form, and the Horava–Witten model appears as a particular case.

The remainder of this Letter is organized as follows: in Section2, we briefly review the construction of the sta
vacuum solution following[11]. Then, in Section3, we present our metric ansatz and analyze the constraints o
metric functions. Section4 gives our construction of the effective action in the Einstein gauge with the expon
superpotential as an example. In Section5 we discuss the Jordan gauge analogous to[10] as well as the modul
space gauge and show that the latter actually describes a different non-BPS three-brane system. Concl
presented in Section6. An Appendix Agives the effective action for RS-type models.

2. Vacuum BPS branes

We begin with the actionS = Sbulk + Sbrane, with

(1)Sbulk = 1

K(5)

∫
d5x

√
g(5)

[
−1

2
R(5) + 1

2
gMN

(5) Φ,MΦ,N − U(Φ)

]
,

(2)Sbrane= − 1

K(5)

∫
d4x

√−g(4)V (Φ).



J.E. Kim et al. / Physics Letters B 612 (2005) 293–303 295

erms are

e

Only one brane is shown, the second being introduced below; throughout the Gibbons–Hawking surface t
left implicit. In vacuum, the metric and bulk scalar are chosen as thexµ independent forms

(3)dS2
(5) = e−2A(y)ηµν dxµ dxν − dy2, Φ = Φ(y).

The nonvanishing components of the Einstein tensor are

(4)G(5)µν = ηµνe−2A
[
3A′′ − 6(A′)2],

(5)G(5)55 = 6(A′)2

and those of the bulk energy–momentum tensor are

(6)K(5)T
(Φ)
(5)µν

= ηµνe−2A

[
1

2
(Φ ′)2 + U(Φ)

]
,

(7)K(5)T
(Φ)
(5)µν = 1

2
(Φ ′)2 − U(Φ),

where prime denotes derivative with respect toy. The positive tension brane will be placed aty = 0 so that the
Einstein equations are

(8)e−2A
[
3A′′ − 6(A′)2] = e−2A

[
1

2
(Φ ′)2 + U(Φ)

]
+ e−2A0V (Φ0)δ(y),

(9)6(A′)2 = 1

2
(Φ ′)2 − U(Φ)

with A0 = A(0), Φ0 = Φ(0). TheΦ field equation is

(10)Φ ′′ − 4A′Φ ′ = ∂U(Φ)

∂Φ
+ ∂V (Φ)

∂Φ
δ(y).

Note it is more convenient to recast Eq.(8), by multiplying with e2A, as

(11)3A′′ − 6(A′)2 = 1

2
(Φ ′)2 + U(φ) + V (Φ0)δ(y),

which combines with Eq.(9) to yield

(12)3A′′ = (Φ ′)2 + V (Φ0)δ(y).

Integrating Eqs.(12) and (10)aroundy = 0 gives

(13)6A′(0) = V (Φ0),

(14)2Φ ′(0) = ∂V (Φ0)

∂Φ0
,

where orbifold symmetry has been assumed. GivenU(Φ) in terms of a superpotentialW(Φ),

(15)U(Φ) = 1

8

[
∂W(Φ)

∂Φ

]2

− 1

6

[
W(Φ)

]2
,

one readily verifies that the Einstein equations(11), (12) and scalar field equation(10) are satisfied away from th
brane if

(16)A′ = 1

6
W(Φ),

(17)Φ ′ = 1

2

∂W(Φ)

∂Φ
.
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In addition, the boundary conditions of Eqs.(13), (14)are satisfied if

(18)W(Φ0) = V (Φ0),
∂W(Φ0)

∂Φ0
= ∂V (Φ0)

∂Φ0
,

i.e.,W(Φ0) is tangent toV (Φ0). WhenW(Φ) = V (Φ) the boundary conditions are automatically fulfilled by t
solution of Eqs.(16), (17), and the brane is BPS. As an example, for

(19)W(Φ) = V (Φ) = W0eα(Φ0−Φ),

(20)
dΦ

dy
= −α

2
W0eα(Φ0−Φ)

integrating to

(21)Φ(y) = Φ0 + 1

α
ln

(
1− α2

2
W0y

)
.

Then

(22)
dA

dy
= 1

6

W0

1− α2

2 W0y
,

so that

(23)A(y) = A0 − 1

3α2
ln

(
1− α2

2
W0y

)
.

The integration constant will be chosen asA0 = 0, hence

(24)e−A(y) =
(

1− α2

2
W0y

) 1
3α2

.

Clearly the limitα → 0 reproduces the RS model[2], including the fine-tuning of the bulk cosmological const
and brane tension, if we setW0 = 6k wherek is theAdS5 curvature. The Horava–Witten model correspond
α = √

2, and the self-tuning model[4] to α = 2/
√

3. Note, however, using Eqs.(5), (22), G(5)55 possesses a bu
singularity. To avoid the naked singularity it is necessary to add a second brane at the other orbifold fixe
y = � < 2/α2W0 with

(25)V (Φ�) = −W(Φ�),
∂V (Φ�)

∂Φ�

= −∂W(Φ�)

∂Φ�

.

It is this additional fine-tuning that undermines the self-tuning models[5].

3. Choosing a gauge

As in the RS models, the inclusion of matter entails a shift of branes from their vacuum positions—
the basis for the moduli space approximation. Instead, by a gauge transformation, the branes can be re
their vacuum coordinate locations[15,17] at the price of introducing anxµ dependence in the metric itself. It
advantageous to maintaing(5)µ5 = 0 and separate the graviton zero modegµν(x). At energies small compared
the scale ofW we may neglect the Kaluza–Klein modes implicit ing(5)µν [18]. Thus we consider the sufficient
general ansatz

(26)dS2
(5) = Ψ 2(x, y)gµν(x) dxµ dxν − ϕ2(x, y) dy2.
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Note thatd5(x) = ∫ �

0 ϕ(x, y) dy measures the proper distance between the branes at fixedxµ.
The Christoffel symbols, Ricci tensor and Ricci scalar for the metric Eq.(26)have been given in[16]. There the

metric functionsΨ andϕ are restricted byR(5)µ5 = 0 in theAdS5 bulk. Here, due to the bulk scalar we rather ha

(27)G(5)µ5 = R(5)µ5 = 3

[(
Ψ ′

Ψ

)(
ϕ,µ

ϕ

)
−

(
Ψ ′

Ψ

)
,µ

]
= K(5)T

(Φ)
(5)µ5 = Φ,µΦ ′.

To deal with the nonvanishing right-hand side let us take1

(28)Ψ (x, y) = exp
(−A

(
F(x, y)

))
, Φ(x, y) = Φ

(
F(x, y)

)
,

whereA(z) andΦ(z) are solutions of Eqs.(16), (17). That is to say

Φ ′ = 1

2

∂W

∂Φ
F ′, Φ,µ = 1

2

∂W

∂Φ
F,µ, −

(
Ψ ′

Ψ

)
= 1

6
WF ′,

(29)−
(

Ψ ′

Ψ

)
,µ

= 1

6
WF ′

,µ + 1

12

(
∂W

∂Φ

)2

F,µF ′,

yielding

(30)W

[
F ′

,µ − F ′ ϕ,µ

ϕ

]
= Wϕ

(
F ′

ϕ

)
,µ

= 0.

ThusF ′/ϕ can be at most a function ofy only which is fixed to unity by the vacuum, i.e.,

(31)ϕ(x, y) = F ′(x, y).

Eqs.(28), (30)are consistent with the perturbative results[15]. In the terminology of[16] different choices of the
one free scalar functionF(x, y) are ‘gauges’. This is not to say that they necessarily describe the same ph
however, as we will show.

4. The effective action in the Einstein gauge

For the metric Eq.(26) the bulk action of Eq.(1) is

Sbulk = 1

K(5)

∫
d4x

√−g

∫
dy

{
−R

2
Ψ 2ϕ − 3gµν(ϕΨ ),µΨ,ν + 6

(Ψ Ψ ′)2

ϕ
− 4

(
Ψ 3Ψ ′

ϕ

)′

(32)+ 1

2
Ψ 2ϕgµνΦ,µΦ,ν − 1

2

Ψ 4

ϕ
(Φ ′)2 − Ψ 4ϕU(Φ)

}
.

Here we can omit they integral of the total derivative term which is cancelled by the implicit Gibbons–Haw
terms. As in the RS case[16], we impose as a gauge condition that the coefficient of the four-dimensional
scalarR be identical to the vacuum solution:

(33)Ψ 2ϕ = e−2A(F)F ′ = e−2A(y),

where we have used Eqs.(28), (31). Implicitly this determinesF(x, y) as

(34)

F(x,y)∫
y

dze−2A(z) + T (x) = 0,

1 In the case of the exponential superpotential one can find other solutions of Eq.(27) analogous to[19].
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the integration functionT (x) being related to the radion. Observe the physical distance between the branes

(35)d5(x) = F(x, �) − F(x,0).

Per definition

(36)
1

K
= 2

K(5)

�∫
0

e−2A(y) dy

so we may write

(37)Sbulk =
∫

d4x
√−g

{
− R

2K
+Lbulk

}
with, using Eqs.(15)–(17), (28), (31), (33), (34),

Lbulk = 2

K(5)

�∫
0

dy

{
3e−2A(F)F ′gµν

(
A(F)

)
,µ

(
A(F)

)
,ν

+ 6
e−4A(F)((F )′)2

F ′

+ 1

2
e−2A(F)F ′gµν

(
Φ(F)

)
,µ

(
Φ(F)

)
,ν

− 1

2

e−4A(F)

F ′
(
Φ(F)′

)2 − e−4A(F)F ′
[

1

8

(
∂W

∂Φ

)2

− W2

6

]}

= 2

K(5)

�∫
0

dy F ′
{

3e−2A(F)gµν

(
−W

6
e2A(F)T,µ

)(
−W

6
e2A(F)T,ν

)
+ 6e−4A(F)

(
W

6

)2

+ 1

2
e−2A(F)gµν

(
−1

2

∂W

∂Φ
e2A(F)T,µ

)(
−1

2

∂W

∂Φ
e2A(F)T,ν

)

− 1

2
e−4A(F)

(
1

2

∂W

∂Φ

)2

− e−4A(F)

[
1

8

(
∂W

∂Φ

)2

− W2

6

]}

(38)= 2

K(5)

F (x,�)∫
F(x,0)

dz

{
1

2
e2A(z)

[
W2

6
+ 1

4

(
∂W

∂Φ

)2]
gµνT,µT,ν + e−4A(z)

[
W2

3
− 1

4

(
∂W

∂Φ

)2]}
.

HereW = W(Φ(z)) and similarly for∂W/∂Φ. As 2(∂W/∂Φ)2 = dW/dz the integral becomes a total derivativ
yielding

(39)Lbulk = gµνT,µT,ν

[
We2A

2K(5)

]F(x,�)

F (x,0)

−
[
We−4A

K(5)

]F(x,�)

F (x,0)

.

The latter terms in Eq.(39) cancel with the brane potentials as expected since the vacuum solution does no
a net cosmological constant. As an example, we obtain for the experimental superpotential of Eq.(19), using
Eqs.(24), (36)

(40)
1

K
= 12(1− β)

(2+ 3α2)K(5)W0
, β ≡

(
1− α2

2
W0�

)1+ 2
3α2

and by Eq.(34)

(41)

[
1− α2

2
W0F(x, y)

]1+ 2
3α2 −

(
1− α2

2
W0y

)1+ 2
3α2 = (2+ 3α2)

6
W0T (x) ≡ φ(x).



J.E. Kim et al. / Physics Letters B 612 (2005) 293–303 299

alar
satisfy
e

articles
pose the

ow
The complete effective action in the Einstein gauge is

(42)Seff =
∫

d4x
√−g

[
− R

2K
+ ω(φ)

2K
gµνφ,µφ,ν

]
+ S(+) + S(−),

where

(43)ω(φ) = 3

2+ 3α2

1

(1+ φ)(β + φ)
.

S(+) describes matter on the positive tension brane aty = 0 which feels the metricg(+)
µν (x) = g(5)µν(x,0) =

Ψ 2(x,0)gµν(x),

(44)Ψ 2(x,0) = [
1+ φ(x)

] 2
2+3α2

and in the Horava–Witten model also couples to

(45)W
(
Φ(x,0)

)
/W0 = [

1+ φ(x)
]− 3α2

2+3α2 .

On the negative tension brane aty = � corresponding toS(−) the conformal factor is

(46)Ψ 2(x, �) = [
β + φ(x)

] 2
2+3α2

and

(47)W
(
Φ(x, �)

)
/W0 = [

β + φ(x)
]− 3α2

2+3α2 .

In the limit α → 0, Eqs.(42)–(44), (46)go smoothly to the expression for the RS models in[16]. Irrespective of
the value ofα, or whetherΦ couples directly to matter,β is the key parameter controlling the strength of the sc
coupling: if the coordinate position of the second brane is sufficiently close to the bulk singularity one can
the constraints on scalar-tensor theories[20], and the Horava–Witten valueα = 1 is cosmologically safe up to th
issue of nonrelativistic matter[12].

5. The Jordan and moduli space gauges

Often in scalar-tensor theories one gives priority to the Jordan frame, in which the motion of fiducial test p
is geodesic, rather than the Einstein frame where the scalar and tensor fields are unmixed. One can im
Jordan frame on the positive tension brane as a gauge condition by taking

(48)F(x, y) = yϕ(x)

as in[10,18] for the RS model.2 Proceeding from Eq.(32) in this Jordan gauge a straightforward calculation n
yields

(49)Sbulk =
∫

d4x
√−g

{
− R

K(5)

�ϕ∫
0

dze−2A(z) + gµν

2K(5)

[
We−2Az,µz,ν

]�ϕ
0 −

[
W

K(5)

e−4A

]�ϕ

0

}
.

2 See, however,[17] for some cautionary remarks.
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For the exponential super-potential, using Eq.(24)

(50)
1

K(5)

�ϕ∫
0

dze−2A(z) = 6

K(5)W0(2+ 3α2)

[
1−

(
1− α2

2
W0�ϕ

)1+2/3α2]
≡ 1

2K0
[ψ],

whereψ is the Brans–Dickie scalar andK0 a bare gravitational coupling. Including matter, the effective actio
then

(51)Seff =
∫

d4x
√−g

[
− ψR

2K0
+ ω(ψ)

2K0
gµνψ,µψ,ν

]
+ S(+) + S(−),

(52)ω(ψ) = 3

(2+ 3α2)(1− ψ)
.

Note ω(ψ) drives ψ to unity by the self-tuning mechanism[10]. In this gauge matter on the negative tens
experiences a metric

(53)g(−)
µν (x) = (1− ψ)

2
2+3α2 gµν(x)

and can be coupled to

(54)W
(
Φ(�ϕ)

)
/W0 = (1− ψ)

− 3α2

2+3α2 .

Per the gauge definition,g(+)
µν (x) = gµν(x) on the positive tension brane, and moreoverW = W0 there which is to

say the matter is implicitly decoupled from the bulk scalar. Nor, for that matter, can radiation-scalar coup
recovered by a conformal transformation of the Jordan gauge effective action to the Einstein framegµν → gµν/ψ .
This makes the Jordan gauge unsuitable for the Horava–Witten model.

Within a given scalar-tensor theory the Jordan and Einstein frames describe identical physics, but th
and Einstein gauges are inequivalent even in the absence of direct coupling of the bulk scalar and bran
The coordinate length� appears directly in the Einstein gauge via the coupling parameterβ, whereas in the Jorda
gauge it is subsumed inψ . The two gauges only become conformally equivalent ifα = β = 0. In that caseψ =
(1+ φ)−1 = 1− χ2

6 with χ a conformally coupled scalar[21].
Still, there is a subtlety withα = β = 0: α → 0 followed by� → ∞, β → 0 in the Einstein gauge describes t

second RS model. Although the coordinate distance is infinite, the AdS warp makes the physical distanc
Displacing the brane distorts the bulk geometry as reflected in the scalarφ remaining in the effective action[16].
Takingα → 0 followed by� → ∞ in the Jordan gauge would yieldψ = 1, according to Eq.(50), and no scala
which is the wrong physics.

Next, we turn to the moduli space approximation. In the original version[13] (see also[22]) the Minkowski
metric of the static vacuum solution in Section2 is promoted togµν(x) and the brane positions toX(±)5(x) with

h
(±)
µν (x) = g(5)µν(x,X(±)5) − X

(±)5
,µ X

(±)5
,ν , the induced metrics on the branes. The alternative formulation of[14]

is equivalent to here imposing a moduli space gauge

(55)F(x, y) = ϕ(x)y − ξ(x).

The additional fieldξ represents the centre of mass displacement, or a local twist of the orbifold boundary
tions[23]. Once again a straightforward calculation proceeding from Eq.(32)yields3

(56)Sbulk =
∫

d4x
√−g

{
− R

K(5)

z−∫
z+

dze−2A + gµν

2K(5)

[
We−2Az,µz,ν

]z−
z+ −

[
W

K(5)

e−4A

]z−

z+

}
.

3 The precise form in[14] obtains by a conformal transformationg → exp(2A(z+))g to the Jordan frame on the positive tension bra
µν µν
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Evidently the moduli space gaugeSbulk, Eq. (56), is just two copies of the Jordan gaugeSbulk, Eq. (49), glued
together. The Einstein gauge does not allow the shift modeξ but one could paste together two copies with sca
φ(+) andφ(−). The key point is that where the joint is made one must impose Israel’s junction conditions,
z = 0

(57)[[A′]] = 0, [[Φ ′]] = 0,

where[[ ]] denotes the discontinuity. One recognises Eq.(57) as the junction conditions for a tensionless bra
This is not mere tautology: to discuss the centre-of-mass, as opposed to relative, motion of the positive and
tension branes requires a third observer brane. The catch is that Eq.(57) is not BPS unlessU(Φ) has a zero4 or
the superpotential is a constant. IfW is constant, one hasAdS5, the RS model, and two conformally coupl
scalarsχ(+), χ(−), and through a conformal transformation only one scalar mode(χ(−)/χ(+)). Otherwise one is
not examining the advertised two-brane BPS system, but instead a nearly BPS three-brane system sim
Ekpyrotic model of[23].

The ramifications of the moduli space gauge becomes evident by adapting the viewpoint of a freely
observer on the tensionless brane rather than the positive tension brane. For the exponential superpotent

(58)

(
1− α2

2
W0z

+
)1+ 2

3α2 = ψ cosh2
(

r

2

)
,

(59)

(
1− α2

2
W0z

−
)1+ 2

3α2 = ψ sinh2
(

r

2

)
,

and ignore brane matter so

(60)Seff =
∫

d4x
√−g

{
− Rψ

2K0
+ gµν

2K0

(
3

2+ 3α2

)[
ψ,µψ,ν

ψ
− ψr,µr,ν

]}
.

Such observers see a Brans–Dickie theory coupled to a ghost. The instability reflects that the tensionle
wants to sit atz = −∞ whereU vanishes. Like the apparent disappearance of the radion in the RS2 limit,
the wrong physics.

6. Conclusions

BPS braneworlds are much closer to string/M-theory than the simple RS models. Our general Einstein g
effective action, Eqs.(34), (37), (39)provide a simple treatment of the nonvacuum case without invoking
problematic third brane of the moduli space approximation. It can be used even when there is direct couplin
bulk scalar and brane matter, unlike the Jordan gauge. The metric of Eq.(26) could be used as a starting point f
calculating Kaluza–Klein corrections through the low energy expansion scheme[18]. Settingα = 1 in Eqs.(42)–
(47) one has a new basis to explore inhomogeneous Horava–Witten brane cosmology and, following the
of [21], also black holes.
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Appendix A. Non-BPS branes

Following [9], suppose the bulk potential is

(A.1)U(Φ) = u(Φ) − 6k2

and on the positive tension brane aty = 0

(A.2)V0(Φ) = 6k + v0(Φ)

while on the negative tension brane aty = �

(A.3)V�(Φ) = −6k + v�(Φ)

with u, v0 andv� small. Neglecting the influence of the scalar on the bulk geometry one can replaceΦ(x,y) with
the zero modeη(x) at leading order. The metric functions for the RS geometry are[16]

(A.4)Ψ (x, y) = [
e−2ky + φ(x)

]1/2
, ϕ(x, y) = Ψ −2(x, y)e−2ky .

A simple calculation using Eqs.(32), (36)gives

L= − R

2K
+ 3

4K

gµνφ,µφ,ν

(1+ φ)(e−2k� + φ)
+ gµν

2K
η,µη,ν − 1

K

(
1+ e−2k�

2
+ φ

)
u(η)

(A.5)− k

K(1− e−2k�)

[
(1+ φ)2v0(η) + (

e−2k� + φ
)2

v�(η)
]
.

Note the radionφ remains in the limit� → ∞.
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