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equation of state or a transport equation for both phases. The barotropic equation links the density to the local static pressure 

(Delannoy and Kueny, 1990). A recent experimental study implied that the vorticity production is an important aspect of cavita-

ting flows, especially in the cavity closure region (Gopalan and Katz, 2000). But in the barotropic law, the gradients of density 

and pressure are always parallel, which leads to zero baroclinic torque. Therefore, the barotropic cavitation models cannot cap-

ture the dynamics of cavitating flows, particularly for cases with unsteady cavitation flows (Senocak and Shyy, 2002). Further-

more, this method is prone to instability because of high pressure-density dependence, which makes it difficult to reach the 

convergence levels of noncavitating flow simulations (Marina, 2008). Conversely, these limitations can be avoided by applying 

the transport equation models (TEM). In this approach, volume or mass fraction of the two phases are solved by an additional 

transport equation with different source terms. Besides, there is another apparent advantage of this method, which could predict 

the impact of inertial forces on cavities like elongation, detachment and drift of bubbles. In the past years, a great number of 

transport equation models are proposed (Zwart et al., 2004; Kunz et al., 2000; Singhal et al., 2002; Schnerr and Sauer, 2001; 

Merkle et al., 1998). These models apply different condensation and evaporation empirical coefficients to regulate the mass and 

momentum exchange. However, most of these empirical coefficients are calibrated on simple hydraulic machinery, such as 

hydrofoil or blunt body. When these models are employed in pumps, the accuracy of numerical simulation is strongly depen-

dent on users’ experience to choose proper coefficients. Among this kind of TEM models, because of its effectively and stabi-

lity, the Zwart-Gerber-Belamri model (hereafter ZGB model) was widely used for different cases (Zwart et al., 2004; Hagar et 

al., 2012; Liu et al., 2012). 

In this study, the influence of the empirical coefficients on predicting the cavitation performance of a centrifugal pump was 

investigated. To this aim, the ZGB model was considered. Moreover, the experiments were carried out to validate the numerical 

simulations. 

EXPERIMENTAL SETUP AND TEST PUMP 

The experiments were performed on a closed platform in the Research Center of Fluid Machinery Engineering and 

Technical of Jiangsu University. Fig. 1 shows the centrifugal pump closed test rig. Two pressure transducers, JYB-KO-HAG-

L-1, are installed in the upper and down steam, with a measurement accuracy of ±0.5%FS (The FS is interpreted as the full 

scale of the pressure transducer, which is ±100kPa). To avoid the disturbance from the pump, a turbine flowmeter LWGY-80A 

is mounted far away from the pump, with an accuracy of ±0.5% for the flow-rate value between 16-100m3/h. Measurement 

uncertainties were estimated to be less than ±2% and ±1.5% respectively, contributing to an uncertainty of ±2.8% of the pump 

head and ±2% of the cavitation number, according to Eqs. (9) and (11). All of the measured data are acquisitioned synchro-

nously and then processed by a pump test system, TPA, developed by our research center. The ambient temperature is about 22° 

and after 3 times tests, the system is ceased for hours until the water temperature cools down. 

 

 
Fig. 1 Experimental setup. 
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The basic parameters of the test pump are listed as follows: the volume flow rate Q = 0.014m3/s, the rotation speed n = 

2,900r/min, the impeller diameter D2 = 168mm and the blade number Z = 5. The impeller test model is given in Fig. 2(a), which 

is manufactured by the rapid prototyping technology. Its meridional shape is also plotted in Fig. 2(b). 

 

          
(a)                                     (b) 

Fig. 2 Test impeller model (a) and impeller meridional shape (b). 

NUMERICAL SIMULATION METHOD 

Governing equations 

The set of governing equation consists of the mass continuity (1) and momentum Eq. (2) plus a transport Eq. (3) to define 

vapor generation:  
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The mixture density is defined by the vapor volume fraction, expressed as: 

(1 )m v v vl        (4) 

where p is the pressure, ρm is the mixture density, ui is the velocity, μ and μt stand for the laminar viscosity and turbulent 

viscosity, α is the volume fraction, m  and m represent the source terms for evaporation and condensation. The subscripts m, 

l, v indicate the mixture, liquid and vapor, respectively.  
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Turbulence model 

The RNG k-ε model was adopted for solving the transport equations of the turbulent kinetic energy and its dissipation rate, 

which is based on the renormalization group analysis of the Navier-Stokes equations. The RNG k-ε model has been proved to 

give good predictions in cavitating flows (Zhou and Wang, 2008; Chang and Wang, 2012; Yang et al., 2012). To improve the 

numerical simulations, a modification of the turbulent viscosity was taken into account to reduce the turbulent viscosity of the 

mixture, proposed by Coutier-Delgosha et al., (2003). The turbulent viscosity μt is defined as 

2

( )t m

k
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where the exponent n is a constant and Fig. 3 shows the relationship between different n values with f(ρm). It can be noted that, 

with increasing n, the turbulence viscosity would reduce obviously. As recommended by Coutier-Delgosha et al., (2003), n = 10 

was employed in the present study. 

 

 
Fig. 3 Relationship between function f(ρm) and mixture density ρm with different n values. 

Cavitation model 

All the simulations were conducted by using the ANSYS-CFX commercial software and the ZGB model was considered in 

this paper, which is deduced from the Rayleigh-Plesset equation: 
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where Fvap and Fcond are the empirical calibration coefficients of evaporation and condensation, respectively. And rnuc is the 

nucleation site volume fraction, RB stands for the nucleation site radius (hereafter NSR). Vaporization is initiated at nucleation 
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Table 1 Pump head with different cell numbers. 

 Cell number/106 Pump head/m 

1 0.62 31.54 

2 1.20 30.86 

3 1.81 30.74 

4 2.57 30.74 

Boundary condition 

In the simulation process, since the pump impeller is a rotating part, whereas the other parts, the prolongations and volute 

casing, are stators, the Multiple Reference Frame (MRF) approach was employed, which allows the analysis of situations 

involving rotator/stator fluid domains and has been demonstrated that it has good accuracy (Ding et al., 2011; Lei et al., 2012). 

The interfaces were imposed between the impeller and inlet prolongation and volute. The pressure and mass flow rate boundary 

conditions were fixed at the inlet and outlet, respectively. Moreover, no slip boundary condition was applied on the solid surface 

of the pump. All the calculations were firstly carried out under non-cavitation condition to obtain a steady solution. Then, the 

pressure loaded on the inlet was decreased progressively until the desired cavitation number was reached. 

RESULTS AND DISCUSSIONS 

In the convenience of comparing the results, two dimensionless parameters are defined as: 

Pump head coefficient  2
2 2H u g 

  
(10) 

Cavitation number   2
20.5in v lp p u  

  
(11) 

where u2 is the circumferential velocity at the impeller outlet, pin represents the static pressure of the inlet. 

Influence of the nucleation site radius 

 

 
Fig. 6 Influence of the NSR on pump head drop curve. 
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Fig. 8 Blade loading distribution with various NSR on the middle streamline at Span = 0.5. 

 

In Fig. 8, the upper curves are the data of the pressure side, while the below ones are the suction side. We can find that the 

pressure loading distributions on both sides of the blade are almost similar under different NSR, except for the leading edge of 

the suction side. For the case of higher NSR, the pressure on the suction side gradually rises from the leading edge to the trailing 

edge. It is mainly because there are a few bubbles with low volume fraction attached on the blade surface (Fig. 7(d)). The 

situation becomes different when the NSR drops. Due to the bubbles with high vapor volume fraction attached on the leading 

edge of the suction side, the pressure on this place are approximately zero and the length of the low pressure region increases 

with the decreasing NSR. For RB = 2 × 10-8m, the length is around 0.18, compared with the case of RB = 2 × 10-6m, whose low 

pressure region length is about 0.1. Meanwhile, it is interesting to see that the pressure gets a sharply increase just after the low 

pressure region and then it has a slightly decline, which is much more obvious when RB = 2 × 10-8m. The reason lies in the fact 

that the re-entrant jet in the cavity region near the blade surface, keeps the bubbles away from the blade, which is emphasized in 

Fig. 7(d) by black ellipses. And as the detached cavity gets close to the blade surface, the pressure drops a little bit and then 

soars again. Besides, on the pressures side of the leading edge, a humped curve is also observed of all the cases, which is 

probably caused by the high curvature, leading to flow separation at that point. 

Influence of the evaporation and condensation coefficients 

 

 
Fig. 9 Influence of the evaporation coefficient on pump head drop curve. 
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Since the evaporation and condensation coefficients have much more influence on the calculation, more schemes are chosen. 

The results are given in Fig. 9. As seeing, the smaller Fvap value, the greater discrepancy between the numerical simulation and 

the experiment. It can be observed that when Fvap<50(default value), the pump head starts to drop at a very low cavitation 

number. For Fvap = 5, the critical cavitation number σc = 0.027 and for Fvap = 0.5, this value drops to 0.013. It is implied that 

reducing the Fvap value would greatly impact the computed result. In contrast, when increasing the evaporation coefficient, a 

slightly improvement of the head drop curve can be noticed. But compared with the experiment result, σc = 0.138, the critical 

cavitation number only goes up to 0.054 and 0.06, respectively for Fvap = 500 and Fvap = 5000.   

 

 
                   (a) Fvap = 5000.  (b) Fvap = 500.  (c) Fvap = 50.  (d) Fvap = 5.  (e) Fvap = 0.5. 

Fig. 10 Vapor volume fraction distribution with various evaporation coefficients when σ = 0.07 at Span = 0.5. 
 

 
Fig. 11 Blade loading distribution with various evaporation coefficients on the middle streamline at Span=0.5. 

 

Figs. 10 and 11 present the vapor volume fraction distribution and blade loading distribution with various evaporation 

coefficients under the same conditions as Figs. 7 and 8. From Fig. 10, it can be find out that both of the cavity size and length 

are getting smaller and shorter as the evaporation coefficients declining, leading to diminishing the low blade loading region, as 

can be seen in Fig. 11. In addition, it is obviously that when the Fvap value increases, the cavity region with high vapor volume 

fraction become larger.  
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Fig. 12 Influence of the condensation coefficient on pump head drop curve. 

 

Fig. 12 shows the head drop curves with different condensation coefficients. Similarly, five values are selected to investigate. 

We can see when increasing Fcond from 1e-2 to 1e-1 and 1, the head drop curve nearly has no change. The critical cavitation 

number σc are 0.047 and 0.045, respectively for Fcond = 1e-1 and 1, compared with σc = 0.048 as Fcond = 1e-2 (default value). 

While Fcond drops to 1e-3, a better prediction result is obtained. The pump head starts to decline when σ is around 0.07, 

contributing to a higher critical cavitation number σc = 0.059. But when the condensation coefficient Fcond reduces to 1e-4, a 

tremendous improvement can be noticed in the figure. The head drop curve has a good agreement the experiment, with a critical 

number σc of 0.116, compared with 0.138 in the experiment.  

 

 
(a) Fcond = 1. (b) Fcond = 1e-1. (c) Fcond = 1e-2. (d) Fcond = 1e-3. (e) Fcond = 1e-4. 

Fig. 13 Vapor volume fraction distribution with various condensation coefficients when σ = 0.1 at Span = 0.5. 
 

Since the cavitation number in the case of Fcond = 1e-4 is higher than the others, the operating condition of σ = 0.1 is chosen 

to study the vapor volume fraction distribution, which is shown in Fig. 13. It is noticed that with the condensation coefficient 

dropping, the cavity length is getting longer. As Fcond = 1e-4, the bubbles nearly cover all over the suction side of the blade, 

which produces a more accuracy prediction results. The reason lies in that, with lower condensation coefficient, the mass of 

vapor transferred into liquid decreased, making the cavity length much longer. Furthermore, we can find that the cavity of high 

volume fraction is almost unchanged with decreasing Fcond. Also, the blade loading with various condensation coefficients are 
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plotted in Fig. 14. No remarkable difference can be observed, that is to say, the most affective factor for blade loading is the 

cavity region of high volume fraction, but not the cavity length. 

 

 
Fig. 14 Blade loading distribution with various condensation  

coefficients on the middle streamline at Span = 0.5. 

CONCLUSIONS 

To investigate the influence of the empirical coefficients of cavitation model on predicting cavitating flow in centrifugal 

pump, numerical simulation and experiment are presented in this paper. The widely used Zwart-Gerber-Belamri cavitation 

model is considered. Within this model, three coefficients are analyzed, namely the nucleation site radius RB, evaporation and 

condensation coefficients, Fvap and Fcond. During the simulation process, when one of these coefficients is studied, the others are 

set as default. The conclusions could be arrived at as follows: 
 

(1) The nucleation site radius is considered in the first place with three different values, RB=2×10-4m, 2×10-6m and 2×10-8m. 

Compared with the experiment, the computed results show that the accuracy of the predictions of the pump cavitation 

performance is improved as the NSR decreasing. Meanwhile, the vapor volume fraction distribution and the blade loading 

distribution under certain operation condition are analyzed. For smaller NSR, both of the cavity length and the cavity region 

of high volume fraction increase, which would promote to degrade the pump head. Besides, because of the re-entrant jet, 

the low pressure region on the leading edge of the suction side of the blade is much larger with small NSR. 

(2) Then, the evaporation and condensation coefficients are researched. It can be noticed that, to obtain more precisely si-

mulation results, one can either increases the evaporation coefficient or decreases the condensation coefficient. Moreover, it 

is important to note that the later approach has much more impact on the predictions than the former and produces 

progressively better results. To figure it out, the vapor volume fraction distribution is also studied. It is concluded that, the 

evaporation coefficient controls both the cavity length and the high vapor volume fraction cavity region, and the later factor 

is more affective on the pressure loading on the blade, but less effective on numerical predictions. On the other hand, the 

condensation coefficient mostly regulates the cavity length, while the high vapor volume fraction nearly remains identical. 

And it is observed that, when the cavity covers all over the suction side of the blade, the simulation result has the best 

agreement with the experiment. However, while the cavity length is within the blade, the simulation results have only a little 

change. Hence, comparing the influence of the evaporation and condensation coefficients, we may draw the conclusion that 

the cavity length is the most effect factor degrading the pump head. While the cavity region with high vapor volume 

fraction is the main factor which impacts the blade loading pressure greatly, but has little impact on the improvement of 

numerical predictions. 
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