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Small heat shock proteins (sHsps) regulate a large number of fundamental cellular processes and are
involved in many pathological diseases. They share complex oligomerization and phosphorylation
properties allowing them to interact and modulate the activity of many client proteins. Here, the
up-to date protein interactome of the ten human sHsps is presented as an illustration of their multi-
ple cellular functions. In addition of forming homo-oligomers, some of these proteins interact whith
each other and form hetero-oligomeric complexes that could bear new protein targets recognition
abilities. Here, novel informations are presented on how the formation of HspB1/HspB5 complex can
stimulate the activity of the oxidoresistance promoting enzyme glucose 6-phosphate dehydrogenase
through its interaction with newly formed highly phosphorylated HspB1 homo-oligomers.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The ten polypeptides belonging to the human family of sHsps
(HspB1 to HspB10) [1] (Fig. 1A) share a C-terminal alpha-crystallin
domain [2–4], a N-terminal domain containing a hydrophobic WD/
PF motif and optional phospho-serine sites [5]. The C-terminal do-
main bears a flexible tail and, excepted in the case of HspB6, the
conservative tripeptide (I/V/L)-X-(I/V/L) motif [6–8]. HspB1
(Hsp27), HspB5 (aB-crystallin), HspB8 (Hsp22), HspB4 (aA-crystal-
lin) and HspB6 (Hsp20) are ATP-independent chaperones [9–13].
HspB7 is a particular chaperone characterized by its aggregation
suppressor property [14,15]. Only HspB1, HspB5 and HspB8 are
stress inducible. Their expression induces cellular protection
against different stress, particularly those that alter protein folding
[4]. Through their dynamic ability to modulate their oligomeriza-
tion, sHsps trap altered proteins and avoid their aggregation.
Thereafter, they collaborate with the Hsp70–Hsp90 ATP-depen-
dant refoldase machinery which refold or proteolyticaly eliminate
stress-damaged polypeptides [9,11,16–25] A fundamental prop-
erty is their ability to form reversible, polydispersed homo- or het-
ero-oligomers that can, depending on the sHsp, be regulated by
phosphorylation [26–35]. In that respect, the dynamic plasticity
of HspB1 phospho-oligomers can act as a sensor of the cellular
environment [27,36,37]. Because of their constitutively expression
in normal and pathological human tissues and the discovery of
mutations in sHsp genes that are responsible of the development
of neurodegenerative, myopathic and caratact diseases [10,38–
43], the interest in sHsps has recently grown exponentially and
they are nowdays considered as promising therapeutic targets
[44–46]. sHsps are characterized by their incredible number of
fundamental cellular roles [10,21,44,46–52]. In addition of being
essential in signal transduction, transcription, and translation
mechanisms, many reports have described their anti-apoptotic,
anti-oxidant, tumorigenic and metastatic properties. They can also
regulate proteolysis and cytoskeleton architecture integrity or
attenuate aggregation or fibrillation of pathological proteins (i.e.
mutant synuclein, parkin, Ab-amyloid, polyQ-Huntingtin). They
also could contribute to cardiac cell hypertrophy and survival
hence, each sHsp appears to have its own specific functions. Their
level is up-regulated in particular cellular events, such as changes
in cell physiology (e.g., differentiation) [53], and in pathological
conditions (neurodegeneration, myopathies, cardiomyopathies,
cataracts, inflammatory diseases and cancers) [10,44,46,47,49]. It
is now believed that the pleotropic functions of sHsps results of
their interaction with many different proteins. We have proposed
that the dynamic plasticity of sHsps phopho-oligomeric structure
is probably the major parameter modulating the recognition of cli-
ent proteins. At least in the case of HspB1, choosing the more
appropriated client proteins in a define cellular situation is
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Fig. 1. Human sHsps. (A) Name, chaperone function and stress inducibility of the ten members of the human small heat shock family of proteins. The organization of the
domains of some sHsps is also presented. Black box: alpha crystallin domain; light gray box: conserved N-terminal WD/EPF domain; dark gray box: conserved domain;
KKKKK: conserved IXI/V motif and flexible C-terminal domain; P: phosphorylated serine residues. Amino acids number is indicated. (B) Schematic representation of the
interactions between sHsps when they are expressed in the same cells. The interactions depend on the tissue, the physiology of the cells and the phosphorylation of sHsps.
Dotted lines: interations that have been reported in some but not all publications. (C) Interaction between sHsps results in the formation of complex chimeric oligomeric
structures. Interactions can be complete or not leaving a fraction of non-interacting sHsps as homo-oligomers. The interaction with putative client proteins is indicated. It is
not known if the hetero-oligomers interact with same client proteins as the parental sHsps. The example presented concerns HspB5 (black) and HspB1 (gray) expressed at
similar levels in HeLa cells (see Fig. 2).
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probably linked to its ability to drastically rearrange its phospho-
oligomeric structure [36,45,46,52,54]. Here, the proteins that have
been reported to interact with the different human small Hsps are
classified depending on their functions in the cell. Emphasis is then
given towards the hetero-oligomers that can form when several
sHsps are expressed in the same cells and their putative proprieties
to recognize new protein targets. In that respect, a novel observa-
tion is presented concerning the indirect stimulation of the activity
of the oxidoresistance promoting enzyme glucose 6-phosphate
dehydrogenase (G6PD) by the formation of HspB1/HspB5 hetero-
oligomer complex.

2. sHsps pleotropic activities result of their ability to interact
with many protein clients

Protein interactomes are useful tool that can help in the under-
standing of protein functions, particularly chaperones which have
apparent pleotropic activities resulting of their interactions with
a large number of crucial regulator polypeptides. The best example
is Hsp90, which has been described for quite a while to interact
with an incredible number of proteins [55]. Hence, collecting data
from the scientific literature is the only way to build a comprehen-
sive interactome since individual experimental approaches are too
limited. Here, the aim was to list the proteins that are already
known to interact with the different sHsps. As seen in Table 1,
the interacting proteins are classified in function of their role in
cells and in function of the number of interations that have been
discovered. However, it should be kept in mind that the listed
interactions are probably specific for only some cells and in partic-
ular physiological conditions. HspB1 and HspB5 are the most rep-
resented sHsps since they have been studied for longer time
periods than the other recently discovered sHsps. HspB9 and
HspB4 interact with only one protein partner, TCTEL1 and HspB5
respectively, and no interaction has yet been discovered concern-
ing Hsp10. Of interest, the largest number of proteins that interact
with sHsps are linked to cell adhesion, tissue integrity, epithelial to
mesenchimal transition and cytoskeleton. This particular sub-
group is represented by HspB1, HspB2, HspB3, HspB5, HspB6,
HspB8 and HspB9. Hence, it can already be concluded that a major
activity of sHsps is to modulate human cell architecture confirming
the important role of these proteins in metastatic and myopathic
diseases. Inhibition of protein aggregation or fibrillation responsive
of neurodegenerative, cataract and myopathic diseases is ranked
second and involves HspB1, HspB2, HspB3, HspB5, HspB7 and
HspB8. Next, we found the interactions dealing with transduction
pathways and cell activation. Receptors, protein kinases and phos-
phatases as well as signaling molecules are targets of sHsps, partic-
ularly HspB1, HspB2, HspB5, HspB6 and HspB8. This leads to the
conclusion that sHsps are deeply involved in the regulation of sig-
nal transduction pathways. Negative modulation of apoptotic pro-
cesses is also an important phenomenon that has crucial
consequences, particularly in cancer pathologies where sHsps are
often over-expressed. In that respect, HspB1, HspB5 and HspB8
are key modulators of apoptosis. In contrast, only one autophagy
example is known which relates to HspB8 and HspB6 in a complex
with Bag3. Then, several reports show that sHsps modulate tran-
scription and translation machineries. The interactions mediated
by HspB1, HspB5 and HspB8 promote stabilization or degradation
of transcription factors, pre-mRNAs processing as well as modula-
tion of translation initiation. Down-stream to translation and/or
protein refolding, sHsps (HspB1 and HspB5) also regulate protein
degradation through interaction with crucial regulators such as
ubiquitin, HDM2, FBX4 or Smad/Smurf2. In contrast, protein trans-
port is less represented than protein degradation. Enzymes are also
targets of sHsps and some examples are known where the interac-
tions stimulate their activities. In that regard, one can cite the ef-
fect of phosphorylated HspB1 towards G6PD (see Fig. 2) [56].
sHsps also interact with each other and with protein inhibitors of
their activity (e.g., p66Shc or PASS1). In the lens cells, HspB5 can
chaperone other crystalline polypeptides such as bB2 and cC.

The interaction of sHsps with specific polypeptides can have
several consequences. Inhibition of proteolytic degradation is often
observed [54], as for example AR, Her2, Stat-2, Stat-3, HDAC-6, Pro-
caspase-3, Snail, and HDM2 which are stabilized by HspB1. These
‘‘clients’’ have a biochemical behavior close to that of some
Hsp90 interacting partners [57]. The interaction with sHsps can
also promote enhanced degradation or modulation of enzymatic
activities.



Table 1
Major polypeptides interacting with human sHsps.

Interacting proteins sHsps Functional modulation Refs.

Cytoskeleton, cell adhesion, tissue integrity, epithelial to mesenchymal transition
F-actin HspB1 Protection integrity, inhibition formation of F-actin stress fibers [15,86,87]

HspB5 Protection integrity [88–91]
HspB6 Inhibits formation F-actin stress fibers [15]
HspB7 Inhibits formation F-actin stress fibers [15]
HspB8 Inhibition Rho GTPase [15]
HspB2 nk [92]
HspB3 nk [92]

Tubulin HspB1 Chaperoning [93]
HspB5 Chaperoning [94,95]

MAPs HspB5 Inhibition microtubules aggregation [96]
Vimentin HspB1 Chaperoning [97]

HspB5 Chaperoning [97–99]
Desmin HspB5 Chaperoning [91]
Peripherin HspB5 Chaperoning [98,99]
Neurofilaments HspB1 Protection integrity [100]
GFAP HspB1 Inhibits IF interaction [97]
p66Shc HspB1 Cytoskeleton disruption [101]
b-Catenin HspB1 Cell adhesion [102]

HspB5 Cell adhesion [103]
Cadherin-16 HspB5 Cadherin-16-cytoskeleton connection [104]
Snail HspB1 Promotes MET [105]
DSTN HspB8 Destrin, actin depolymerization [106]
Filensin HspB5 Chaperoning [107]
Phakinin HspB5 Chaperoning [107]
GRIFIN HspB5 nk [108]
GFAP HspB5 Stabilization/degradation GFAP [91,97,109]
Neurofilaments HspB5 Protection integrity [100]
Keratins HspB1 Keratin networks dissassembly [110]
TCTEL1 HspB9 Role in spermatogenesis? [111]

Protein aggregation, fibrillation, neurodegeneration
a-Synuclein HspB1 Inhibition of fibrillation [112,113]

HspB5 Inhibition of fibrillation [59,112]
HspB8 Inhibition of fibrillation [112]
HspB3/B2 Inhibition of fibrillation [112]

Ab-amyloid HspB1 Inhibition of aggregation [114]
HspB5 Inhibition of fibrillation [59,115]

PolyQ proteins HspB1 Inhibition of aggregation [116]
HspB5 Inhibition of aggregation [116]
HspB8 Inhibition of aggregation [117]
HspB7 Inhibition of aggregation [14]

SOD1 HspB1 Inhibition of aggregation [118]
HspB8 Inhibition of aggregation [74]

Parkin HspB1 Inhibition of aggregation [113]
p150 Dynactin HspB1 Inhibition of aggregation [119]
NF-M HspB1 Inhibition of aggregation [119]
Phosphorylated Tau HspB1 Facilates P-Tau degradation [120]
Tubulin HspB5 Inhibition of aggregation [94,95]
Desmin HspB5 Inhibition of aggregation [91]
Vimentin HspB5 Inhibition of aggregation [97–99]
Serpin HspB5 Inhibition of aggregation [121]
SOD1 HspB5 Inhibition of aggregation [118]
PrPc HspB5 Inhibition of aggregation [122]
j-Casein HspB5 Inhibition of aggregation [116]
Apolipoprotein-CII HspB5 Inhibition of aggregation [123]
TDP-43 HspB8 Inhibition of aggregation [74]
b2-Microglobulin HspB5 Inhibition of fibrillation [59]
Transthyretin HspB5 Inhibition of fibrillation [59]
Titin, Myotilin, ZASP, Filamin C HspB5 Inhibition of aggregation [124]

Transduction pathways, cell activation
Membrane signaling proteins
CD10 HspB1 nk [125]
b2-Microglobulin HspB5 Inhibition of fibrillation [59]
TLR4 HspB8 TLR4 ligand, dentritic cells activation [126]
Growth factors, Receptors, transduction pathway factors
NGF-beta HspB5 Chaperone NGF-beta [103]
Her2 HspB1 Her2 stabilization [127]
ERb HspB1 Estrogen signaling [128]
FGF-2 HspB5 Chaperone FGF-2 [103]
VEGF HspB5 Chaperone VEGF [103,129]
AR HspB1 AR stabilization [130]
14-3-3zeta HspB6 Modulation signaling pathways [131]

(continued on next page)

A.-P. Arrigo / FEBS Letters 587 (2013) 1959–1969 1961



Table 1 (continued)

Interacting proteins sHsps Functional modulation Refs.

Protein kinases, phosphatases
IKKb HspB5 Stimulation kinase activity [132]
DAXX HspB1 Inhibition activity [133]
IKK HspB1 Activation via TRAF6 ubiquitination [134]
DMPK HspB2 Activation DMPK [135]
PKCd HspB1 Inhibition of HspB1 activity [136]
RhoA, PKCa HspB1 Muscle contraction [137]
Akt, P38, MK2 HspB1 Akt activation [138]
Phk HspB1 nk [139]
p90Rsk HspB1 HspB1 phosphorylation [140]
PTEN HspB1 Increased PTEN level [141]
PRKD1 HspB1 nk [142]
PPM1A HspB1 nk [143]
Apoptotic and autophagic factors
Caspase-3 HspB1 Pro-caspase-3 stabilization [54,144]

HspB5 Negative regulation of activity [145]
Cytochrome c HspB1 Inhibition binding to APAF [146]
Bax HspB5 Inhibition translocation mitochondria [145,147]
Bcl-xs HspB5 Inhibition translocation mitochondria [147]
P53 HspB5 Inhibition translocation mitochondria [148]
DAXX HspB1 Inhibition Fas apoptosis [133]
PEA-15 HspB1 Inhibition Fas apoptosis [149]
GranzymeA HspB1 GranzymeA stimulation [150]
CIAPIN1 HspB8 nk [106]
Bag-3 HspB8 Co-chaperone [11,75]

HspB6 Co-chaperone [75]

Transcription/translation, gene expression
Transcription factors
Stat-2 HspB1 Stat-2 stabilization [54]
Stat-3 HspB1 Stat-3 stabilization [151]
HSF-1 HspB1 HSF sumoylation [152]
GATA-1 HspB1 GATA-1 degradation [153]
Snail HspB1 Snail stabilization [105]
P53 HspB5 Inhibition P53 translocation [148]
Activators of transcription factors
IKKb HspB5 Activation of NF-jB [132]
Spliceosome assembly, pre-mRNA processing
SAM68 HspB8 Inhibition SAM68 activity [154]
Ddx20 HspB8 Ribonucleoprotein processing [40]
EFTUD2 HspB1 nk [62]
Translation initiation factors
eIF4G HspB1 Inhibition translation during HS [155]
eIF4E HspB1 Tumor cell survival [156]
mRNA half-life
AUF1 HspB1 AUF1 degradation [157,158]
Ribosomes
p90Rsk HspB1 HspB1 phosphorylation [140]

Regulators of protein degradation
Smad/Smurf2 HspB1 HspB1 ubiquitination/degradation [159]
p27kip1 HspB1 p27kip1 ubiquitination/degradation [21]
Ubiquitin HspB1 Protein degradation [160]
HDM2 HspB1 HDM2 stabilization [161]
FBX4 HspB5 Cyclin D1 ubiquitination/degradation [162]
C8/a7 Proteasome HspB5 Proteasome assembly/degradation of HspB5 interacting proteins [18]

Protein ubiquitinated by sHsps-E3 complexes
TRAF6 HspB1 TRAF6 ubiquitination [134]
Cyclin D1 HspB5 Ubiquitination by HspB5-FBX4 [162]
HspB1 HspB1 Ubiquitination by HspB1-Smurf2 [159]
p27kip1 HspB1 p27kip1 ubiquitination/degradation [21]

Protein sumoylation
Ubc9 HspB1 Sumoylation by Ubc9-HspB1:

HSF-1: modulation of activity [152]
F508del CFTR: degradation [163]

Protein transport
XPORT HspB1 Transport of TRP and Rh1 [164]
Neurofilaments HspB5 Chaperone [100]
MAPs HspB5 Inhibition microtubules aggregation [96]
SMN HspB5 SNR nuclear import and assembly [165]

Enzymes
Factor XIII HspB1 Platelet FXIII regulation [166]
Catalase HspB1 Protection against inactivation [167]
Insulin HspB5 nk [103]
SOD-1 HspB1 Protection against inactivation [168]
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Table 1 (continued)

Interacting proteins sHsps Functional modulation Refs.

G6PD HspB1 Stimulation of activity by P-HspB1 [56]
HDAC6 HspB1 Inhibition HDAC6 degradation [54]

Golgi
GM130 HspB5 Golgi vesicles [169]

Cell cycle
Cyclin D1 HspB5 Ubiquitination by HspB5- FBX4 [162]

Senescence
HDM2 HspB1 Inhibition of P53 induced senescence through HDM2 stabilization [161]

Viruses
Hepatitis C HspB1 Interaction with NS5A [170]

Lens crystallin proteins
HspB4 HspB5 Chaperoning [29,34]
HspB5 HspB4 Chaperoning [34]

HspB1 Chaperoning [34]
Beta B2-crystallin HspB5 Chaperoning [171]
Gamma C-crystallin HspB5 Chaperoning [171]

Chimeric sHsps complexes and sHsps regulators
HspB1 HspB5 HspB1 chaperoning [30]

HspB6 NK [35]
HspB8 NK [172]

HspB5 HspB1 HspB5 chaperoning [30,173]
HspB8 HspB5 nk [31,35]
HspB6 HspB8 nk [31]
HspB3 HspB8 nk [31]

HspB2 Role in myogenic differentiation [174]
HspB7 (cvHsp) HspB8 nk [172]
HspB2 (MKBP) HspB8 nk [172]
HspB4 HspB5 HspB4 chaperoning [29,32–34,173]
HspB6 (Hsp20) HspB5 nk [35]
Hic-5 (ARA55) HspB1 Negative regulator of HspB1 [175]
p66Shc HspB1 Negative regulator of HspB1 [101]
PASS1 HspB1 Negative regulator of HspB1 [176]
Bag-3 HspB8 Co-chaperone of HspB8 [11,75]

nk: not known; MAPs: Microtubule-associated proteins; GFAP: Glial fibrillary acidic protein; F508del CFT: deletion F508 of CFT that is responsible for most cystic fibrosis
pathologies; CD10: 100 kDa transmembrane metallo-endopeptidase; DSTN: Destrin or actin depolymerizing factor or ADF; ZASP: Z-band alternatively spliced PDZ motif
containing protein; GRIFIN: galectin-related interfiber protein; VEGF: vascular endothelial growth factor; FGF-2: Fibroblast growth factor 2; NGF-beta: Nerve growth factor
beta; PrPc: bovine prion protein; Her2: Human Epidermal Growth Factor Receptor-2; HDAC6: histone deacetylase 6; SMN: survival motor neuron protein; NSC: nuclear
speckle components; p90rsk: Snail: zinc finger protein that binds and inhibits E-cadherin promoter to induce epithelial mezanchymal transformation; p90 ribosomal S6
kinase; IF: intermediate filaments; GATA-1: globin transcription factor 1; HSF-1: heat shock factor 1; GFAP: glial fibrillary acidic protein; DAXX: death domain-associated
protein 6; STAT2 and 3: signal transducer and activator of transcription 2 and 3; Fbx4: Fbox only protein 4; eIF4E, eukaryotic translation initiation factor 4E; eIF4G: eukaryotic
translation initiation factor 4G; Smad-Smurf2: Smad ubiquitination regulatory factor 2; Factor XIII: transglutaminase, platelet Factor XIII; PhK: rabbit skeletal muscle
phosphorylase kinase; XPORT: exit protein of TRP and Rh1; TRP: transient receptor potential channels; Rh1: rhodopsin; MK2: MAPK-activated protein kinase-2; P38: MAP
Kinase; TRAF6: tumor necrosis factor receptor-associated factor 6; AR: androgen receptor; ER beta: estrogen receptor beta. PKCa: protein kinase Ca; PKCd: protein kinase C d.
Akt: also known as protein kinase B (PKB); p27kip1: cyclin-dependent kinase inhibitor p27kip1; PEA-15: astrocytic phosphoprotein PEA-15; PTEN: phosphatase and TENsin
homolog; HDM2: human double minute2; Bax: Bcl-2-associated X protein; Bag3: Bcl-2-associated athanogene 3; Ubc6: ubiquitin conjugating enzyme E2 6; SOD1: Copper-
Zinc superoxide dismutase; SOD2: Manganese superoxide dismutase; Hic-5 (ARA55): androgen receptor associated protein 55; NF-jB: nuclear factor kappaB; G6PD: glucose
6-phosphate dehydrogenase; p66Shc: 66 kDa isoform of ShcA (Src homology 2 domain containing transforming protein 2); CIAPIN1: Anamorsin, a cytokine-induced inhibitor
of apoptosis; eIF2: eukaryotic initiation factor 2; TDP-43: major disease protein in ubiquitin-positive, tau-, and alpha-synuclein-negative frontotemporal dementia; SC35:
Splicing factor SC35; PASS1: protein associated with small stress proteins 1; SRp38: splicing regulator p38, SR proteins constitute a family of pre-mRNA splicing factors; NF-
M: Neurofilament middle chain subunit; a protein kinase of the MLK family. TAK1: TGF-b activated kinase 1; Ddx20: DEAD box protein Ddx20 (gemin3, DP103); SOD-1: Cu/
Zn-superoxide dismutase; SAM68: c-Src kinase during mitosis; SOD-1: Cu/Zn-superoxide dismutase; TCTEL1: dynein subunit; EFTUD2: U5-116KD, Snu114, Snrp116,
elongation factor Tu GTP-binding domain-containing protein 2; PRKD1: Serine/threonine-protein kinase D1; Smurf2: E3 ubiquitin protein ligase 2; PPM1A: protein phos-
phatase 1A (formerly 2C), magnesium-dependent, alpha isoform.
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Little information is available concerning the protein domains
and/or the structural organization of sHsps that interact with spe-
cific proteins [58]. This complex problem can be illustrated by the
fact that, in HeLa cells, pro-caspase-3, HDAC6 and STAT2 interact
with different phospho-oligomeric structures of HspB1 [54,58]. It
was also reported that different domains of HspB5 are effective,
at least in vitro, to recognize specific target proteins [59].

In addition to the major proteins listed in Table 1, new protein
targets are nowdays detected using automated yeast two-hybrid
interaction systems and immunological means. Another example,
which was not included in Table 1, concerns the 70 proteins (acute
phase proteins, coagulation factors and proteins of the comple-
ment) which appear to interact with plasma HspB5 [60]. Hence,
sHsps may have far more interacting proteins then those described
here [61,62].
3. The ability of some sHsps to interact with each other results
in the formation of hetero-oligomers bearing new biochemical
properties

A fascinating property of sHsps concerns their ability to form
hetero-oligomeric structures in vivo and in vitro. The phenomenon
was first described in the developing lens cells. During lens
differentiation, aB-crystallin (HspB5) is synthesized earlier than
aA-crystallin (HspB4), however, because these two proteins are
differentially expressed, in differentiated lens fiber cells aA and
aB form a unique large hetero-oligomer oligomer (aA to aB ratio:
3 to 1) denoted as a-crystallin [63–65]. Hence, the particular
association of HspB5 and HspB4 in lens fiber cells results in the
formation of the a-crystallin molecule essential for the lens refrac-
tive and light focusing properties. Of interest, this property is not



Fig. 2. HspB1/HspB5 interaction indirectly modulates G6PD activity. (A) Analysis of the chimeric complex formed by HspB1 and HspB5 in HeLa cells. HeLa cells, which
express a high load of endogenous HspB1 (5 ng/lg of total cellular proteins) but no HspB5, have been genetically modified [68] to express rather similar levels (6 ng/lg of
total cellular proteins) of either wild type (denoted WT cells) or mutant (R120G) HspB5 (denoted R120G cells). Control clone is denoted Neo (no HspB5). Cells were lysed and
the 10000�g soluble fractions were applied to Sepharose CL-6B gel filtration columns to analyze the native size of HspB5, HspB1 and its phosphorylated isoforms and G6PD.
The presence of these proteins was detected in immunoblots of the collected fractions probed with the corresponding antibodies. Autoradiographs of ECL-revealed
immunoblots are presented. 29, 66, 150, 200, 443, 669 kDa are gel filtration markers. B) Shematic illustration of the phenomenon presented in A. As previously described [36],
Neo cells contain three size sub-populations of HspB1, each of them being characterized by a different set of phosphorylated serines. Phosphoserine 15 is present only in the
oligomers of less than 150 kDa together with a fraction of the total HspB1 content of phosphoserine 82. Phosphoserine 78 is the only phosphoserine present in the medium
sized oligomers (150–400 kDa). In contrast, the large oligomers contained the remaining content of phosphoserine 82. The particular oligomeric pattern of HspB1 was no
more observed in WT cells since most of this protein interacted with HspB5 (400–800 kDa). In R120G cells, the hetero-complex had a higher native size (up to about 900 kDa)
compared to that formed with wild-type HspB5. Of interest, in WT cells, the low level of HspB1 (<10%) not trapped in the HspB1/HspB5 complex and recovered as small
homo-oligomers showed a 6-fold increased phosphorylation (at the level of the three phosphoserine sites) compared to HspB1 in control cells. In R120G cells, the small
oligomers of HspB1 only displayed phosphorylation at the level of serines 78 and 82, since phosphorylated serine 15 was recovered in the HspB1/mutantHspB5 complex. In
the three types of cells, G6PD was recovered in the fractions smaller than 200 kDa where highly phosphorylated HspB1 (P-HspB1) accumulates. G6PD is known to increase its
activity when it interacts with highly phosphorylated HspB1 small oligomers [56]. In WT cells, interaction of G6PD with the highly phosphorylated HspB1 small oligomers
was confirmed as well as its stimulated activity (see Fig. 2C). (C) Analysis of G6PD activity in Neo, WT and R120G cells. G6PD activity was measured in cell extracts through its
ability to produce NADPH (mU/ml) in function of time using the Glucose-6-phosphate dehydrogenase assay kit of Biovision Inc. (Mountain View, CA). Standart deviations are
presented, n = 3. Note the stimulated activity of G6PD in WT cells (up to almost 4-fold) that was not observed in cells devoid of HspB5 or expressing HspB5 R120G mutant.
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beared by the parental molecules. The interaction of HspB1 with
HspB5 is the second example of hetero-oligomers that has been re-
ported [66]. This complex dissociates in response to heat shock or
oxidative stress suggesting that HspB1/HspB5 hetero-oligomers
are probably unable to play an efficient protective role in stress
conditions and/or may bear different functions that the parental
chaperones. Hence, it has been proposed that if several sHsps are
expressed in the same cell, they can form a variety of multiple
combinatorial chimeric oligomeric complexes that could bear
new protein target recognition abilities and/or modulate those of
the parental molecules [31]. The recognition ability of the different
sHsps is indeed a very complex phenomenon that may depend on
the type of cell considered and its physiology. Moreover, recent
observations revealed that not all sHsps have the same efficiency
to interact with each other (see Fig. 1B). For example, HspB4 ap-
pears to interact only with HspB5 while HspB1 interacts with
HspB5, HspB6 and HspB8. HspB2 interacts with HspB3, HspB8
and HspB6 and HspB3 interacts only with HspB8 and HspB2.
HspB6 is rather efficient since it can interact with HspB5, HspB1,
HspB8 and HspB2. HspB7 has been described to interact only with
HspB8 and no interaction have yet been reported concerning
HspB9 and HspB10. It should nevertheless be mentioned that the
interaction of HspB8 with either HspB1 or HspB6 has been re-
ported in some, but not in all publications, hence it remains ques-
tionable. This point is also illustrated by the in vitro formation of
any heterodimers with participation of HspB8 which is more diffi-
cult to produce compared to those formed between HspB1/HspB5,
HspB1/HspB6 and HspB5/HspB6 [35]. Another parameter to take
into account is the structural organization of the parental sHsps
that could modulate their interaction with other sHsps (Fig. 1C).
It is well known, at least in the case of HspB1, that this parameter
is highly dependent on cell physiology [36].
Formation of hetero-oligomers between sHsps mutually affects
the structure of both partners [67]. This could stimulate the chap-
erone activity of the parental sHsps, as demontrated for HspB1
once it interacts with HspB5 [34,68–70]. On the other hand, dom-
inant negative effects can dramatically spread between interact-
ing sHsps through the formation of hetero-oligomers with a
mutated sHsp partner [70,71]. In addition, mutant HspBs can
have an increased ability to interact with other small Hsps. For
example, some mutants of HspB8 have an increased efficiency
to interact with HspB5 and HspB1 but not with HspB6, hence
each mutant can have a characteristic pattern of abnormal inter-
action properties [72]. These interactions can also result in the
formation of cytoplasmic protein aggregates linked to pathologi-
cal diseases.

What about a putative interaction between three sHsps? In that
respect, an interesting study reported that the hetero-oligomers
formed by HspB2/HspB3 cannot interact with HspB6, HspB1 or
HspB5, whereas the homomeric form of HspB2, thus not in com-
plex with HspB3, could associate efficiently with HspB6. Hence, de-
spite the high level of sequence homology within the sHps, the
biochemical properties of the HspB2/HspB3 complex appears dif-
ferent from that of HspB2 homo-oligomers [73]. Other studies re-
vealed that the size of the hetero-oligomers formed by HspB1/
HspB6 and HspB5/HspB6 is different from the size of the corre-
sponding homo-oligomers. Similar observations were made con-
cerning HspB1 and HspB5 [69]. Other studies concluded that
HspB6 and HspB1 mutually affect the structure of each other and
formation of hetero-oligomeric complexes may influence diverse
cellular processes [67]. Another crucial factor to take into account
is phosphorylation (see below Fig. 2). Hence, hetero-oligomers ap-
pear to structurally differ from the parental sHsps and could have
their own cellular functions.
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4. Do sHsp hetero-oligomers bind to the same proteins as
parental sHsps or interact with novel protein partners?

Based on the fact that the multiple combinatorial hetero-olig-
omeric oligomeric complexes are probably structurally different
from the parental sHsps, they may confer surfaces able to interact
with novel protein targets (Fig. 1 C). However, it cannot be ex-
cluded that some parental-specific clients could still be able to
interact. Nowdays, we cannot answer these questions since
clear-cut reports describing the interaction of sHsp hetero-oligo-
mers with specific protein targets have not been reported yet.
In that regard, one example concerns the autophagic removal of
misfolded proteins which appears to occur through a large multi-
heteromeric complex made of HspB8, HspB6, Bag3, Hsc70 and the
E3 ligase CHIP [74,75]. The co-chaperone Bag3, which plays a cen-
tral role by targetting sHsps substrate proteins for degradation,
can interact with either HspB8 or HspB6 homo-oligomers
[75,76]. Of interest, the interaction between HspB6 and Bag3 re-
quires the same regions of Bag3 that are involved in the HspB8-
Bag3 association [75]. However, it is not known whether the large
multiheteromeric complex mentioned above also contains HspB8/
HspB6 hetero-oligomers. At least one mutant of Bag3 is
associated with the development of severe dominant childhood
muscular dystrophy, suggesting crucial physiological roles for
Bag3-HspB complexes [75].

Many of the observations mentioned here are deduced from
in vitro analysis. However, in vivo, the interaction between sHsps
appears far more complex, since intracellular factors (e.g., ki-
nases/phosphatases) could play crucial roles. Moreover, it is also
possible that only a fraction of the sHsps present in cells interact
with each other. This point is illustrated by our analysis of
HspB1/HspB5 interaction in genetically modified human cancerous
HeLa cells. We have observed that, even if the molecular ratio be-
tween endogenous HspB1 and exogenous HspB5 was slightly in fa-
vor of HspB5, a fraction of HspB1 (about 10%) was not associated
with the hetero-oligomeric complex formed by HspB1/HspB5
while all HspB5 oligomeric complexes contained HspB1 (Fig. 1C
and 2A). In cells devoid of HspB5 expression, HspB1 homo-oligo-
mers have a surprizing size-dependent phosphorylation pattern
that allowed us to define three size sub-populations each of them
being characterized by a different set of phosphorylated serines
[36,58,70]. As seen in Fig. 2A, phosphoserine 15 is present only
in the oligomers of less than 150 kDa together with about 60% of
the total HspB1 content of phosphoserine 82. These small oligo-
mers are devoid of phosphorylated serine 78 which is present only
in the medium sized oligomers (150–400 kDa) while the large olig-
omers contained the remaining HspB1 content of phosphoserine
82 (40%). This particular in vivo phospho-oligomeric pattern of
HspB1 was lost in the presence of HspB5, since most of this protein
was in large HspB1/HspB5 hetero-oligomers. Of interest, the low
level of small sized HspB1 homo-oligomers not interacting with
HspB5 showed a 6-fold increased phosphorylation (at the level of
the three phosphoserine sites of HspB1) compared to parental
small HspB1 homo-oligomers. Why these small HspB1 homo-olig-
omers are differently phosphorylated than the corresponding small
sized oligomers of HspB1 present in cells devoid of HspB5? One
possibility could be that phosphoserine 78 is necessary for the for-
mation of intermediate sized oligomers, a phenomenon abolished
by the interaction with HspB5. The phenomenon could also result
of an enhanced recognition of these particular homo-oligomers by
HspB1 kinases. In comparison, the HspB1/HspB5 hetero-oligomers,
which in spite of containing about 90% of HspB1, are weakly phos-
phorylated at only one HspB1 site (phosphoserine 82). Conse-
quently, the formation of HspB1/HspB5 complex indirectly
generates the formation of a new-type of highly phosphorylated
small HspB1 homo-oligomers. Of interest, highly phosphorylated
HspB1 has been reported to interact with a particular protein
target: the first enzyme of the pentose phosphate pathway, glucose
6-phosphate dehydrogenase (G6PD) [56] whose activity was previ-
ously reported to be modulated by HspB1 level of expression
[77,78]. This enzyme represents the major reducing power in the
cell throught its ability to transform NADP+ in NADPH + H+ leading
to the reduction of oxidized glutathione [79]. This induces the
detoxification of reactive oxygen species and promote resistance
to oxidative stress [80], a phenomenon already described to be
linked to HspB1 and HspB5 expression [77,81–83]. The interaction
of G6PD with the highly phosphorylated homo-oligomers of HspB1
resulted in a drastic stimulation of its activity (Fig. 2C) and trig-
gered oxidoresistance. In cells expressing the myopathy and cata-
ract inducing R120G mutant of HspB5 instead of the wild type
form, a similar formation of HspB1 small homo-oligomers was ob-
served (Fig. 2 AB). However, their phosphorylation was only at the
level of two serine sites since HspB1 phosphorylated at serine 15
was now located inside the HspB1–HspB5 mutant complex. This
altered phosphorylation of HspB1 homo-oligomers did not corre-
late with an increased activity of G6PD (Fig. 2C) and oxidoresis-
tance [70]. Hence, this example illustrates the high level of
complexity associated to the in vivo formation of small Hsp het-
ero-oligomers.
5. Conclusions

sHsps, also called the ‘‘forgotten chaperones’’ [84], are now rec-
ognized to have fundamental roles in physio-pathological pro-
cesses and human diseases. By reading the scientific literature
related to sHsps functions one can be surprized by the incredible
numbers of crucial, but most of the time unrelated, cellular effects
induced by either up- or down–regulating their constitutive
expression. We have proposed that these activities could result
of their ability to recognize, interact and modulate the activity of
many different proteins [45,46,52,58]. Indeed, the number of
proteins that are discovered to interact with sHsps is growing
exponentially. The aim of this report was therefore to up-date
the list of proteins that interact with the ten members of the family
of human small sHsps. Unfortunately, only little information is yet
available concerning the multiple combinatorial chimeric hetero-
oligomeric complexes that can form in cells expressing several
sHsps and about the proteins that could interact with them. These
structures, which seem to have lost some of the properties associ-
ated to sHsp homo-oligomers, probably bear new protein targets
recognition abilities. Moreover, the formation of hetero-oligomers
can modulate the interactome of parental molecules. In that re-
gard, it is shown here that the formation of HspB1/HspB5 complex
generates some highly phosphorylated HspB1 homo-oligomers
that can interact with G6PD and stimulate its activity, a phenome-
non resulting in enhanced cellular oxidoresistance. Hence, it can be
concluded that more studies are needed before comprehensive
sHsp interactomes could be build and used to search for therapeu-
tic drugs that modulate the interaction of these Hsps with patho-
logical protein targets. Based on the considerations described
here, it can easily been concluded that alteration of sHsps vast
interactome by broad approches could have deleterious side effects
to patients, as it has already been observed in the case of Hsp90
[85].
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