
C o m p u t a t i o n a l
G e o m e t r y

Theory and Applications
ELSEVIER Computational Geometry 9 (1998) 247-256

On determining the congruence of point sets in d dimensions"

Tatsuya Akutsu

Human Genome Center, Institute of Medical Science, Universi~ of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan

Communicated by E. Welzl; submitted 14 November 1995; accepted 28 January 1997

Abstract

This paper considers the following problem: given two point sets A and B (IA] = IB I = n) in d dimensional
Euclidean space, determine whether or not A is congruent to B. This paper presents an O(n (a-l)/2 log n) time
randomized algorithm. The birthday paradox, which is well-known in combinatorics, is used effectively in this
algorithm. Although this algorithm is Monte-Carlo type (i.e., it may give a wrong result), this improves a previous
O(n d 2 log ~) time deterministic algorithm considerably. This paper also shows that if d is not bounded, the
problem is at least as hard as the graph isomorphism problem in the sense of the polynomiality. Several related
results are described too. © 1998 Elsevier Science B.V.

Keywords: Pattern matching; Congruence; Birthday paradox; Randomized algorithm

I. Introduction

Geometric pattern matching problems have been studied extensively in computational geometry
[4,5,13]. Most of such studies have been done for approximate matchings in two or three dimensions.
Few studies for exact matchings in general dimensions have been done. This paper studies a basic
problem of exact matching: the problem of deciding the congruence of two point sets in general
dimensions.

Several studies have been done for exact matchings. O(n log n) time algorithms for determining the
congruence of various objects in two dimensions were developed by Atallah [6], Highnam [14] and
Manacher [15]. Sugihara developed an O (n l o g n) time algorithm for determining the congruence of
two polyhedra in three dimensions [18]. Atkinson developed an O(n logn) time algorithm for deter-
mining the congruence of two point sets in three dimensions [7]. Alt et al. developed an O(n a-2 log n)
time algorithm for determining the congruence of two point sets in d dimensions [5]. Rezende and
Lee studied the following exact matching problem: given point sets P and S, determine whether or
not P matches any subset of S by translation, rotation, reflection and global scaling [17].

'~ A preliminary version of this paper has appeared in [2].
I E-mail: takutsu @ims.u-tokyo.ac.jp.

0925-7721/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII S0925-7721 (9 7) 0 0 0 1 0 - 2

248 T. Akutsu / Computational Geometry 9 (1998) 247-256

In this paper, we present an O(n (d-l)~2 log n) time Monte-Carlo type randomized algorithm for
deciding whether or not two point sets A and B (IAI -- IBI : n) are congruent in d dimensional
Euclidean space (d > 3). Although our algorithm is a randomized one, this improves the previous
result [5] considerably. Moreover, we show that if d is not bounded, the congruence problem is at least
as hard as the graph isomorphism problem in the sense of the polynomiality. Several related results

are described too.
Recently, Matou~ek suggested that an O(n a/2+°(1)) time deterministic algorithm and an O (n d/4+O(1))

time Monte-Carlo type randomized algorithm might be obtained for the congruence problem [16]. We
briefly describe his idea here for the readers' sake. In this paper, the d dimensional congruence problem
is reduced to the d - 1 dimensional congruence problems by choosing O(x/n) points randomly. In
his method, the d dimensional congruence problem is reduced to the d - 2 dimensional congruence
problems by using the smallest distance point pairs. Since the number of smallest distance pairs is
O(n) and they can be computed in O(n logn) time, an O(n d/2+O(1)) time deterministic algorithm
is obtained. Combining with the birthday paradox idea used in this paper (i.e., choosing O(x/~)
smallest distance pairs randomly), an O(n d/4+O(1)) time Monte-Carlo type randomized algorithm is

obtained.

2. Preliminaries

Let E d denote the d dimensional Euclidean space. For two points p, q E E a, ff-~ denotes a line
segment between p and q, and Ilff-qll denotes the length of it. For a point set P = {Pl , . . - ,P ,~} , the

1 n centroid of P is the point given by ~ ~-~i=1Pi, and dim(P) denotes the dimensions of the affine hull
of P .

A mapping T of E a onto itself is said to be isometric if IIV ll -- IIT(p)T(q)ll for all points p
and q. Let A = { a l , . . . , an} and B = {b~ , . . . , bn} denote point sets in E d respectively. For A, we
define T(A) = {T(ai) I ai E A}. If there exists an isometric mapping which satisfies 13 -- T(A) , A
and B are said to be congruent. If A and 13 are congruent, we write A ~ 13. ai E A and bj E B
are called equivalent if bj = T(ai) holds for some isometric mapping T such that B = T(A). An
isometric mapping T can be written in the form T : p ~-~ M p + c where M is a d × d orthonormal
real matrix, i.e., M T -- M -1, and c is a d-vector. T is called a mapping of the first (respectively
second) kind if det(M) -- + l (respectively -1) . Since any T of the second kind can be written as
p H M J p + c where J(x l , x2 , . . . , Xd) : (--Xl, X2,. . . , Xd) and det(M) = +1 [5], we only consider
isometric mappings of the first kind.

In this paper, we also consider the congruence of labeled point sets. In such a case, A and B
are congruent (A ~ B) if there exists an isometric mapping T such that 13 = T(A) holds and
label(T(ai)) = label(ai) holds for all ai E A. ai C A and bj C 13 are called equivalent if bj = T(ai)
holds for such an isometric mapping.

For each (labeled) point set P = { P l , . . . ,Pn}, a point sequence C(P) = (C l , . . . , Cn) is called a
canonical form if it satisfies the following conditions: C(P) ~- P when C(P) is treated as a point set;
C(A) = C(B) if and only if A ~ B. Note that, once canonical forms are computed, whether A ~ B
or not can be determined in O(n) time by simply comparing C(A) and C(B) (i.e., by testing whether
or not two sequences of real numbers are identical).

T. Akutsu / Computational Geometry 9 (1998) 247-256 249

3. A randomized algorithm for congruence

In this section, we present a randomized algorithm for deciding the congruence of two point sets
in d dimensions, where we assume that d (d > 3) is a fixed constant. Note that in this section and in
the next section, we adopt a random access machine (RAM) as a model of computation. Furthermore,
we assume that the machine can represent arbitrary real numbers and can exactly perform all the
geometric computations involved (e.g., determining angles, distances, etc.) without round-off-errors.

3.1. Birthday paradox

The birthday paradox is well-known in combinatorics [10]. It states that on the average, 24 persons
are needed for at least two of them to have the same birthday, assuming all birth dates to be equally
distributed over a year. If there were n days in a year, O(v/-n) persons would be needed. The birthday
paradox has been applied to several algorithms [10,12]. For applying the birthday paradox to the
congruence problem, the following observation is useful: if A ~ B, and a set of O(v/-n) points
A' (respectively B') is chosen randomly from A (respectively B), there exists at least one pair of
equivalent points (ai, bj) E A' x B ' with high probability. Once an equivalent point pair is given, the
congruence problem in d dimensions can be reduced to the congruence problem in (d - 1) dimensions
using a similar reduction as in [5]. Thus reducing the problem recursively, we can solve the congruence
problem.

3.2. Algorithm

The following procedure CheckC o n g r u e n c e ({ A1, . . . , Ah }, { B1, . . . , Bk }, d) determines whether
or not there exists at least one pair (Ai, B j) such that Ai ~- Bj , where Ai's and Bj ' s are labeled point
sets in d dimensions. Note that we can assume without loss of generality that dim(Ai) = d (respec-
tively dim(Bi) = d) for all Ai (respectively Bi) because dim(A) can be determined in linear time
for fixed d using the well known orthonormalization method of Schmidt, and dim(A) = dim(B) if
A ~ - B .

Procedure C h e c k C o n g r u e n c e ({ A 1 , . . . , Ah}, {BI,. • . , Bk}, d)
begin

if d = 3 then
begin

if there is a pair (Ai, Bj) such that Ai ~= Bj
then output 'YES' else output 'NO';
halt

end;
for all Ai do

Choose a point set A~ C Ai randomly such that A{ does not contain
the centroid of Ai and IA{I = min(IAi I - 1, [Kv/nT), where K is
a constant to be determined later;

for all Bi do Choose B~ c Bi randomly in the same way;
for all Ai and aj E A{ do Aij +-- proj(Ai, aj);

(#1)

(#2)

250 T. Akutsu I Computational Geometry 9 (1998) 247-256

% . "" ~ % % I I I / ... , / , s

.~ - .,,, 2~2 ¢ -

/ . / ~ ,,s S 11 ~'/ ' 1 / , j f O %, I I . - ,

"'" "" " d / " , ",".. " - .
, e g _ ' " "-

,\ I O %, --
I ~, %. k

same labels different labels

Fig. 1. Projection from d dimensions to d - 1 dimensions.

for all Bi and bj E B~ do B{j ~-- proj(Bi, bj);
C h e c k C o n g r u e n c e ({ A l l , A l 2 , . . . , A 2 1 , . . . } , { B l l , B l 2 , . . . , B 2 1 , . . . } , d - 1)

end

(#3)

In the above procedure, a d dimensional point set Ai (respectively B0 is reduced to the (d - 1)
dimensional point set proj(Ai, p) (respectively proj(B~, p)) where p is not the centroid of Ai (respec-
tively Bi). This projection must satisfy the property that proj(Ai, p) and proj(Bj, q) are congruent if
and only if Ai and Bj are congruent and p and q are equivalent. Such a point set proj (Ai, p) can be
computed in the following way (see also Fig. 1). A similar procedure is used in [5].

Let e be the centroid of A~. Let H be the hyperplane such that e E H and if-6 is perpendicular
to H, and let H ' be the hyperplane such that p E H ' and H ' is parallel to H. If a E Ai lies on

H ' (degenerated case), we replace a with a + 6 fffi where 6 is a sufficiently small constant. Then,
proj(Ai,p) is a set of points q E H such that pq is parallel to p-d for some a E Ai. Next, each
point in proj(Ai,p) is labeled so that q and r are labeled with the same integer number if and only
if Q u {p, c} ~ R u {p, c} holds by an isometric mapping which does not move p or c, where
Q = {a E A~ [a is projected to q} and R = {a E Ai[a is projected to r}. This labeling procedure
is done simultaneously for all projected points in the same depth of the recursion so that equivalent
points can have the same label. Note that this labeling procedure can be done in O(Ln log(Ln)) time
using an optimal sorting algorithm (e.g., merge sort), where L is the total number of sets (Aij's and
13ij's) in the same depth of the recursion.

3.3. Analysis

First we analyze the time complexity and the space complexity. Note that CheckCongruence({A},
{B}, d) is invoked in order to decide the congruence of A and B in d dimensions, where [A[=
IBI--n.

T. Akutsu / Computational Geometry. 9 (1998) 247-256 251

Lemma 3.1. C h e c k C o n g r u e n c e ({ A } , {B}, d) works in O(n (d-l)/2 log n) time, using O(n (d-l)~2)
space.

Proof . CheckCongruence is executed at most d - 2 times recursively. Note that the number of
point sets appearing in the arguments of the recursive execution of ith depth is

=

Here, we analyze the time complexity for each recursive step, where m denotes the number of point
sets contained in the arguments (i.e., m = h + k). To analyze the time complexity, we only consider
the crucial parts (#1), (#2) and (#3).

In part (#1), we do not directly compare every pair (Ai, Bj). Instead, we first compute the canonical
forms of Ai's and Bi's and then we sort all the canonical forms in the lexicographic order. Using the
sorted list, we partition a set of Ai's and B~'s into blocks so that each block consists of point sets
having identical canonical forms. Since Ai ~- By holds if and only if both A~ and Bj belong to the
same block, it is easy to test whether or not there is a pair (Ai, Bj) such that Ai ~= Bj. The canonical
form of a (labeled) point set of size N in three dimensions can be computed in O(N log N) time [1,3].
Thus the canonical forms can be computed in O(ran log n) time. Since the size of each canonical form
is O(n), comparison of two canonical forms can be done in O(n) time, and thus sorting can be done
in O(mn log m) time. Therefore part (#1) can be executed in O(mn log(ran)) time.

The time required for (#2) and (#3) is O(ran 3/2 log(ran3/2)) since O(mx/~) point sets are projected.
Note that these parts are not executed in the last step ((d - 2)th step) of the recursion.

Now we consider the total computation time. The total computation time for (#1) is

O((d - 2)n(a-3)/2n log (n(d-3)/Zn)) ---- O(n (d-')/2 log n),

since d is assumed to be a constant. The total computation time for (#2) and (#3) is

O((d - 3)n('/-4)/2n 3/2 log ('L(d--4)/2T~3/2)) = O(,g (d-l)/2 logn).

Therefore the time complexity is O(n (d-W2 log n) in total.
Since O((d - 2)n (d-3)/2) sets are constructed in total, the space complexity is O(n(d-1)/2). []

Next, we analyze the probability that the procedure succeeds. The following lemma is proved in a
straight-forward way.

Lemma 3.2. If CheckCongruence ({A} , {B}, d) outputs 'YES', then A ~ B.

The following lemma is a variant of the birthday paradox.

Lemma 3.3. If two subsets $1 c S and $2 C S, each of which consists of at least v/In(i / (1 - q))n
elements, are chosen randomly from S (I S l - - then IS1 fq S2I ~ O holds with probability at least q.

Proof. Let P(n ,m) denote the probability that IS1 N S2I ¢ @ holds if $1 and $2 such that ISll =
1S2] = ra are chosen randomly from S. Then the following inequality holds:

252 T. Akutsu / Computational Geometry 9 (1998) 247-256

Thus it is sufficient that

1

holds. Using the following inequalities:

m ln (n - m ~ < l n (l - q) ,

(1 - ~ 1 q) (~) 1 (nm~)2 1 In ~< +~
m

(from In(1 - x) = - x - x2/2 - x3/3),

it is sufficient that

m) 1 l n (~ _ q)
n m

holds. Thus the lemma holds. []

+5 +

Theorem 3.4. The congruence of two point sets in d dimensions can be tested in O(n (d-l)~2 log n)
time using O(n (d-1)/2) space by a Monte-Carlo type randomized algorithm, where error occurs only
in the case that two point sets are congruent and the error probability can be made smaller than any
fixed constant p > O.

Proof. Let

K - - In 1 - (1/2)U(d-3)

in procedure C h e c k C o n g r u e n c e . Then, if there is a pair (Ai, Bj) such that Ai TM Bj, a pair of
equivalent points (a, b) is contained in A~ x B} with probability at least (1/2) u(a-3) (from Lemma 3.3).
Thus C h e c k C o n g r u e n c e ({ A } , {B}, d) outputs 'YES' with probability at least

((~) ' / (a - 3)) a-3 1
= - i f A ~= B.

2

Repeating this procedure [log(1/p)l times the error probability can be made smaller than p for
arbitrary fixed constant p > 0. []

We can make a parallel version (an RNC algorithm) of CheckCongruence. To make a parallel
version, the parts of sorting and computing canonical forms of three dimensional point sets are crucial.
It is well known that sorting can be done optimally even on an EREW PRAM [9]. A canonical form
of a three dimensional point set S (IS] = n) can be computed in O((log n) 3) time using O(n/ log n)
processors on a CREW PRAM [3]. Thus C h e c k C o n g r u e n c e can be parallelized in a nearly optimal
way.

T. Akutsu / Computational Geometry 9 (1998) 247-256 253

4. Application to subset matching

Recently, Rezende and Lee considered the following exact matching problem (the subset matching
problem) [17]: given point sets P = { P l , . . . , P m } and Q = { q l , . . . , q n } such that m ~< n in E a,
determine whether or not there is a subset S C Q such that P -~ S. They gave an O(n log n + m n a)
time algorithm for this problem. In this section, we focus on the one dimensional case of this problem
and show that we can develop an o (m n) time randomized algorithm for a special case using the
random sampling technique employed in the previous section.

For P, we define

sd(P) -- m a x l { (p i , p j) l i < j and Ip 71 : r} l .
r

That is, sd(P) denotes the maximum number of point pairs having the same distances. We consider a
special case that sd(P) ~< c holds for some constant c. Then the following procedure solves the problem
in O((nZ/m + m 2) logm) time with high probability. Note that it is o(mn) if n 1/2+~ < m < n 1-~
holds for any small constant c > 0.

Procedure SubsetMatch(P~ Q)
begin

Choose randomly U c Q such that IUI = [K n / m] ;
for all q E U do

begin
for a l l l ~<{~<mdoA[{]~-0 ,
for a l l l ~<j~<ndo

for all i such that (3 k) (p k - - Pi = q j - q) do A[i] ~ A[i] + 1;
if (~i)(A[i] = m) then begin output 'YES'; stop end

end;
output 'NO'

end

($)

Here we analyze this procedure. We assume that there exists at least one subset S C Q such that
S ~ P. Otherwise the procedure always outputs 'NO'.

Note that if Pi E P is equivalent to q E S, A[i] is incremented m times in the procedure. Therefore,
the procedure outputs 'YES' if there exists q E U N S. We can see that this condition holds with high
probability from the following lemma.

Lemma 4.1. Let S be a subset o f Q where ISI = m and IQI = n. I f we randomly choose a subset
U C Q such that

holds with probability at least q.

254 T. Akutsu / Computational Geometry. 9 (1998) 247-256

Proofi If]U I = t, the probability that U contains at least one element in S is

1 - (n ~ m) (

As in Lemma 3.3,
t

n - 1 n - t + l >~

~> q holds for t = In . []

Next, we analyze the time complexity. Part ($) is the crucial part for analyzing the time complexity.
To answer the query (3k)(pk - Pi = qj - - q) quickly, we sort all the point pairs from P according to
their distances. Then, given qj and q, such Pk and pi's can be enumerated in O(log m) time because
we assume that sd(P) ~< c holds for some constant c. Since part ($) is executed O(n2/m) times, the
procedure works in O((n2 /m) log m) time. Since the point pairs can be sorted in O(m 2 log m) time,
we obtain the following theorem.

Theorem 4.2. Assume that sd(P) is bounded by a constant. Then the one dimensional subset matching
problem can be solved by a Monte-Carlo type randomized algorithm in 0 ((n 2 / / 7 ~ n t- m 2) log m) time,
where error occurs only in the case that there exists a subset of Q congruent to P, and the error
probability can be made smaller than any fixed constant p > O.

5. Hardness results

Although we have presented an improved algorithm for the congruence problem, the following
theorem shows that it is hard if d is not bounded (i.e., the dimension is considered part of the input).
Note that in what follows, we consider not only the isometric mappings of the first kind but also those
of the second kind.

Theorem g.1. Assume that there exists a polynomial time deterministic (respectively randomized)
algorithm for the congruence problem even if the dimension is considered part of the input. Then, there
exists a polynomial time deterministic (respectively randomized) algorithm for the graph isomorphism
problem.

Proofi We prove it showing a polynomial time reduction from the graph isomorphism problem to the
congruence problem.

From each input graph G(V, E) where V = {Vl , . . . , v,,}, we construct the following point set in
E n :

2 {vi,v } E u {o},

where o denotes the origin, c~ij denotes the jth component of ai, and ~ij = 1 if i = j , ~ij = 0
otherwise.

Then it is easy to see that the input graphs are isomorphic if and only if the constructed point sets
are congruent. []

T. Akutsu / Computational Geomet O, 9 (1998) 247-256 255

Using a similar reduction, we can show that the subset matching problem is NP-hard.

Theorem 5.2. The subset matching problem is NP-hard if the dimension is considered part of the
input.

Proof. In this case, we use a reduction from the subgraph isomorphism problem. Note that the subgraph
isomorphism problem is known to be NP-complete [11].

From input graphs S and G, we construct point sets Ps" and P c using the same construction as in
Theorem 5.1. Then Ps" is congruent to a subset of Pc; if and only if S is isomorphic to a subgraph
of G. []

6. Conclusion

In this paper, we have presented a randomized algorithm for deciding the congruence of point sets
in d dimensions, which improved the previous result considerably. However, our algorithm is not
necessarily optimal as noted in Section 1. So it would be interesting to develop much more efficient
algorithms.

We have also shown that the congruence problem is hard if the dimension is considered part of the
input. This hardness result suggests that approximate matching problems in high dimensions are hard
too since they seem to be harder than exact matching problems. However, it does not mean that we can
not develop practical pattern matching algorithms in high dimensions. It seems that the congruence
problem can be solved efficiently in most cases, since the d dimensional congruence problem can
be reduced to the (d - 1) dimensional problem efficiently by computing a special point (except the
centroid) invariant under isometric mappings, and such a special point seems to be computed efficiently
in most cases. For the graph isomorphism problem, several algorithms which in most cases work in
polynomial time have been developed [8]. Thus it would be interesting to develop pattern matching
algorithms which in most cases work in polynomial time for all dimensions.

References

[l] T. Akutsu, Algorithms for determining geometrical congruity in two and three dimensions, in: Proc. 3rd
Internat. Sympos. Algorithms Comput., Lecture Notes in Computer Science 650, Springer, Berlin, 1992,
pp. 279-288.

[2] T. Akutsu, On determining the congruity of point sets in higher dimensions, in: Proc. 5th Internat. Sympos.
Algorithms Comput., Lecture Notes in Computer Science 834, Springer, Berlin, 1994, pp. 38-46.

[3] T. Akutsu, A parallel algorithm for determining the congruence of point sets in three-dimensions, IEICE
Trans. Inform. Systems E78-D (1994) 321-325.

[4] H. Alt, M. Godau, Measuring the resemblance of polygonal curves, in: Proc. 8th ACM Sympos. Comput.
Geom., 1992, pp. 102-109.

[5] H. Alt, K. Melhorn, H. Wagener, E. Welzl, Congruence, similarity, and symmetries of geometric objects,
Discrete Comput. Geom. 3 (1988) 237-256.

[6] M.J. Atallah, On symmetry detection, IEEE Trans. Comput. 34 (1985) 663-666.
[7] M.D. Atkinson, An optimal algorithm for geometrical congruence, J. Algorithms 8 (1987) 159-172.

256 T. Akutsu / Computational Geometry 9 (1998) 247-256

[8] L. Babai, L. Kurera, Canonical labeling of graphs in linear average time, in: Proc. 20th IEEE Sympos.
Found. Comput. Sci., 1979, pp. 39-46.

[9] R. Cole, Parallel merge sort, in: Proc. 27th IEEE Sympos. Found. Comput. Sci., 1986, pp. 511-516.
[10] P. Flajolet, D. Gardy, L. Thimonier, Birthday paradox, coupon collectors, cashing algorithms and self-

organizing search, Discrete Appl. Math. 39 (1992) 207-229.
[11] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, New York, 1979.
[12] H. Gazit, J. Reif, A randomized parallel algorithm for planar graph isomorphism, in: Proc. ACM Sympos.

Parallel Algorithms and Architectures, 1990, pp. 210-219.
[13] P.J. Heffernan, S. Schirra, Approximate decision algorithm for point sets congruence, in: Proc. 8th ACM

Sympos. Comput. Geom., 1992, pp. 93-101.
[14] P.T. Highnam, Optimal algorithms for finding the symmetries of a planar point set, Inform. Process. Lett.

18 (1986) 219-222.
[15] G. Manacher, An application of pattern matching to a problem in geometrical complexity, Inform. Process.

Lett. 5 (1976) 6-7.
[16] J. Matou~ek, Private communication.
[17] P.J. de Rezende, D.T. Lee, Point set pattern matching in d-dimensions, Algorithmica 13 (1995) 387-404.
[18] K. Sugihara, An n log n algorithm for determining the congruity of polyhedra, J. Comput. System. Sci. 30

(1984) 36--47.

