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Quantum algorithms for factoring and finding discrete logarithms have previously
been generalized to finding hidden subgroups of finite Abelian groups. This paper
explores the possibility of extending this general viewpoint to finding hidden sub-
groups of noncommutative groups. We present a quantum algorithm for the special
case of dihedral groups which determines the hidden subgroup in a linear num-
ber of calls to the input function. We also explore the difficulties of developing an
algorithm to process the data to explicitly calculate a generating set for the sub-
group. A general framework for the noncommutative hidden subgroup problem is
discussed and we indicate future research directions. © 2000 Academic Press

1. INTRODUCTION

All known quantum algorithms which run super-polynomially faster than
the most efficient probabilistic classical algorithm solve special cases of what
is called the Abelian hidden subgroup problem. This general formulation
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includes Shor’s celebrated algorithms for factoring and finding discrete log-
arithms [16]. A very natural question to ask is if quantum computers can
efficiently solve the hidden subgroup problem in noncommutative groups.
This question has been raised regularly [1, 9–11, 14] and seems important
since many computational problems generally believed not to be NP-hard
reduce to finding hidden subgroups, for example the problem of determin-
ing if two graphs are isomorphic.

The heart of the idea behind the quantum solution to the Abelian hidden
subgroup problem is Fourier analysis on Abelian groups. The difficulties of
Fourier analysis on noncommutative groups makes the noncommutative
version of the problem very challenging.

In this paper, we present the first known quantum algorithm for a non-
commutative subgroup problem. We focus on dihedral groups because they
are well-structured noncommutative groups, and because they contain an
exponentially large number of different subgroups of small order, making
classical guessing infeasible. Our main result is that there exists a quantum
algorithm that solves the dihedral subgroup problem using only a linear
number of evaluations of the function which is given as input. This is the
first time such a result has been obtained for a noncommutative group.

However, we hasten to add that our algorithm does not run in poly-
nomial time, even though it only uses few evaluations of the given func-
tion. The reason for this is as follows: Our algorithm first applies a certain
polynomial-time quantum subroutine a linear number of times, each time
producing some output data, and each time using just one application of
the given input function. The collection of all the output data determines
the hidden subgroup with high probability. We know how to find the sub-
group from those data in exponential time, but we do not know if this task
can be done efficiently. (See the end of Section 3.)

Two important questions are left open. The first question is if there ex-
ists a polynomial-time algorithm (classical or quantum) to postprocess the
output data from our quantum subroutine.

The second open question is for what other noncommutative groups sim-
ilar results can be obtained. A key idea in our algorithm is a way to circum-
vent the need of a Fourier transform for the dihedral group by utilizing a
Fourier transform for an Abelian group. By adapting that idea, Rötteler and
Beth [14] have recently found a polynomial-time algorithm for the wreath
product �n2 � �2. More generally, it could prove useful to try to characterize
the noncommutative groups for which the subgroup problem can be solved
via Abelian Fourier transforms.

In Section 2, we first give the definition of the general hidden subgroup
problem. We then discuss the known results for Abelian groups, and finally
we define the dihedral groups and state our main result that the dihedral
subgroup problem can be solved with few applications of the given input



noncommutative hidden subgroups 241

function. Our main result is stated as Theorem 2.3 and we prove it in Sec-
tion 3. The solution to the Abelian subgroup problem can perhaps most
easily be understood in terms of group representation theory. In Section 4
we review this approach, and in Section 5 we discuss a possibly useful gen-
eralization of it to arbitrary noncommutative groups.

2. THE HIDDEN SUBGROUP PROBLEM

The hidden subgroup problem is defined as follows:

• Given: A function γ� G→ R, where G is a finite group and R is an
arbitrary finite set.

• Promise: There exists a subgroup H ≤ G such that γ is constant and
distinct on the left cosets of H.

• Problem: Find a generating set for H.

We say of such a function γ that it fulfills the subgroup promise with
respect to H. We also say of γ that it has hidden subgroup H. Note that we
are not given the order of H. Without loss of generality we assume that γ is
constant and distinct on left cosets of H because we may formally rename
group elements and convert multiplication on the right to multiplication
on the left. We assume throughout this paper that function γ is given as
a black box, so that it is not possible to obtain knowledge about it by any
other means than evaluating it on points in its domain.

If G is Abelian, then we refer to this problem as the Abelian subgroup
problem. Similarly, if the given group is dihedral, then we refer to it as the
dihedral subgroup problem.

Classically, if γ is given as a black box, then the hidden subgroup problem
is intractable, even in the Abelian case. Simon [17] showed that for G = �n2,
it takes time exponential in n just to determine if H is non-trivial or not.
Here �2 denotes the cyclic group of order 2.

Theorem 2.1 [17, 5]. Let γ� �n2 → R be a function with hidden sub-
group H. Suppose γ is given as a black box and that H = �0� s� is promised
to have order 2. Then any classical algorithm that computes γ on at most 2n/3

elements of �n2 cannot guess whether the parity of s is even or odd with prob-
ability better than 1

2 + 2 × 2−n/3. Here the parity of s = �s1� 	 	 	 � sn� ∈ �n2 is
even if

∑n
i=1 si = 0, and it is odd if

∑n
i=1 si = 1.

The main idea in the proof of the above theorem is that if the classi-
cal algorithm evaluates γ on at most T points, then it can only rule
out at most

(
T
2

)
of the 2n − 1 possible hidden subgroups of order 2.

Thus, if T is small compared to 2n/2, then close to half of the remaining



242 ettinger and høyer

2n − 1 − (
T
2

)
possible subgroups have generators of odd parity, leaving no

hope for the algorithm to guess the parity with probability much better
than 1/2. (See [17, 5] for details.)

In contrast, the Abelian subgroup problem can be solved efficiently on a
quantum computer [3–5, 7, 11, 16, 17].

Theorem 2.2 (Abelian case). Let γ�G→ R be a function that fulfills the
Abelian subgroup promise with respect toH. There exists a quantum algorithm
that outputs a subset X ⊆ H such that X is a generating set for H with
probability at least 1 − 1/�G�, where �G� denotes the order of G. The algorithm
uses O�log �G�� evaluations of γ, and runs in time polynomial in log �G� and
in the time required to compute γ.

We remark that the above quantum algorithm is efficient in the following
strong sense. Namely, it requires only O�log �G�� evaluations of γ, and it
also only requires additional polynomial time.

In the rest of this section and in the succeeding section, we present our
algorithm for the dihedral subgroup problem. In Section 4, we then review
the quantum solution to the Abelian subgroup problem in terms of group
representation theory. For other reviews, see for example [4, 10]. In Sec-
tion 5, we discuss some of the many challenges arising in non-Abelian cases.

The dihedral group of order 2N is the symmetry group of an N–sided
polygon. It is isomorphic to a semidirect product of the two cyclic groups
�N and �2 of order N and 2, respectively,

DN = �N �φ �2� (1)

with multiplication defined by

�a1� b1��a2� b2� = (
a1 +φ�b1��a2�� b1 + b2

)
	

The homomorphism φ� �2 → Aut��N� is given by 1 �→ φ�1��a� = −a.
An element �a� b� ∈ DN is a rotation if b = 0, and a reflection if b = 1.
The group DN contains N rotations and N reflections, and the N rotations
comprise the cyclic subgroup �N × �0� ≤ DN of index 2.

Theorem 2.3 constitutes our main result that the dihedral subgroup prob-
lem can be solved with few applications of the given function γ.

Theorem 2.3 (main theorem) Let γ: DN → R be a function that fulfills
the dihedral subgroup promise with respect to H. There exists a quantum
algorithm that, given γ, uses ��logN� evaluations of γ and outputs a subset
X ⊆ H such that X is a generating set for H with probability at least 1 − 2

N
.

We remark that our algorithm (mentioned in Theorem 2.3) is not effi-
cient in the strong sense we discussed above. Specifically, it requires only
O�logN� evaluations of γ, but it does not run in polynomial time. We leave
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it as a challenging open question to determining if there exists an algorithm
that is efficient in the strong sense.2 In comparison, any classical algorithm
must use exponentially many evaluations of γ just to determine if H is triv-
ial or not with probability bounded away from 1/2. This holds for the same
reasons as in the case of �n2 explained above and proved in [17, 5]. Thus, in
terms of the number of evaluations of γ, we achieve an exponential separa-
tion of bounded-error quantum computers against bounded-error classical
computers.

3. ALGORITHM FOR DIHEDRAL GROUPS

The essential part of the proof of Theorem 2.3 is that it is possible to
find a hidden reflection.

Theorem 3.1 (finding a reflection). Let γ: DN → R be a function that
fulfills the dihedral subgroup promise with respect to H. Suppose we are
promised that H = �0� is either trivial, or H = �0� r� is generated by a re-
flection r ∈ DN . Then there exists a quantum algorithm that, given γ, outputs
either “trivial” or the reflection r. If H is trivial then the output is always
“trivial”; otherwise the algorithm outputs r with probability at least 1 − 1

2N .
The algorithm uses at most 89 log2�N� + 7 evaluations of γ and it runs in
time O�N1/2�.

We now give the reduction of the general problem stated in Theorem 2.3
to the special case of order-2 subgroups in Theorem 3.1. The key point is
that the dihedral group DN has a large subgroup whose subgroups are all
normal in DN . This allows us to reduce to the original problem on DN to
a smaller dihedral group.

Proof of Theorem 2.3. The following commutative diagram illustrates
our approach:

H1
⊂ H H/H1

�N × �0�⊂ �N � φ�2 = DN DN/H1

Let H1 = H ∩ ��N × �0�� denote the elements of the hidden subgroup H
that are contained in the Abelian subgroup of index 2. We start by find-
ing H1 by applying Theorem 2.2 with γ restricted to �N × �0�. This pro-
duces a subset X1 ⊆ H1 such that X1 generates H1 with probability at least

2The reader may be interested to learn that the authors disagree on the likelihood that the
answer is in the affirmative.
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1 − 1/N, and it uses O�logN� queries to γ. Let �X1� denote the subgroup
generated by X1.

The subgroup �X1� is normal in DN , and the quotient group DN/�X1� is
isomorphic to DM with M = ��N × �0� � �X1��. Define γ2� DN/�X1� → R
by γ2�g + �X1�� = γ�g�. Then γ2 has hidden subgroup H/�X1�.

Suppose �X1� = H1. Then H/�X1� ≤ DN/�X1� is either trivial or gener-
ated by a reflection r2 + �X1�. Apply the algorithm in Theorem 3.1 with γ2
a number of t = ⌈

log2�2N�/ log2�2M�⌉ times, ensuring we find r2 + �X1�
with probability at least 1 − 1/2N, provided it exists.

Finally, output X1, and output also the coset representative r2 ∈ DN if it
exists. The overall success probability is at least �1 − 1/N��1 − 1/2N� >
1 − 2/N. The total number of evaluations of γ is at most O�logN� +
t�89 log2�M� + 7�, as each evaluation of γ2 requires just one evaluation
of γ.

In the rest of this section, we consider only hidden subgroups that are
trivial or generated by a reflection. We assume that the reader is familiar
with the basic notions of quantum computation. For an excellent introduc-
tion to the area, we refer the reader to [2].

The quantum algorithm we shall use to prove Theorem 3.1 uses three reg-
isters; the first two hold an element of DN and the third register holds an
element of R, the codomain of function γ. The algorithm is

���γ = (
FN ⊗ W ⊗ I

) ◦ Uγ ◦ (
F−1
N ⊗ W ⊗ I

)
	 (2)

Here I is the identity operator and Uγ is any unitary operator that satisfies
that

Uγ �a��b��0� = �a��b��γ�a� b�� (3)

for all elements �a� b� ∈ DN . The operator

FN = 1
N1/2

N−1∑
i� j=0

ω
ij
N �j��i�

is the quantum Fourier transform for the cyclic group �N , where ωN =
exp�2π

√−1/N� is the Nth principal root of unity. When N = 2, then the
Fourier transform F2 is equal to the Walsh–Hadamard transform W which
maps a qubit in state �b� to the superposition 1√

2
��0� + �−1�b�1��.

Suppose for a moment that we were not given a function defined on
the dihedral group DN = �N �φ �2, but instead a function defined on
the Abelian group �N × �2. Or equivalently, suppose for the moment that
φ: �2 → Aut��N� is the trivial homomorphism. Then we can find any
hidden subgroup with probability exponentially close to 1 by applying the
experiment

�a� b� = �1� 2 ◦ ���γ�0��0��0� (4)
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a number of O�logN� times (see Section 4 below). Here �1� 2 denotes
a measurement of the first two registers with outcome �a� b�. A natural
question to ask is, how much information, if any, would we gain by per-
forming the experiment given in (4) when γ is defined on DN and not
on �N × �2. Rewriting the state ���γ�0��0��0� as a superposition over the
basis states shows that we indeed learn something, as quantified in the fol-
lowing lemma.

Lemma 3.2. Let γ� DN → R fulfill the subgroup promise with respect to
H = �0� r�, where r = �k0� 1� is a reflection. Then, if we apply quantum
algorithm ���γ on the initial state �0��0��0�, the probability that a measurement
of the first two registers yields �a� 0�, is

1
2N

(
1 + cos�2πk0a/N�) = 1

N
cos2�πk0a/N�	 (5)

Furthermore, the probability that the outcome is �a� 1�, is 1
N

sin2�πk0a/N�.

Let Z denote the discrete random variable defined by the probability
mass function

Prob�Z = z� = α cos2�πk0z/N� �0 ≤ z < N�� (6)

where α = 1/N if k0 = 0 or 2k0 = N, and α = 2/N otherwise. Lemma 3.2
provides us with a quantum algorithm for sampling from Z. Intuitively, since
the random variable Z depends on k0, the more samples we draw from Z,
and the more knowledge we gather about k0 and the hidden reflection
r = �k0� 1�. The crucial question therefore becomes, how many samples
from Z do we need to be able to identify k0 correctly with high probabil-
ity. Theorem 3.3 below states that we only need a logarithmic number of
samples.

Theorem 3.3. Let m ≥ �64 lnN�� and let z1� 	 	 	 � zm be m inde-
pendent samples from Z. Let κ ∈ �1� 	 	 	 � �N/2�� be such that the sum∑m
i=1 cos�2πκzi/N� is maximal. Then κ = min�k0�N − k0� with probability

at least 1 − 1
2N .

The proof of Theorem 3.3 requires two lemmas, the first of them be-
ing a result by Hoeffding [8] on the sum of bounded random variables.
Hoeffding’s lemma says that the probability that the sum of m independent
samples is off from its expected value by a constant fraction in m drops
exponentially in m.

Lemma 3.4 (Hoeffding). Let X1� 	 	 	 �Xm be independent identically dis-
tributed random variables with " ≤ X1 ≤ u. Then, for all α > 0,

Prob
[
S − E�S� ≥ αm] ≤ e−2α2m/�u−"�2

�

where S = ∑m
i=1 Xi.
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Let 0 < k < N, and suppose we want to test if k ?=k0 or k ?=N − k0,
where k0 is given as in Lemma 3.2. Clearly, we can answer that question just
by testing if γ�0� 0� ?=γ�k� 1� or γ�0� 0� ?=γ�N − k� 1�. Lemma 3.5 provides
us with another probabilistic method: First draw m samples �zi�mi=1 from Z,
and then compute the sum

∑m
i=1 cos�2πkzi/N�. Conclude that k �= k0 and

k �= N − k0 if and only if that sum is at most m/4.

Lemma 3.5. Fix an integer k with 0 < k < N. Let z1� 	 	 	 � zm be m inde-
pendent samples from Z. Then with probability at most e−m/32, we have

m∑
i=1

cos�2πkzi/N� ≤ m/4

if k = k0 or k = N − k0, and
m∑
i=1

cos�2πkzi/N� ≥ m/4

otherwise.

Proof. Let f denote the function of Z defined by f �z� = cos�2πkz/N�,
and let X = f �Z� denote the random variable defined by f . Then −1 ≤
X ≤ 1 and the expected value of X is

E�X� =


1 if 2k = 2k0 = N
1
2 if either k = k0 or k = N − k0

0 otherwise.
If k �= k0 and k �= N −k0, then apply Hoeffding’s lemma onm independent
random variables all having the same probability distribution as X. If k = k0
or k = N − k0, then apply Hoeffding’s lemma on m independent random
variables all having the same probability distribution as the random variable
E�X� − X.

We are not only concerned about testing for a specific 0 < k ≤ N/2
if k ?=k0 or k ?=N − k0, but in testing every one of them. Fortunately, the
probability e−m/32 (mentioned in Lemma 3.5) is diminutive, so we can reuse
the same m samples in all N/2 tests, and still it is very likely that the sum∑m
i=1 cos�2πkzi/N� is larger than m/4 if and only if k = k0 or k = N − k0.

Proof of Theorem 3.3. This is a simple consequence of Lemma 3.5. Let
k′

0 = min�k0�N − k0�. The probability that
∑m
i=1 cos�2πk′

0zi/N� ≤ m/4 is
at most e−m/32 ≤ 1/N2. Furthermore, for every integer 0 < k ≤ N/2 not
equal to k′

0, the probability that
∑m
i=1 cos�2πkzi/N� ≥ m/4 is also at most

1/N2. If κ �= k′
0, then one of these �N/2� events must have happened, and

the probability for that is upper bounded by �N/2�1/N2 ≤ 1
2N .

With this, we now have all the ingredients we need to prove Theorem 3.1.
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Proof of Theorem 3.1. The algorithm starts by disposing the possibility
that r = �0� 1� by evaluating γ�0� 0� and γ�0� 1�. If the two values are equal,
then the algorithm outputs the reflection �0� 1� and stops. If N is even, then
the algorithm proceeds by disposing the possibility that r = �N/2� 1�, too.

Now, the algorithm applies the quantum experiment given in (4) a num-
ber ofm′ = 2�64 lnN� times. Letm denote the number of times it measures
zero in the second register. Let �a1� 	 	 	 � am� denote the outcomes in the
first register, conditioned to that the measurement of the second register
yields a zero.3

Suppose m ≥ m′/2, so that we have a sufficient number of samples to
apply Theorem 3.3. The algorithm continues with classical post-processing:
It finds 1 ≤ κ ≤ �N/2� such that the sum

∑m
i=1 cos�2πκai/N� is maximized.

It then computes γ�κ� 1� and compares it with γ�0� 0�. If they are equal,
it outputs the reflection �κ� 1� and stops. Otherwise, it performs the same
test for γ�N − κ� 1�. If that one also fails, it outputs “trivial.”

If m < m′/2, then the algorithm performs the same classical post-
processing, except that it uses the m′ − m measurements for which the
output in the second register is 1, and except that it now seeks to maximize∑m
i=1 sin�2πκai/N�.
If H is trivial, then the algorithm returns “trivial” with certainty. If H =

�0� r�, then it outputs r = �k0� 1� with probability at least 1 − 1/2N by
Theorem 3.3. The total number of evaluations of γ is at most m′ + 5 <
89 log2�N� + 7.

This concludes the proof of our main theorem. We would like to make
a comment on the statement given in Theorem 3.3. We want to find κ that
maximizes the sum

∑m
i=1 cos�2πκzi/N�. This is easy to do in time linear

in N, namely just by computing the sum for every possible value of κ.
On the one hand, this way of finding the maximum does not require any
evaluations of function γ at all, but on the other hand, it unfortunately takes
time exponential in logN. We do not know if finding the maximum can be
done in time polynomial in logN, with or without additional evaluations
of γ, or with or without the help of quantum computers.

4. ABELIAN HIDDEN SUBGROUPS

Theorem 2.2 in Section 2 states that the Abelian subgroup problem can
be solved efficiently on a quantum computer. The algorithm which accom-
plishes this is most easily understood using some basic representation the-

3Alternatively, we could apply amplitude amplification [5, 6] to ensure that we will always
measure 0 in the second register, instead of as here, only with probability 1/2.
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ory for finite Abelian groups which we now briefly review. For more de-
tails see the excellent references [12, 13]. For any Abelian group G the
group algebra ��G� is the Hilbert space of all complex-valued functions
on G equipped with the standard inner product. A character of G is a ho-
momorphism from G to �. The set of characters admits a natural group
structure via pointwise multiplication and is a basis for the group algebra.
The Fourier transform is the linear transformation from the point mass basis
of the group algebra to the basis of characters. Further, for any subgroup
H ≤ G, there exists a subgroup of the character group called the orthogo-
nal subgroup H⊥ which consists of all characters χ such that χ�h� = 1 for
all h ∈ H	

We now sketch the quantum algorithm for solving the Abelian hidden
subgroup problem. In the interest of clarity we omit all normalization fac-
tors in our description. The algorithm uses two registers; the first register
holds an element of the Abelian group G, and the second register holds an
element of R, the codomain of the given function γ� G → R. The state of
the computer is initialized in the superposition∑

g∈G
�g��γ�g��	

We observe the second register with outcome, say, q ∈ R. This action serves
to place the first register into a superposition of all elements that map to q
under γ. Because γ is constant and distinct on left cosets of H we may
write the new state of the computer as∑

h∈H
�sh��q�

for some coset sH chosen by the observation of the second register.
We then apply the quantum Fourier transform for G on the first register,
producing the state ∑

χ∈H⊥
χ∗�s� �χ��q��

where χ∗�s� denotes the complex conjugate of χ�s�. Finally, we observe
the first register. Notice that this results in a uniformly random sample
from H⊥.

It can easily be shown that by repeating this experiment of order log �H⊥�
times, we find a subset X ⊆ H⊥ that generates H⊥ with probability expo-
nentially close to 1. The hidden subgroup H ≤ G can then be calculated
efficiently from H⊥ on a classical computer, essentially by linear algebra.
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In summary, the sole purpose of the quantum machine in the above algo-
rithm is to sample uniformly from H⊥. It is known that an arbitrary good
approximation to the quantum Fourier transform can be performed effi-
ciently for any finite Abelian group [11], so, assuming the given function γ
can be computed in polynomial time, the complete algorithm runs in poly-
nomial time.

5. A GENERALIZED H⊥

We now briefly discuss the main ideas of harmonic analysis on groups,
stating as facts the main results that we require. For more detailed informa-
tion see for example [12, 13]. Let G be a (possibly noncommutative) finite
group. A representation of G is a homomorphism ρ� G → GL�Vρ� where
Vρ is called the representation space of the representation. The dimension
of Vρ, denoted dρ, is called the dimension of the representation.

The representation ρ is irreducible if the only invariant subspaces of Vρ
are 0 and Vρ itself. Two representations ρ1 and ρ2 are equivalent if there
exists an invertible linear map S� Vρ1

→ Vρ2
such that ρ1�g� = S−1ρ2�g�S

for all g ∈ G.
Let - = �ρ1� ρ2� 	 	 	 � ρr� be a complete set of inequivalent, irreducible

representations of G. Then the identity
∑r
i=1 d

2
ρi

= �G� holds. Furthermore,
we may assume that the representations are unitary, i.e., that ρ�g� is a uni-
tary matrix for all g ∈ G and all ρ ∈ -. The functions defined by ρij = ρ�g�ij
for 1 ≤ i� j ≤ dρ are called matrix coefficients, and by the previous identity
it follows that there are �G� matrix coefficients. It is a fundamental fact
that the set of all normalized matrix coefficients obtained from any fixed -
is an orthonormal basis of the group algebra ��G�. The Fourier transform
with respect to a chosen - is a change of basis transformation of the group
algebra from the basis of point masses to the basis of matrix coefficients.

If G is commutative, then these definitions reduce to those discussed in
Section 4, since in that case, all representations are one-dimensional and
each matrix coefficient is just a character. If G is noncommutative, then
there exists at least one irreducible representation of G with higher dimen-
sion, and in this case the Fourier transform depends on the choice of bases
for the irreducible representations. It seems as though this is what compli-
cates the extension of the quantum algorithm for commutative groups to
the noncommutative scenario.

It turns out that for our present application it is most useful to use an
equivalent notion of the Fourier transform. One may also think of the
matrix coefficients as collected together in matrices. In this view the Fourier
transform is a matrix-valued function on -. For each f ∈ ��G�, we define
the value of the Fourier transform at an irreducible representation ρ ∈ -
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to be

f̂ �ρ� =
√
dρ

�G�
∑
g∈G
f �g�ρ�g�	

If we take individual entries of these matrices, then we recover the co-
efficients in the basis of matrix coefficients. There is a Fourier inversion
formula and therefore f is determined by the matrices

{
f̂ �ρ�}ρ ∈ - .

We may now describe the noncommutative version of H⊥. Let V Hρ be
the elements of Vρ that are pointwise fixed by H,

V Hρ = {
v ∈ Vρ �ρ�h�v = v for all h ∈ H}

	

Let PHρ be the projection operator onto V Hρ . Then define

H⊥ = {
PHρ

}
ρ∈-	

The significance of this definition follows from the following elementary
result.

Theorem 5.1. Let IH be the indicator function on the subgroup H ≤ G.
Then, for all ρ ∈ -, we have that ÎH�ρ� = PHρ .

Corollary 5.2. Let sH be any coset of H ≤ G. Then Theorem 5.1 im-
mediately yields, for all ρ ∈ -, that we have IsĤ�ρ� = ρ�s�PHρ .

Let us summarize the role of this result in the quantum algorithm. If we
straightforwardly apply the quantum algorithm described in the previous
section to the case where G is noncommutative, then we must determine
the resulting probability amplitudes and the information gained by sampling
according to these amplitudes.

Recall that the state of the quantum system after the first observation is
a superposition of states corresponding to the members of one coset. Thus
the state may be described by the indicator function of a coset IsH . The final
observation results in observing the name of a matrix coefficient �ρ� i� j�.
The probability of observing �ρ� i� j� is given by �cρ�i�j�2 where cρ�i�j is the
coefficient of ρij in the expansion of IsH in the basis of matrix coefficients.
The corollary above allows us, in theory, to compute these probability am-
plitudes.

The algorithm for the dihedral groups described in the first part of this
paper may be derived from these general methods. By choosing as a basis
for the two-dimensional representations of the dihedral group the canonical
bases [15, p. 37] conjugated by 1√

2

[ 1 0
0 −√−1

] [ 1 1
1 −1

]
, we obtain the same

distribution as specified by (6) in Section 3. For a general noncommutative
group it seems as if these methods are necessary for an analysis of the
resulting probability amplitudes.
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