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We present some new existence results for a quasilinear elliptic problem with
an unbounded driving force. The quasilinear elliptic operator is assumed to be
variational and is such that 0 acts like an isolated eigenvalue with a corresponding
eigenfunction which does not change sign. The driving force is further assumed to
be in one-sided resonance around the eigenvalue 0, and a solvability condition of
potential type is imposed. Variational methods are used to obtain existence. Our
results significantly improve earlier results of the authors. © 2001 Academic Press
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1. INTRODUCTION

Let � be a bounded domain in �N , N ≥ 1, with a continuous bound-
ary, and satisfying the cone property; i.e., there exists a finite cone C such
that each point x in � is a vertex of a finite cone Cx contained in � and
congruent to C. Denote by Dα the differential operator

∂�α�

∂x
α1
1 ∂x

α2
2 · · · ∂xαNN

�

where α = �α1� α2� 	 	 	 � αN� is a multi–index consisting of nonnegative
integers, and �α� = ∑N

j=1 αj denotes the order of Dα. In order to write
nonlinear partial differential operators in a convenient form, we intro-
duce as in [5] the vector space �sm whose elements are of the form
ξm = �ξα 	 �α� ≤ m�. For each u ∈ W m�p���, define ξm�u��x� to be the
vector in �sm given by �Dαu�x� 	 �α� ≤ m�. ( Observe that D�0�0�			�0�u = u.)
In this paper we study the 2mth order quasilinear differential operator in
generalized divergence form

Q�u� 	= ∑
1≤�α�≤m

�−1��α�DαAα�x� ξ′m�u���

where ξ′m denotes the vector �ξα 	 1 ≤ �α� ≤ m� in �sm−1.
We will assume that Q has a variational structure in the sense that there

exists a function F :�×�sm−1 → � satisfying

(F-1) The map x → F�x� ξ′m� is measurable for each ξ′m ∈ �sm−1,
and the map ξ′m → F�x� ξ′m� is continuously differentiable for a.e. x ∈ �.

(F-2) There exist constants p and c1, with 1 < p < ∞ and c1 > 0,
and a nonnegative function h ∈ L1��� such that

�F�x� ξ′�� ≤ h�x� + c1�ξ′m�p

for a.e. x ∈ � and all ξ′m ∈ �sm−1.
(F-3) F�x� 0� = 0 for a.e. x ∈ �, and for each α, with 1 ≤ �α� ≤ m,

∂F

∂ξα
�x� ξ′� = Aα�x� ξ′� for �x� ξ′� ∈ �×�sm−1	

The functions Aα:� × �sm−1 → � defined in (F-3) will be assumed to
satisfy the following conditions

(A-1) There exists a constant c2, with c2 > 0, and a nonnegative func-
tion h̃ ∈ Lp′ ���, where p′ = p/�p− 1� and p is as in (F-2), such that

�Aα�x� ξ′m�� ≤ h̃�x� + c2�ξ′m�p−1� 1 ≤ �α� ≤ m
for a.e. x ∈ � and for all ξ′m ∈ �sm−1.
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(A-2) (Ellipticity) There exists a positive constant co such that∑
1≤�α�≤m

Aα�x� ξ′m�ξα ≥ co
∑

1≤�α�≤m
�ξα�p

for a.e. x ∈ � and for all ξ′m ∈ �sm−1, where p is as in (F-2).
(A-3) (Monotonicity) Let ξ′m = �η′m−1� ζm� be the division of ξ′m into

its mth order component and the corresponding �m − 1�st order terms
η′m−1; i.e., η′m−1 = �ξβ 	 1 ≤ �β� ≤ m− 1� ∈ �sm−1−1, and ζm = �ξα 	 �α� =
m�. Put Aα�x� ξ′m� = Aα�x�η′m−1� ζm�. Assume that for a.e. x ∈ � and each
η′m−1 ∈ �sm−1−1,∑

�α�=m
�Aα�x�η′m−1� ζm� −Aα�x�η′m−1� ζ

∗
m���ζα − ζ∗α� > 0

for ζm �= ζ∗m and a.e. x ∈ �.

We define the following semilinear Dirichlet form

��u� v� 	= ∑
1≤�α�≤m

∫
�
Aα�x� ξ′m�u��Dαv ∀u� v ∈ W m�p���	 (1)

In view of (A-1) we see that � is well defined on W m�p��� ×W m�p���.
Throughout this paper we will use the norm in W m�p��� given by

�u�pm�p =
∑
�α�≤m

�Dαu�pLp�

where � · �Lp denotes the Lp norm. We will also be using the seminorm

�u�′m�p =
{ ∑

1≤�α�≤m
�Dαu�pLp

}1/p

	

Observe that by the definition of � in (1) and (A-2) we get

��u� u� ≥ co
∫
�

∑
1≤�α�≤m

�Dαu�p = c0��u�′m�p�p (2)

for all u ∈ W m�p���, so that lim inf�u�Lp→∞���u� u�/�u�
p
Lp� ≥ 0. Define as

in [16, p. 1821],

λ1 	= lim inf
�u�Lp→∞

��u� u�
�u�pLp

	

Since ��u� u� = 0 for u constant, we see that λ1 = 0. On the other hand, for
nonconstant v ∈ W m�p��� we obtain from (2) that ��v� v� > 0, so λ1 = 0
behaves like a simple eigenvalue with constant normalized eigenfunction
φ1 ≡ 1/���1/p and corresponding eigenspace W 	= span�1�.
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In this paper we investigate the solvability of the problem

Qu = −a�·� u��u�p−2u− + g�·� u� +H a.e. in ��
u ∈ W m�p���� (3)

where p is as in (F-2), u− = max�−u� 0� is the negative part of u, H ∈
W m�p���∗, the dual of W m�p���, g:�×�→ � is a function satisfying

(g-1) (Carathéodory conditions) the map x → g�x� s� is measurable
for all s ∈ �, and the map s→ g�x� s� is continuous for a.e. x ∈ �;

(g-2) g is bounded; that is, there exists constant M such that

�g�x� s�� ≤M for all s ∈ � and a.e. x ∈ ��
and a:�×�→ � is a function satisfying

(a-1) the Carathéodory conditions as in (g-1);
(a-2) There is a γ > 0 such that 0 ≤ a�x� s� ≤ γ for a.e. x ∈ � and

all s ∈ �.
(a-3) lim infs→−∞ a�x� s� = γ1 uniformly for a.e. x ∈ � and some

γ1 > 0. To be explicit, we mean that there exists E ⊂ � with �E� = 0 such
that (i) lim inf

s→−∞ a�x� s� = γ1 for x ∈ �\E; and (ii) given ε > 0, there exists
so such that for s < so, a�x� s� > γ1 − ε for x ∈ �\E.

By a solution to problem (3) we mean a weak or generalized solution;
i.e., a function u ∈ W m�p��� satisfying

��u� v� = −
∫
�
a�x� u��u�p−2u−v +

∫
�
g�x� u�v +H�v�� (4)

for all v ∈ W m�p���. There is a connection between problem (3) and the
Neumann problem for Q. To see this connection we refer the reader to [17,
pp. 365–367].

We will prove the following result:

Theorem 1.1. Let 1 < p < ∞ and let � be an open bounded con-
nected set with continuous boundary and satisfying the cone property. Assume
(F-1)–(F-3), and suppose that ��u� v� is given by (1) where Aα�x� ξ′m� satis-
fies (A-1)–(A-3) for 1 ≤ �α� ≤ m. Let g�x� s� satisfy (g-1)–(g-2), a�x� s� satisfy
(a-1)–(a-3), and H ∈ W m�p���∗, the dual of W m�p���. If

lim
t→∞

{∫
�
G�x� t� +H�t�

}
= +∞� (5)

where G�x� s� 	= ∫ s
0 g�x� t� dt, then problem (3) has at least one solution.

As in [15] it is straightforward to show that condition (5) is also necessary
for solvability when we consider a specialized class of functions g�x� s�.



640 robinson, rumbos, and shapiro

Theorem 1.2. In addition to the hypotheses of Theorem 1, assume that
g�x� s� = b�x�f �s� for �x� s� ∈ �×�, where b ∈ C��� ∩ L∞���, f :� → �
is continuous, and b�x� > 0 for all x ∈ �. If lims→∞ f �s� = f+ exists, and

f �s� < f+ for all s ∈ ��
then condition (5) is necessary and sufficient for the solvability of problem (3).

Our existence proof will rely on a variation of the well-known sad-
dle point theorem in [13]. Rather than decomposing the Banach space
W m�p��� into complementary linear subspaces, as was done in [15], we
will decompose W m�p��� into a linear subspace and a complementary
cone. This approach has been used by other authors. For example, see the
nonresonance results in [9, 10].

Remark 1	1. If we let

g1�x� s� = −a�x� s��s�p−2s− + g�x� s�
for a.e. x ∈ � and all s ∈ �, conditions (g-2) and (a-2) imply that

0 ≤ lim inf
�s�→∞

g1�x� s�
�s�p−2s

≤ lim sup
�s�→∞

g1�x� s�
�s�p−2s

≤ γ for a.e. x ∈ �	

Thus the nonlinear term interacts with the eigenvalue λ1 = 0 from above
and we are well motivated to call problem (3) a one-sided resonance
problem. In problems such as this it is often helpful to use the growth con-
dition (a-2) to prevent interaction with other eigenvalues. This requires a
reasonable definition of the next eigenvalue, λ2, and an added restriction
such as γ < λ2. This approach was used in [15], where

λ2 	= lim inf
�v�Lp→∞

��v� v�
�v�pLp

v ∈ V 	=
{
v ∈ W m�p��� 	

∫
�
v = 0

}
	

Our results improve upon those in [15] by allowing an arbitrary choice of
the constant γ. They key differences in the proofs are centered on how
to split the Banach space W m�p���. In [15] the arguments and estimates
are all relative to the linear splitting W m�p��� = W ⊕ V . In this paper our
arguments and estimates are relative to the nonlinear splitting W m�p��� =
W ⊕ Vε, where Vε is a certain cone centered on W + 	= �w ∈ W 	 w ≥ 0�.

Remark 1	2. Perhaps a better context for understanding this work
involves the Fučik spectrum of the operator Q, which can be defined as
the set of pairs �α�β� such that the problem

Qu = α�u�p−2u+ − β�u�p−2u−� a.e. in ��

u ∈ W m�p����
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has a nontrivial solution. It is clear that the sets �0� × � and � × �0� are
part of the Fučik spectrum, and cross at the principal eigenvalue where
α = β = λ1 = 0. These sets are often referred to as the principal, or trivial,
branch of the Fučik spectrum. The given growth conditions on a�x� u� and
g�x� u� allow us to view problem (3) as a perturbation of

Qu = −γ1�u�p−2u−� a.e. in ��

u ∈ W m�p����
It was this point of view that suggested that the upper bound on γ in [15]
was an artifact of the proof and not of the problem.

For more details on the Fučik spectrum of the Laplacian and the
p-Laplacian, respectively, see [10, 8]. These papers also contain general
nonresonance results where the forcing term lies asymptotically in the gap
between the trivial and first nontrivial Fučik curves. A detailed descrip-
tion of the Fučik spectrum for the general class of operators studied here
remains a topic for further research.

In the current literature most resonance results relative to the Fučik spec-
trum have been restricted to linear or homogeneous quasilinear ordinary
differential operators. One excellent example of a resonance result for the
PDE case is found in [7], where the boundary value problem

−1u = αu+ − βu− + g�x� u� in ��
u�∂� = 0�

is examined assuming that �α�β� ∈ C2, the first nontrivial branch of the
spectrum, and g and its primitive G satisfy the conditions that g is a
Caratheodory function with subcritical growth, lim�s�→∞�2G�x� s�/s2� = 0
uniformly, and lim�s�→∞��sg�x� s� − 2G�x� s��/s2� = ±∞ uniformly.

Remark 1	3. The solvability condition (5) in Theorem 1 was first intro-
duced by Ahmad et al. [3] to deal with resonance problems for bounded
nonlinear perturbations of linear second order self–adjoint elliptic opera-
tors with Dirichlet boundary condition. A similar condition was used by
Castro and Lazer (see [6, Theorem 3, p. 148]) to deal with nonlinear per-
turbations of the Neumann problem, in the case p = 2, in which the nonlin-
earity is assumed to be differentiable with derivative bounded from above.
The results in [15] treat this kind of condition allowing a very general class
of quasilinear elliptic operators, an unbounded driving force, and no bound-
edness assumption on the derivative of the driving force.

Remark 1	4. For the case where Q is a second order linear elliptic
operator our results are complementary to Theorem 4 of [4], where simi-
lar growth and solvability conditions are assumed. The primary difference
between our results and theirs, other than the fact that we allow a more
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general class of differential operators, is that they impose conditions on g
and use degree theoretic arguments, whereas we impose conditions on the
primitive G and use variational arguments.

Remark 1	5. It is a straightforward exercise to construct examples
to illustrate Theorem 1.1. Let Q = −1p, the p-Laplacian, or some
well-behaved nonhomogeneous perturbation of the p-Laplacian. Let
a�x� u� = c + c

2 sin�u� for some c > 0. Let g�x� u� = arctan�u� + k for
some constant k. In this case condition (5) reduces to the well known
Landesman–Lazer condition of [12]. For a more detailed discussion of
examples see [15].

2. THE VARIATIONAL SETTING

For a�x� s� satisfying (a-1) and (a-2), set

A�x� s� 	=


∫ s

0 a�x� t��t�p−2t dt for s ≤ 0

0 for s > 0,

and for g satisfying (g-1) and (g-2), put

G�x� s� 	=
∫ s

0
g�x� t� dt for all s ∈ �	

Let F be as given in (F-1)–(F-3). Define a functional � :W m�p��� → � by

��u� 	=
∫
�
F�x� ξ′m�u�� −

∫
�
A�x� u� −

∫
�
G�x� u� −H�u�

for all u ∈ W m�p���. By virtue of (F-1)–(F-2), (g-1)–(g-2), and (a-1)–(a-2)
we see that � is well defined and continuous. Observe also that if (F-2),
(g-2), and (a-2) hold then � maps bounded sets in W m�p��� to bounded
sets in �. Moreover, using (F-3), (A-1), (g-2), and (a-2) we can show, as in
[5, p. 35], that in fact, � ∈ C1�W m�p������, and that its Fréchet derivative
is given by

� ′�u�v = ��u� v� +
∫
�
a�x� u��u�p−2u−v −

∫
�
g�x� u�v −H�v� (6)

for all u� v ∈ W m�p���. Observe that using (F-3) and Fubini’s theorem,
whose use in this case is justified by (A-1), we can write

��u� =
∫ 1

0
��tu� u� dt −

∫
�
A�x� u� −

∫
�
G�x� u� −H�u� (7)

for all u ∈ W m�p���.
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A critical point of � is a function u ∈ W m�p��� for which � ′�u�v = 0
for all v ∈ W m�p���. In view of (6) above, this corresponds precisely to the
definition (4) of a solution for problem (3). Therefore, in order to prove
Theorem 1.1 it suffices to show that � possesses at least one critical point.
We will establish this fact by means of a saddle point theorem over linked
sets. For the reader’s convenience we state the relevant definitions and
theorem below. The definition of the Palais–Smale condition is standard.
For more details on linking and the saddle point theorem see [18, Definition
8.1 and Theorem 8.4].

Definition 2.1. Let X be a Banach space. Let Y be a closed subset of
X, and let Z be a submanifold of X with relative boundary ∂Z. We say
that Y and ∂Z link if

(1) Y
⋂
∂Z = !, and

(2) for any map h ∈ C0�X�X� such that h�∂Z = id there holds
h�Z�⋂Y �= !.

Definition 2.2. Let X be a Banach space and let J ∈ C1�X���. J sat-
isfies the Palais–Smale condition, (PS), if any sequence �un� ⊂ X such that

(1) �J�un�� is bounded, and

(2) J ′�un� → 0 in X∗,

has a strongly converging subsequence.

Theorem 2.1. Suppose that X is a Banach space and J ∈ C1�X��� sat-
isfies (PS). Consider a closed subset Y ⊂ X and a submanifold Z ⊂ X with
relative boundary ∂Z. Suppose that

(1) Y and ∂Z link,

(2) infu∈Y J�u� > supu∈∂Z J�u�.
Let 8 	= �h ∈ C0�X�X� 	 h�∂Z = id�. Then the number

β 	= inf
h∈8

sup
u∈Z

J�h�u��

defines a critical value of J.

Theorem 1.1 will be proved as an application of Theorem 2.1. Assuming
the conditions of Theorem 1.1, we will verify the geometric and topological
conditions for � in Section 3 and will show that � satisfies (PS) in Section 4.
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3. THE SADDLE GEOMETRY OVER LINKED SETS

In this section we establish the saddle geometry and linking properties
that are necessary for the application of Theorem 2.1. Throughout the sec-
tion we assume (F-1)–(F-3), (A-1)–(A-2), (g-1)–(g-2), (a-1)–(a-3) and let �
be given by (7).

Let W 	= span�1�, WR 	= �w ∈ W 	 −R ≤ w ≤ R�, V 	= �v ∈
W m�p��� 	 ∫� v = 0�, and Vε 	= �v = t�1+ εṽ� 	 t ≥ 0� ṽ ∈ V� ∫� �ṽ�p = 1�.
Notice that ∂WR = �±R�.
Lemma 3.1. If condition (5) holds, then

��w� → −∞ as �w�m�p →∞ in W	

Proof. For w ∈ W we have ��tw�w� ≡ 0. Also, if w > 0 we have
A�x�w� ≡ 0. Thus ��w� = − ∫

� G�x�w� − Hw for w ∈ W with w > 0.
Condition (5) immediately implies that limw→∞ ��w� = −∞.

For w ∈ W with w < 0 we have ��w� = − ∫
� A�x�w� −

∫
� G�x�w� −

Hw. Clearly, ∣∣∣∫
�
G�x�w� +Hw

∣∣∣ ≤ K�w�
for some constant K > 0. Using (a-3) let s0 < 0 such that a�x� s� ≥ γ1/2
for all s < s0 and all x ∈ �\E. Then for w < s0 and x ∈ �\E we get

A�x�w� =
∫ s0

0
a�x� t��t�p−2t dt +

∫ w
s0

a�x� t��t�p−2t dt

≥ γ1

2p
��w�p − �s0�p�	

It follows that

��w� ≤ −���γ1

2
��w�p − �s0�p� +K�w��

so limw→−∞ ��w� = −∞.

The following lemma provides a Poincarè type inequality on the set Vε.
The proof uses an idea found in [8, Lemma 2.4].

Lemma 3.2. Given any constant k > 0 there is an ε > 0 and a δ > 0 such
that

∫
� �∇v�p ≥ δ

∫
� �v+�p + k

∫
� �v−�p for all v ∈ Vε.

Proof. First, we show that there is an ε > 0 such that
∫
� �∇v−�p ≥

k
∫
� �v−�p for all v ∈ Vε. If not, then there are sequences �εn� ⊂ �+

and ṽn ⊂ V such that εn → 0,
∫
� �ṽn�p = 1, and

∫
� �∇v−n �p ≤ k

∫
� �v−n �p

for all n where vn = 1 + εnṽn. (Note that we have set tn = 1 by a sim-
ple rescaling.) Clearly, vn → 1 in Lp���, so ��x 	 vn�x� < 0�� → 0.
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However, v−n /�
∫
� �v−n �p�1/p is bounded in W 1� p���, and so, without loss

of generality, converges in Lp to some v̄ ≥ 0 with
∫
� �v̄�p = 1. Thus

��x 	 �vn�x�/�
∫
� �v−n �p�1/p� < 0�� �→ 0, a contradiction.

Choose ε as in the previous paragraph. Using an argument by contradic-
tion, similar to the argument above, it is straightforward to show that there
is a δ > 0 such that

∫
� �∇v+�p ≥ δ

∫
� �v+�p for all v ∈ Vε. Hence the lemma

is proved.

Corollary 3.1. There is an ε > 0 and d > 0 such that ��v� v� ≥
d�v�pm�p + γ

∫
� �v−�p for all v ∈ Vε.

Proof. Recall that ��v� v� ≥ c0��v�′m�p�p ≥ c0
∫
� �∇v�p by (A-2). Choose

ε > 0 as in Lemma 3.2 such that

∫
�
�∇v�p ≥ δ

∫
�
�v+�p + 4γ

c0

∫
�
�v−�p

for all v ∈ Vε. Then

��v� v� = 1
2��v� v� + 1

2��v� v�

≥ c0
2 ��v�′m�p�p + c0

2

∫
�
�∇v�p

≥ c0
2 ��v�′m�p�p + c0δ

2

∫
�
�v+�p + 2γ

∫
�
�v−�p

≥ d�v�pm�p + γ
∫
�
�v−�p�

where d 	= min�c0/2� c0δ/2� γ�.

Corollary 3.2. There is an ε > 0 and d > 0 such that
∫ 1

0 ��tv� v� dt ≥
d
p
�v�pm�p + γ

p

∫
� �v−�p for all v ∈ Vε.

Proof. Select ε > 0 as in Corollary 3.1 and use the fact that

Q�tv� v� = 1
t
Q�tv� tv� ≥ tp−1

(
d�v�pm�p + γ

∫
�
�v−�p

)

for all v ∈ Vε.

Lemma 3.3. There is an ε > 0 such that

��v� → ∞ as �v�m�p →∞ in Vε	
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Proof. Observe that for some K > 0 we have∫
�
G�x� u� +Hu ≤ K�u�m�p

for all u ∈ W m�p���. Also, by (a-2),∫
�
A�x� u� ≤ γ

p

∫
�
�u−�p

for all u ∈ W m�p���. Choose ε > 0 as in Corollaries 3.1 and 3.2. Combining
inequalities we see that

��v� ≥ d

p
�v�pm�p −K�v�m�p

for all v ∈ Vε, so the proof is done.

The estimates above immediately imply the following.

Lemma 3.4. Let ε > 0 be chosen as in Corollaries 3.1 and 3.2. Then there
is an R > 0 such that infu∈Vε ��u� > supu∈∂WR ��u�.
Lemma 3.5. Given any R > 0 and ε > 0, ∂WR and Vε link.

Proof. It suffices to consider a continuous h 	 �−1� 1� → W m�p��� such
that h�±1� = ±R and show that h��−1� 1��⋂Vε �= !. Note that if h�s� ≡
0 for any s, then we immediately have h�s� ∈ Vε; so for the remainder
of the proof we consider the case where h�s� is nontrivial for all s. Let
t�s� 	= 1

���
∫
� h�s�, let a 	= max�s 	 −1 < s < 1� t�s� = 0�, and let ε�s� 	=

��h�s� − t�s��m�p�/t�s� for s ∈ �a� 1�. Note that t�±1� = ±R, t�a� = 0, and
ε�1� = 0. Since h�a� is nontrivial, lims→a+ �h�s� − t�s��m�p = �h�a��m�p �=
0, so lims→a+ ε�s� = ∞. Thus, from the Intermediate Value Theorem, we
have that ε�s∗� = ε for some s∗ ∈ �a� 1�. It follows that h�s∗� ∈ Vε.

Thus, assuming the hypotheses of Theorem 1.1, and letting X =
W m�p���, Y = Vε, Z = WR, and J = � , we have shown that conditions (1)
and (2) of Theorem 2.1 hold. Therefore Theorem 1.1 will be proved if we
can show that � satisfies (PS).

4. THE PALAIS–SMALE CONDITION

In this section we prove that if condition (5) is satisfied then � satisfies
(PS). Throughout the section we assume (F-1)–(F-3), (A-1)–(A-2), (g-1)–
(g-2), (a-1)–(a-3) and let � be given by (7). Also, we assume that ε > 0 is
chosen as in Corollary 3.1.
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Lemma 4.1. Assume that � satisfies (5). If �un� ⊂ W m�p��� and K > 0
such that

(1) ���un�� ≤ K for all n, and

(2) � ′�un� → 0 in �W m�p����∗,
then �un� is bounded.

Proof. We will suppose that �un� is unbounded and derive a contra-
diction. Without loss of generality we may assume that �un�m�p →∞. Let
vn 	= un/�un�m�p. Without loss of generality we have that vn → v in Lp���,
with pointwise convergence a.e., and vn ⇀ v in W m�p���.

Our first step towards proving a contradiction is to show that v ≡
1/���1/p. Consider

J ′�un� · 1 =
∫
�
a�x� un��un�p−2u−n −

∫
�
g�x� un� −H�1�	

Dividing through by �un�p−1
m�p and using the boundedness of g and H as

well as � ′�un� → 0 we get

0 = lim
n→∞

∫
�
a�x� un�

�un�p−2u−n
�un�p−1

m�p

	

Clearly, �un�p−2u−n /�un�p−1
m�p → �v−�p−1, and the integrand above is nonneg-

ative so Fatou’s Lemma can be applied to get

0 ≥ γ1

∫
�
�v−�p	

Hence v− ≡ 0. Now consider

� ′�un�un = ��un� un� +
∫
�
a�x� un��u−n �p −

∫
�
g�x� un�un −H�un�

≥ c0��un�′m�p�p +
∫
�
a�x� un��u−n �p −

∫
�
g�x� un�un −H�un��

by (A-2). Divide through by �u�pm�p and let n→∞ to get

0 ≥ lim
n→∞

��un�′m�p�p
�un�pm�p

�

where we have used the facts that g is bounded, H is bounded, and
v−n → 0. Hence �v�′m�p = 0 and v is a nonnegative constant function.
Since limn→∞���un�′m�p�p/�un�pm�p� = 0 it must be that limn→∞��un�Lp/
�un�m�p� = 1. Thus v = limn→∞�un/�un�m�p� = limn→∞�un/�un�Lp�, and
so �v�Lp = 1. It follows that v ≡ 1/���1/p.



648 robinson, rumbos, and shapiro

Our second step towards deriving a contradiction is to obtain a more pre-
cise description of how vn → 1/���1/p. It will help to decompose the ele-
ments of the sequence into components in W and Vε. For any u ∈ W m�p���
it is clear that there is a unique constant c such that u − c ∈ Vε. Thus we
can write un = cn + ũn, where ũn ∈ Vε. What happens to these compo-
nents when we divide through by �un�m�p and let n → ∞? The follow-
ing arguments will show that �ũn� is bounded. If �cn�/�un�m�p → ∞, or
if some subsequence does, then un/cn → 0 and so ũn/cn → −1. But Vε
is closed and −1 �∈ Vε, a contradiction. Thus cn/�un�m�p is bounded, and,
without loss of generality, converges to some constant c. It follows that
ũn/�un�m�p → 1/���1/p − c. Once again, since Vε is closed, and 0 is the
only constant in Vε, we must have c = 1/���1/p. Thus ũn/�un�m�p → 0.
Now consider

� ′�un�ũn = ��un� ũn� +
∫
�
a�x� un��un�p−2u−n ũn

−
∫
�
g�x� un�ũn −H�ũn�	

Clearly, ∣∣∣∫
�
g�x� un�ũn +H · ũn

∣∣∣ ≤ K1�ũ�m�p�

for some positive constant K1. Also, since un = cn + ũn, where cn is a
positive constant we have that ũn < un < 0 on �x 	 un < 0�. Thus∣∣∣∫

�
a�x� un��un�p−2u−n ũn

∣∣∣ ≤ γ ∫
�
�ũ−n �p	

Since un and ũn differ by a constant we have ��un� ũn� = ��ũn� ũn�, and
we can use Corollary 3.1 to show that

� ′�un�ũn ≥ d�ũn�pm�p −K1�ũn��
which leads to a contradiction of the fact that � ′�un� → 0. Hence �ũn� is
bounded.

The third step in deriving a contradiction will be to show that con-
dition (5) forces ��un� to be unbounded. This is now possible because
our previous estimates have shown that un behaves very much like a
sequence of positive constants diverging to infinity. We begin by observing
that

∫ 1
0 ��tun� un� dt =

∫ 1
0 ��tũn� ũn�dt, which we now know is bounded.

Similarly, � ∫� A�x� un�� ≤ γ
p

∫
� �ũ−n �p, which is bounded. Thus ��un� is

unbounded if and only if its last two terms are unbounded. Notice that for
a.e. x we have �G�x� un�x�� −G�x� cn�� ≤M�ũn�, so∫

�
G�x� un� +Hun ≥

∫
�
G�x� cn� +H�cn� −K1�
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for some K1 > 0. Since cn →∞ we can now apply condition (5) to conclude
that limn→∞

∫
� G�x� un� +H�un� = ∞, and thus, since all other terms are

bounded, limn→∞ ��un� = −∞. We have arrived at the desired contradic-
tion, so the proof is done.

Lemma 4.2. If � satisfies (5), then � satisfies (PS).

Proof. This is a direct consequence of Lemma 4.1. See Lemma 4 in [15]
for details.

The proof of Theorem 1.1 is now finished.
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