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We consider a simple generic dissipative dark matter model: a hidden sector featuring two dark matter 
particles charged under an unbroken U (1)′ interaction. Previous work has shown that such a model 
has the potential to explain dark matter phenomena on both large and small scales. In this framework, 
the dark matter halo in spiral galaxies features nontrivial dynamics, with the halo energy loss due to 
dissipative interactions balanced by a heat source. Ordinary supernovae can potentially supply this heat 
provided kinetic mixing interaction exists with strength ε ∼ 10−9. This type of kinetically mixed dark 
matter can be probed in direct detection experiments. Importantly, this self-interacting dark matter can 
be captured within the Earth and shield a dark matter detector from the halo wind, giving rise to 
a diurnal modulation effect. We estimate the size of this effect for detectors located in the Southern 
hemisphere, and find that the modulation is large (� 10%) for a wide range of parameters.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Dark matter might plausibly arise within a hidden sector. That 
is, a sector of additional particles and forces which couple to ordi-
nary matter predominantly via gravity. An interesting class of such 
hidden sector dark matter arises when the hidden sector features 
an unbroken U (1)′ gauge symmetry. The associated massless gauge 
boson, the dark photon, mediates self-interactions among the dark 
matter particles which can also be dissipative.

Dissipative dark matter has been studied in the context of mir-
ror dark matter [1] (MDM, for an up-to-date review see [2]), where 
the hidden sector is exactly isomorphic to the Standard Model [3], 
and more generally in [4]. In the latter case, focused on here, dark 
matter consists of two hidden sector particles, F1 and F2, both 
charged under an unbroken U (1)′ symmetry. Within this picture, 
the halos around spiral galaxies such as the Milky Way are (cur-
rently) mainly in the form of a pressure-supported plasma of F1
and F2 particles. The dark matter halo is assumed to have evolved 
into a steady state configuration where it is in hydrostatic equi-
librium and the energy it loses to dissipative interactions (via e.g. 
thermal dark bremsstrahlung) is balanced by a heat source. Such a 
dynamically evolved halo appears capable of explaining small-scale 
structure observations: the inferred cored profile of dark matter 
halos, the Tully–Fisher relation, and so forth [4].
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A possible heat source arises if the kinetic mixing interaction 
exists:

Lkm = ε

2
F μν F ′

μν . (1)

This interaction endows the dark particles, F1 and F2, with a tiny 
ordinary electric charge. The studies [2,4] have shown that kinetic 
mixing induced processes in the core of ordinary core-collapse su-
pernovae can supply the energy needs of such a halo, if ε ∼ 10−9. 
That is, these processes are able to generate enough energy (trans-
ported to the halo via dark photons) to compensate for the energy 
lost due to dissipative interactions. This mechanism, and other 
astrophysical and cosmological considerations, also constrain the 
masses of the F1 and F2 particles, with one of them being light, 
mF1 ∼ MeV, and the other heavier, mF2 ∼ GeV–TeV.1 Kinematic 
considerations then indicate that the processes F1-electron and 
F2-nuclei scattering will be of particular importance in the con-
text of direct detection experiments.

MeV scale dark matter particles scattering off electrons have 
been proposed as a mechanism to potentially explain the DAMA 
[5] and CoGeNT [6] annual modulation signals [7]. Scattering of 
the light F1 particles off electrons might thereby explain the an-
nual modulation signals observed by DAMA and CoGeNT. However, 
the details are quite subtle, as the flux of the light F1 particles 
in the proximity of the Earth is expected to be strongly influ-
enced by dark electromagnetic fields, generated within the Earth 

1 Here and throughout the article, natural units with h̄ = c = kB = 1 will be used.
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by captured F1 and F2 dark matter. Further details of F1-electron 
scattering will be postponed to future work. Here we focus on the 
F2-nuclei scattering detection channel, and study possible diurnal 
modulation signatures expected due to the effect of captured F2
dark matter which can block the halo wind.

2. Two-component dissipative hidden sector dark matter

The model we consider comprises a hidden sector consisting of 
dark matter particles charged under an unbroken U (1)′ symmetry, 
and possibly other interactions which we shall not be concerned 
with. The dynamics of our theory are described by the Lagrangian:

L = LSM +LHS +Lmix , (2)

where LSM is the Standard Model Lagrangian, LHS is the hidden 
sector Lagrangian, and Lmix encompasses interaction terms which 
interconnect the two sectors. The interactions associated with the 
unbroken U (1)′ symmetry (dark electromagnetism) are mediated 
by a massless gauge boson, the dark photon (γD ). A particularly 
simple instance occurs when the hidden sector consists of two 
Dirac fermions, described by the fields F1 and F2, with masses 
mF1 and mF2 and dark charges Q ′

F1
and Q ′

F2
, opposite in sign but 

not necessarily equal in magnitude2:

LHS = −1

4
F ′ μν F ′

μν + F 1(iDμγ μ − mF1)F1

+ F 2(iDμγ μ − mF2)F2 . (3)

Here, F ′
μν = ∂μ A′

ν − ∂ν A′
μ is the field-strength tensor associated 

with the U (1)′ interaction, with A′
μ being the relevant gauge field. 

The covariant derivative relevant to this interaction acts on the 
fermionic fields as Dμ F j = ∂μ F j + ig′ Q ′

F j
A′

μ F j , where g′ is the 
coupling constant for the dark electromagnetic interaction. The 
presence of an accidental U (1) global symmetry, together with the 
gauge symmetry, implies conservation of F1 and F2 number, and 
hence stability of the two dark fermions. The particle content of 
the hidden sector is thus massive, dark and stable, essential char-
acteristics of a suitable dark matter candidate.

In the early Universe, a primordial particle–antiparticle asym-
metry is presumed to set the relic abundance of the F1 and F2
particles. Any symmetric component is expected to be efficiently 
annihilated by the dark electromagnetic interactions. This means 
that the dark matter content of the Universe today is dominated 
by particles with a potentially negligible amount of anti-F1 and 
anti-F2 particles.3 The model is then an example of asymmetric 
dark matter, extensively discussed in the recent literature (see e.g. 
[11] and references therein). Dark matter asymmetry and local 
neutrality of the Universe imply:

nF1 Q ′
F1

+ nF2 Q ′
F2

= 0 , (4)

where nF j denotes the F j particle number density.

2 Replacing the F1, F2 particles with two scalar fields leads to an equally simple 
model. Furthermore, the diurnal modulation signal to be discussed in the present 
paper depends in no essential way on the spin of the dark matter particles. For 
concreteness, though, we here focus on the fermionic model.

3 Of course, the exact ratio of dark matter antiparticles to particles today de-
pends on the thermal history of the dark and visible sectors in the early Universe. 
If TγD

� Tγ when TγD
≈ mF2 , then the relic abundance of dark antiparticles can 

be negligibly small for all of the parameter space of interest. On the other hand 
if TγD

� Tγ when TγD
≈ mF2 , an upper bound on mF2 of order 8 TeV, 350 GeV, 

35 GeV, 3 GeV for α′ = 10−1, 10−2, 10−3, 10−4 respectively can be derived by 
requiring the symmetric component to be efficiently annihilated away [8] (see 
also [9,10]).
The possible interactions described by Lmix are strongly con-
strained by the requirements of gauge invariance and renormaliz-
ability. For our model, this restricts Lmix to only a kinetic mixing 
term [12], which leads to photon-dark photon kinetic mixing:

Lmix = ε′

2
F μν F ′

μν . (5)

A non-orthogonal transformation can remove the kinetic mixing. 
The net effect of this interaction is to provide the dark fermions 
with a tiny ordinary electric charge [13]. As a result, the dark 
fermions couple to the visible photon with charge:

g′ Q ′
F j

ε′ ≡ εF j e . (6)

The interactions of F1 with the dark photon are characterized by 
the dark fine structure constant, α′ ≡ (g′ Q F1 )

2/4π , while the cou-
pling of F2 with the dark photon is modified by the charge ratio, 
Z ′ ≡ Q ′

F2
/Q ′

F1
. The fundamental physics of this model is described 

by five parameters: mF1 , mF2 , α′ , Z ′ and ε ≡ εF1 .
The model described above has been thoroughly analyzed in 

the context of early Universe cosmology and galactic structure in 
[4]. Its dark matter phenomenology is similar to, but generalizes 
the MDM case, and is more distantly related to a number of other 
hidden sector models which feature an unbroken U (1)′ interac-
tion (see e.g. [14]). Within the scenario being considered, the dark 
matter halo in spiral galaxies is presumed to be (currently) in the 
form of a roughly spherical plasma composed of F1 and F2 par-
ticles. The plasma can cool via dissipative processes, for instance 
thermal dark bremsstrahlung, thus requiring a heat source which 
can replace this energy lost. It has been argued that kinetic mixing 
induced processes within the core of ordinary core-collapse su-
pernovae can provide such a heat source, provided ε ∼ 10−9 and 
mF1 � 100 MeV.

The analysis of early Universe phenomenology (including bounds 
on the number of relativistic degrees of freedom encoded by 
Neff[CMB] and Neff[BBN]) and galactic structure arguments con-
strained the five parameters of the model [4]. These considerations 
indicated a favored region of parameter space for the masses of 
the two fermions: the lighter particle (F1) with mass in the MeV 
range and the heavier one (F2) with mass in the GeV–TeV range. 
Some implications for direct detection experiments of this same 
model have been considered in [15], which also focused on the 
case mF1 � mF2 , additionally assuming |Z ′| 	 1.4

In the dark halo of the Milky Way, the dark electromagnetic 
interactions are expected to keep the particles in thermal equilib-
rium, at a common temperature T . In the proximity of the Earth, 
under the assumption of hydrostatic equilibrium, this temperature 
can be roughly estimated [15]:

T � 1

2
mv2

rot . (7)

Here, vrot ≈ 220 km/s is the Milky Way’s rotational velocity, while 
m designates the mean mass of the particles in the dark plasma 

4 An interesting question is whether this model is consistent with measurements 
on cluster scales, e.g. those associated with the Bullet Cluster. The main difficulty 
in addressing this point is that the dark matter distribution on cluster scales is 
poorly constrained and also very difficult to model. Adopting the NFW distribution 
(or similar) for the cluster dark matter derived from simulations of collisionless dark 
matter may be unreliable, especially when self-interaction cross sections are large 
(σ/M � 1 cm2/g). A significant fraction of the dark matter could be bound into 
galactic or subgalactic-sized halos, or into more compact systems such as hypothet-
ical “dark stars” (see [16,2,4] for relevant discussions). If dark matter is sufficiently 
clumpy then the dark matter associated with each cluster would pass through each 
other essentially unimpeded, potentially consistent with the observations [17].
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which, in the two-component case we are considering, is given by:

m = nF1mF1 + nF2mF2

nF1 + nF2

. (8)

The galaxy structure arguments of [4] indicate that the Milky Way 
halo could be nearly fully ionized, except for the K-shell atomic 
states, so that |Z ′| ≥ 3 (see [4] for further details). It follows that 
the mean mass can be approximated as being m ≈ mF2/(|Z ′| − 1).

In a reference frame with no bulk halo motion, we expect 
the distribution function of the halo dark matter particles to be 
Maxwellian. The velocity dispersion of the i-th particle species, 
v0[Fi] is mass-dependent, and is given by (see e.g. [15]):

v0[Fi] � vrot

√
m

mi
. (9)

Combining Eqs. (4), (8), (9), it follows that v0[F2] � vrot for mF1 �
mF2 and |Z ′| 	 1. This mass dependent velocity dispersion is a 
distinctive feature of this type of dark matter.

The F1 and F2 particles can potentially be observed in direct 
detection experiments. With mF1 ∼ MeV and mF2 ∼ GeV–TeV, 
F1-electron and F2-nuclei scattering are expected to be of most 
interest (essentially Rutherford scattering, possible due to the ki-
netic mixing induced small electric charge). In principle, both of 
these interaction channels can be searched for. In this article, we 
focus on the F2-nuclei scattering channel, and consider the diurnal 
modulation signal which we will show is a characteristic feature of 
this type of dark matter.

A diurnal modulation in a direct detection experiment can arise 
if dark matter particles are captured within the Earth and block the 
halo dark matter wind. Diurnal modulation due to self-interacting 
dark matter was first studied in the context of MDM [18]. A di-
urnal modulation effect can also ensue following interactions of 
dark matter particles with the constituent nuclei of the Earth [19]. 
This can be important for some models, such as the case of light 
GeV scale dark matter (and could be important in our case for 
part of the parameter space) [20]. Here we focus on the diurnal 
modulation effect arising from self-interactions between halo and 
captured dark matter particles, which we show is large for a wide 
range of parameter space.

3. Dark matter shielding radius

A distinctive feature of this model, and of hidden sector models 
in general, is the self-interacting nature of the dark matter parti-
cle content. The self-interactions can lead to a significant quantity 
of dark matter being captured within the Earth, potentially block-
ing the F2 dark matter galactic halo wind. In this section we will 
quantify this effect, by estimating the shielding radius due to dark 
matter capture.

Initially, F2 particles will occasionally be captured by the Earth, 
through hard scattering processes of F2 on constituent nuclei 
within the Earth, and thus accumulate inside our planet (cf. [21]). 
When a sufficient number have accumulated, F2 particles will be 
captured following self-interactions. Let us define dmin to be the 
distance of closest approach to the center of the Earth of a halo 
F2 particle, for a given trajectory. The shielding radius, Rs , is the 
maximum value dmin can take for which the incoming F2 particle 
will be captured due to self-interactions with the Earth bound dark 
matter. That is, halo F2 particles with trajectories having dmin < Rs

will be captured and accumulate within the Earth. This means that 
F2 particles will be captured at the “geometric” rate given by:

dN ≈ π R2
s vrotnF2 , (10)
dt
where vrot � 220 km/s is the galactic rotational velocity, nF2 is 
the number density of halo F2 particles (nF2 = ρdm/mF2 , with 
ρdm ≈ 0.3 GeV/cm3 at the Earth’s location). Here N denotes the 
total number of captured F2 particles accumulated within the 
Earth.

In the analysis to follow, we assume no significant initial pop-
ulation of dark matter particles in the Earth. In fact, during the 
formation of the Solar System, we expect dark matter particles to 
be captured within the newly forming Earth. To estimate the “ini-
tial” number of captured dark matter particles would require us to 
model the formation of the Solar System, and is beyond the scope 
of this paper. Here we simply note that, by assuming that a neg-
ligible number of dark matter particles are captured initially, the 
derived shielding radius will be underestimated. It follows that the 
diurnal modulation signal can potentially be maximal for a larger 
range of parameters than those given.

To gain further insight into the process of dark matter capture, 
and hence estimate the shielding radius, we have to determine 
the density distribution of captured F2 particles within the Earth, 
N F2 (r) [spherical symmetry is assumed]. This can be determined 
from the hydrostatic equilibrium condition, but first we need to 
work out the temperature profile, T (r).

In addition to F2 particles, the light F1 particles will also be 
captured in the Earth. The rate of F1 capture is expected to be in-
fluenced by dark electromagnetic fields in such a way as to keep 
the net U (1)′ charge of the Earth small (cf. [7]). Kinetic mixing 
induced interactions allow the captured F1 and F2 particles to 
interact with ordinary nuclei and electrons via Rutherford scat-
tering, with cross-section dσ/d
 ∝ ε2/v4, where v is the relative 
velocity of the captured F1/F2 particle. Given that the captured 
particles lose energy rapidly, and hence decrease their velocity, the 
dependence of the Rutherford scattering cross-section on velocity 
(∝ 1/v4) suggests that the F1/F2 particles and ordinary matter 
will quickly thermalize. That is, the dark matter particles and ordi-
nary matter in the Earth will share a common temperature profile, 
T (r) [a possible exception is near the “surface” of the dark matter 
distribution, where halo heating can be important]. At the relevant 
temperature range within the Earth, the astrophysical and cosmo-
logical constraints derived in [4] indicate that the F1 and F2 states 
will combine to form atoms for essentially all of the fundamental 
parameter space of interest.5 Thus the captured F1 and F2 parti-
cles ultimately form a gas of F2 atoms with known temperature 
profile T (r).

The density N F2 (r) is dictated by gravity and pressure through 
the hydrostatic equilibrium condition:

dP (r)

dr
= −ρ(r)g(r) . (11)

In the above equation [Eq. (11)], P (r) = N F2 (r)T (r) and ρ(r) =
mF2 N F2 (r) are the pressure and mass density profiles of the cap-
tured F2 atoms, and g(r) is the local gravitational acceleration:

g(r) = G

r2

r∫
0

4πr′2ρE(r′)dr′ . (12)

5 Astrophysical and cosmological considerations were exploited to determine 
bounds on the kinetic mixing parameter, ε , in [4]. For the heating mechanism 
arising from ordinary core-collapse supernovae to work, ε � 10−10 is required. 
Large-scale structure considerations (ensuring that dark acoustic oscillations do 
not modify LSS early growth) were used to set an upper bound on ε: ε �
10−8(α′/α)4(mF1 /MeV)2(M/me)

1
2 , where M ≡ max(me, mF1 ). These bounds con-

strain the binding energy of the “valence” F1 particle, I ∼ α′2mF1 /2 � eV, which is 
greater than the relevant temperature for essentially all of the fundamental param-
eter space of interest.
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Fig. 1. Number density profile of captured F2 particles, N F2 (r), normalized to the 
central number density [N0 = N F2 (r = 0)]. Curves from right to left: mF2 = 1 GeV,

10 GeV, 100 GeV, 1 TeV.

Here ρE(r) denotes the Earth mass density profile. The hydrostatic 
equilibrium condition [Eq. (11)] can be rearranged to the form:

dN F2(r)

dr
= − N F2(r)

T (r)

(
mF2 g(r) + dT (r)

dr

)
. (13)

Solving Eq. (13) entails specifying a form for the Earth temperature 
and density profiles, T (r) and ρE (r) [the latter entering Eq. (13)
through the local gravitational acceleration profile, g(r)]. Follow-
ing [18], we adopt a linear approximation for the profiles obtained 
from the Preliminary Reference Earth Model [22]. Eq. (13) can now 
be solved to obtain the number density of captured F2 particles 
(some examples are shown in Fig. 1). Note that the obtained num-
ber density profile depends only on the mass of the dark matter 
particle, mF2 , and is independent of the other fundamental param-
eters.

Having estimated the number density profile of captured F2
particles, it is now straightforward to work out the shielding ra-
dius, Rs . We approximate the trajectories of the incoming dark 
matter particles by straight lines. Along the trajectory, the distance 
is traced by the coordinate q, in such a way that the point of 
closest approach to the center of the Earth (r = dmin) has q = 0. 
An incoming F2 particle is captured if it loses its energy to self-
interactions. We find, following a calculation completely analogous 
to that in [18], that an F2 particle is captured within the Earth if 
the following condition is satisfied:

qmax∫
qmin

nF2

(
r =

√
d2

min + q2

)
dq �

E2
i

4π Z ′4α′2 ln
[(

mF2
mF1

)( vrot
α′

)] ,

(14)

where, as a measure of the average initial energy of the F2
particles, we take 〈Ei〉 ≈ mF2 v2

rot/2. In the above, qmax,min =
±

√
R2

E − d2
min and R E � 6371 km is the Earth’s radius. For a given 

point in parameter space, we can solve Eq. (14) numerically by it-
erating over increasing values of dmin and determining the largest 
value of dmin for which the left-hand side of Eq. (14) exceeds the 
right-hand side. This value defines the shielding radius, Rs . Our 
numerical study determined that the solution displays a very mi-
nor dependence on mF1 , depending mainly on the remaining three 
parameters (mF2 , α′ and Z ′) and is currently:
Rs � 5300

(
α′

10−3

)0.06 ( mF2

10 GeV

)−0.55
( |Z ′|

10

)0.14

km . (15)

The above estimate [Eq. (15)] is valid to a good approximation 
within the range of parameter space: 5 × 10−4 � α′ � 5 × 10−2, 
5 GeV � mF2 � 300 GeV, 3 � |Z ′| � 40.

We point out a few caveats. From Fig. 1 it can be inferred that 
F2 particles might be able to escape the Earth if mF2 � 5 GeV. 
Thus, the analysis to follow is strictly only valid for mF2 � 5 GeV. 
Also, for mF2 sufficiently light, the shielding radius can exceed the 
Earth’s radius. If this occurs, our analysis will be invalid and for Rs
sufficiently large the halo dark matter wind will be shielded from 
all directions. This would suppress any diurnal modulation signal. 
In our analysis we assume that downward going F2 particles are 
unshielded (Rs � R E ), which from Eq. (15) implies:

mF2 � 7

(
α′

10−3

)0.11 ( |Z ′|
10

)0.25

GeV . (16)

4. Diurnal modulation signal

The captured dark matter particles will shield a dark matter 
detector located on the Earth from part of the halo dark matter 
wind. This effect can suppress the rate of F2-nuclei interactions 
observed in direct detection experiments. Importantly, relative to 
a given detector location, the direction of the halo wind changes 
during the day as the Earth rotates. Thus, the amount of shielding 
of the halo dark matter wind varies during the day, giving rise to 
a diurnal modulation effect. As we will discuss, given the direction 
of the Earth’s motion through the galaxy, this diurnal modulation 
effect is expected to be particularly enhanced for direct detection 
experiments located in the Southern hemisphere.

Let us denote by θl the detector’s latitude, by Td � 23.9345 hrs 
the sidereal day, and by θh the angle subtended by the Earth’s mo-
tion through the halo with respect to the Earth’s spin axis.6 We 
finally denote by ψ the angle between the direction of the Earth’s 
motion through the dark matter halo and the normal vector to the 
Earth’s surface at the relevant detector location. A value ψ = 0◦ in-
dicates that the dark matter halo wind is coming vertically down 
on the detector, while ψ = 180◦ indicates that the halo wind is 
approaching from the other side of the Earth, and hence transit-
ing in proximity of the center of the Earth. Because of the Earth’s 
rotation around its axis, ψ varies during the course of a sidereal 
day:

cosψ(t) = cos θl sin

(
2π

t

Td

)
sin〈θh〉 ± sin θl cos〈θh〉 . (17)

In Eq. (17), the +[−] sign holds for a detector located in the 
Northern [Southern] hemisphere respectively. This difference in 
sign plays a crucial role in the discussion to come, since it implies 
that ψ can be as large as ∼ 180◦ only in the Southern hemisphere, 
as shown in Fig. 2. Hence, a diurnal modulation signal is expected 
to be much more pronounced in the Southern hemisphere since, 
for part of the day, the dark matter particles are unable to reach 
the detector, having been blocked by the captured dark matter par-
ticles within the Earth.

We now proceed to quantify this suppression of the interaction 
rate due to dark matter capture. Let us define v to be the veloc-
ity of the halo dark matter particles relative to the Earth (with 
v = |v| being the magnitude of this velocity). Additionally define 

6 Because of the Earth’s motion around the Sun, θh varies slightly during the 
course of the year. We expect this to give rise to an additional annual modulation 
of the diurnal modulation effect; here we will ignore this effect, and will simply 
take the average value 〈θh〉 � 43◦ .
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Fig. 2. Variation of ψ(t) during the course of a sidereal day for a detector located in 
the Stawell mine (solid line) and under the Gran Sasso d’Italia (dashed line).

vE to be the velocity of the Earth relative to the galactic halo 
(〈|vE |〉 � 220 km/s). In the absence of any shielding of the halo 
dark matter particles, the differential interaction rate of F2 scatter-
ing off target nuclei is given by (see e.g. [18]):

dR

dE R
= NT nF2

(π v2
0)

3
2

∞∫
|v|>vmin(E R )

dσ

dE R
ve

− (v+vE )2

v2
0 d3 v , (18)

where NT denotes the number of target atoms per kg of de-
tector, nF2 is the number density of halo F2 particles (not to 
be confused with N F2 (r), the number density of captured F2
particles), and dσ/dE R is the relevant interaction cross-section 
[dσ/dE R = F 2

T 2πε2 Z ′2 Z 2α2/(mT E2
R v2), where mT is the mass of 

the target nuclei and F T is the form factor which accounts for 
their finite size]. Additionally, v0 is defined by Eq. (9), vmin =√

(mT + mF2 )
2 E R/(2mT m2

F2
) is a lower velocity limit determined 

by kinematics, and E R is the relevant recoil energy at which we 
wish to investigate the modulation effect.

Barring constant factors, and accounting for the dependence of 
the interaction cross-section on v , the interaction rate of halo F2
particles with the target nuclei in the detector is proportional to 
the quantity:

I0 ≡
2π∫
0

dφ

1∫
−1

d(cos θ)

∞∫
vmin

ve
− (v+vE )2

v2
0 dv . (19)

To account for dark matter capture and hence shielding of the dark 
matter halo wind, we multiply the integrand of Eq. (19) by a Heav-
iside step function:

I[ψ(t)]≡
2π∫
0

dφ

1∫
−1

d(cos θ)

∞∫
vmin

ve
− (v+vE )2

v2
0 H[dmin(θ,φ,ψ)− Rs]dv.

(20)

Recall Rs is the shielding radius, given in Eq. (15). The distance of 
closest approach, dmin, is given by [18]:

dmin =
{

R E

√
1 − g2(θ,φ,ψ) , if g(θ,φ,ψ) ≥ 0 ,

R E , if g(θ,φ,ψ) < 0 ,
(21)

where g(θ, φ, ψ) ≡ sin θ sin φ sin ψ − cos θ cosψ .
Fig. 3. Percentage rate suppression for a detector situated in the Stawell mine for 
mF2 = 10 GeV (solid line), mF2 = 100 GeV (dashed line), mF2 = 1 TeV (dot-dashed 
line). We have assumed α′ = 10−2, |Z ′| = 10, a recoil energy of 2 keV and an Na 
target (mT � 23mp ).

Fig. 4. Same parameters as per Fig. 3 except for a detector located in the Andes Lab.

We can now evaluate R(t), the percentage rate suppression due 
to dark matter shielding, where R = 100% indicates a total sup-
pression of the interaction rate:

R(t) = 100

(
1 − I[ψ(t)]

I0

)
% . (22)

In Figs. 3, 4 we present results for R(t) for proposed detectors 
located in the Stawell mine (near Melbourne, θl � 37.1◦) and in 
the Andes Lab (on the Argentinean–Chilean border, θl � 30.2◦). As 
the figures show, the diurnal modulation effect can be very large 
for these Southern hemisphere detectors. For a detector located in 
the Northern hemisphere, such an effect is instead expected to be 
much smaller, and hence more difficult to observe.

An important quantity is Rmax, the maximum value the per-
centage rate suppression reaches during the course of a sidereal 
day. In principle, Rmax is expected to depend on six parameters. 
Three of them are fundamental: mF2 , α′ and Z ′ . The other three 
are instead related to the experimental setup: mT , E R and θl , that 
is, the mass of the target nuclei, the relevant recoil energy and 
the latitude of the detector. To simplify our analysis, we shall fix 
θl focusing on two latitudes of particular interest: θl � 37.1◦ and 
θl � 30.2◦ , as discussed above. Further, our numerical analysis de-
termines that Rmax manifests a very minor dependence on the 



66 R. Foot, S. Vagnozzi / Physics Letters B 748 (2015) 61–66
target nuclei mass, mT , and the recoil energy, E R , for recoil ener-
gies in the range 0.1 keV � E R � 20 keV. The end result is that, at 
a fixed latitude, Rmax depends mainly on the three fundamental 
parameters: mF2 , α′ and Z ′ . For detectors located in the Stawell 
mine and at the Andes Lab, we find that the maximum percent-
age suppression rate during the course of a sidereal day can be 
roughly approximated by:

Rmax ≈ min

[
55

(
α′

10−3

)0.1 ( mF2

50 GeV

)−0.9
( |Z ′|

10

)0.6

%, 100%

]

(Stawell) ,

Rmax ≈ min

[
40

(
α′

10−3

)0.1 ( mF2

50 GeV

)−0.9
( |Z ′|

10

)0.6

%, 100%

]

(Andes) . (23)

The above results hold approximately within the region of param-
eter space: 5 × 10−4 � α′ � 5 × 10−2, 5 GeV � mF2 � 300 GeV, 
5 � |Z ′| � 40. Observe that for both of these locations Rmax � 10%
for nearly all of this parameter space.

5. Conclusion

Dissipative hidden sector dark matter appears to be a viable 
and interesting scenario which has the potential to explain the ob-
served properties of galaxies (as well as large-scale structure). This 
explanation entails nontrivial galactic dynamics with halo dissipa-
tive cooling balanced by heating. It has been shown that ordinary 
core-collapse supernovae can supply the required heating provided 
that kinetic mixing interaction with strength ε ∼ 10−9 exists. Such 
kinetically mixed dark matter can be probed by direct detection 
experiments. The self-interactions imply that this type of dark 
matter can be captured within the Earth and shield a dark matter 
detector from part of the halo dark matter wind. We have shown 
that, because the direction of this wind changes during the day, so 
does the amount of shielding, thereby giving rise to a diurnal mod-
ulation effect. This effect is expected to be particularly enhanced 
for a detector located in the Southern hemisphere because, for part 
of the day, the halo dark matter wind travels through the core of 
the Earth to reach the detector.

We have estimated the size of this effect, by computing the 
maximum rate suppression due to dark matter capture for two 
detectors located in the Southern hemisphere [Eqs. (23)]. Inter-
estingly, we have found that for a large range of parameters the 
maximum percentage rate suppression during the course of a side-
real day can be large (� 10%). Such an effect can potentially be 
observed in direct detection experiments located in the Southern 
hemisphere, and would be a smoking gun for self-interacting dark 
matter.
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