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Abstract

In this work we study the spatial behavior of solutions to some nonlinear hyperbolic equations with nonlinear boundary
conditions. Under suitable conditions, by using the weighted energy method, we prove that the solutions either cease to exist
for a finite value of the spatial variable or decay algebraically in the spatial variable.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, much attention has been devoted to the investigation of the spatial behavior of solutions to partial
differential equations and systems. The authors of paper [1] studied the spatial decay of solutions for a class of
diffusion–reaction equations with Dirichlet boundary conditions on a semi-infinite cylinder. The authors of paper [2]
investigated the spatial decay and growth estimates for solutions to the initial–boundary value problem for the linear
wave equation with the damping term under nonlinear boundary conditions. The spatial decay bounds for a class of
quasilinear parabolic equations have been established in paper [4]. In paper [7], the authors investigated the spatial
behavior of several nonlinear parabolic equations with nonlinear boundary conditions. They proved that, under suitable
conditions, the solutions cease to exist for a finite value of the spatial variable or decay algebraically in the spatial
variable.

Motivated by the ideas of [7], in this short work, we extend the results of [7] to a class of hyperbolic equations with
nonlinear boundary conditions. For more results related to this problem, we refer the reader to [3,5,6,8–10]. The main
method that will be used here is weighted energy integration.
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Let D be a two-dimensional bounded smooth domain. Throughout this work, we use the following notation:

R = {(x1, x2, x3)|x1 > 0, (x2, x3) ∈ D},

R(z) = {(x1, x2, x3)|x1 > z, (x2, x3) ∈ D},

D(z) = {(x1, x2, x3)|x1 = z, (x2, x3) ∈ D},

Σ (z) = {(x1, x2, x3)|x1 > z, (x2, x3) ∈ ∂ D}.

This work is concerned with the following equation:

s(x, ut )ut t = div
(
ρ(x, q2)∇u

)
+ E(x, ut ), q2

= |∇u |
2, x ∈ R, t > 0 (1.1)

with the boundary condition

ρ
∂u

∂n
+ f (u) = 0, x ∈ Σ (0), t > 0, (1.2)

and the initial condition

u(x, 0) = 0, ut (x, 0) = 0, x ∈ R, (1.3)

where ∂/∂n denotes the outward normal derivative on Σ (0) and, s, ρ, E and f are given functions. Obviously, if
f (u) ≡ 0, then this case corresponds to the homogeneous Neumann condition. In general, considering the well-
posedness of the problem, the boundary conditions should be imposed on the finite end (x1 = 0) of the cylinder. Since
our main attention is on studying the conditions under which the solutions cease to exist or decay algebraically, we do
not mention the explicit boundary conditions on the finite end of the cylinder.

2. Results and proof

Assume that there exists a positive constant ω such that

S(x, p) ≥ 0, ωS(x, p) − E(x, p)p ≥ γ |p|
2α, (2.1)

where γ is a positive constant, α > 1 and S(x, p) is defined by the conditions

∂S(x, p)

∂p
= s(x, p)p, S(x, 0) = 0. (2.2)

We also assume that f (u) satisfies

f (u) = F ′(u), F(u) ≥ 0, F(0) = 0 (2.3)

and

ρ(x, p) > 0, W (q2) =
1
2

∫ q2

0
ρ(x, p)dp, ρ2q2

≤ CW (q2), (2.4)

where C is a positive constant.
Throughout this work, we assume that the problem (1.1)–(1.3) admits a classical solution. Multiplying (1.1) by

e−ωt ut and integrating by parts over [0, t] × [z0, z] × D(z), we obtain∫ z

z0

∫
D(z)

e−ωt Sdx + ω

∫ t

0

∫ z

z0

∫
D(z)

e−ωt Sdxdτ

=

∫ t

0

∫
D(z)

e−ωtρux1ut dσdτ −

∫ t

0

∫
D(z0)

e−ωtρux1ut dσdτ

−

∫ z

z0

∫
∂ D(z)

e−ωt F(u)dσ − ω

∫ t

0

∫ z

z0

∫
∂ D(z)

e−ωt F(u)dσdτ

−

∫ z

z0

∫
D(z)

e−ωt W dx − ω

∫ t

0

∫ z

z0

∫
D(z)

e−ωt W dxdτ +

∫ t

0

∫ z

z0

∫
D(z)

e−ωt Eut dxdτ. (2.5)
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Let

Φ(z, t) = −

∫ t

0

∫
D(z)

e−ωtρux1ut dσdτ. (2.6)

Then we have by (2.1)

Φ(z, t) = Φ(z0, t) −

∫ t

0

∫ z

z0

∫
D(z)

e−ωt (ωW + P)dxdτ − ω

∫ t

0

∫ z

z0

∫
∂ D(z)

e−ωt F(u)dσdτ

−

∫ z

z0

∫
∂ D(z)

e−ωt F(u)dσ −

∫ z

z0

∫
D(z)

e−ωt Sdx −

∫ z

z0

∫
D(z)

e−ωt W dx, (2.7)

where P(x, ut ) = ωS − E(x, ut )ut .
If Φ(z, t) → 0 as z → ∞, it follows from (2.7) that

Φ(z, t) =

∫ t

0

∫
R(z)

e−ωt (ωW + P)dxdτ + ω

∫ t

0

∫
Σ (z)

e−ωt F(u)dσdτ

+

∫
Σ (z)

e−ωt F(u)dσ +

∫
R(z)

e−ωt Sdx +

∫
R(z)

e−ωt W dx . (2.8)

Differentiating (2.7) with respect to z yields

∂Φ(z, t)

∂z
= −

∫ t

0

∫
D(z)

e−ωt (ωW + P)dσdτ − ω

∫ t

0

∫
∂ D(z)

e−ωt F(u)dldτ

−

∫
∂ D(z)

e−ωt F(u)dl −

∫
D(z)

e−ωt Sdσ −

∫
D(z)

e−ωt W dσ. (2.9)

Now we estimate |Φ(z, t)|. From (2.6), by using Hölder’s inequality we have

|Φ(z, t)| ≤

(∫ t

0

∫
D(z)

e−ωtρ2q2dσdτ

) 1
2
(∫ t

0

∫
D(z)

e−ωt u2
t dσdτ

) 1
2

≤ C1(t)

(∫ t

0

∫
D(z)

e−ωt W dσdτ

) 1
2
(∫ t

0

∫
D(z)

e−ωt
|ut |

2αdσdτ

) 1
2α

, (2.10)

where

C1(t) = C
1
2

(∫ t

0

∫
D(z)

e−ωt dσdτ

) α−1
2α

= C
1
2

[
1 − e−ωt

ω
|D(z)|

] α−1
2α

.

For some positive constant ν, there holds

|Φ(z, t)| ≤ C1(t)

[(
να

∫ t

0

∫
D(z)

e−ωt
|ut |

2αdσdτ

) 1
α+1

(
ν−1

∫ t

0

∫
D(z)

e−ωt W dσdτ

) α
α+1

] α+1
2α

. (2.11)

With the help of Young’s inequality, we can obtain

|Φ(z, t)| ≤ C2(t)

[
να

∫ t

0

∫
D(z)

e−ωt
|ut |

2αdσdτ + αν−1
∫ t

0

∫
D(z)

e−ωt W dσdτ

] α+1
2α

, (2.12)

where C2(t) =
C1(t)
α+1 . Taking ν = (

αγ
ω

)
1

α+1 in (2.12), it follows that

|Φ(z, t)| ≤ C3(t)

[∫ t

0

∫
D(z)

e−ωt (ωW + P)dσdτ

] α+1
2α

≤ C3(t)

[
−

∂Φ(z, t)

∂z

] α+1
2α

, (2.13)
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where C3(t) = C2(t)( α
ω
)

1
2 γ −

α
2 . By (2.9), we see that ∂Φ(z,t)

∂z ≤ 0 for all z. If we assume that Φ(z0, t) < 0 for fixed t ,
then we have Φ(z, t) < 0 for all z ≥ z0. Therefore, we conclude that

−
∂Φ(z, t)

∂z
≥

(
−

Φ(z, t)

C3(t)

) 2α
α+1

. (2.14)

This implies

(−Φ(z, t))
1−α
1+α ≤ (−Φ(z0, t))

1−α
1+α −

α − 1
α + 1

C3(t)
−

2α
α+1 (z − z0). (2.15)

The inequality (2.15) shows that the solutions cease to exist for a finite value of z. Thus, we have proved the following
result:

Lemma 2.1. Let u be a solution of the initial–boundary value problem (1.1)–(1.3), where s, E and ρ satisfy Eqs.
(2.1)–(2.4). Assume that there exists z0 ≥ 0 such that Φ(z0, t) < 0; then the solution ceases to exist for a finite value
of z.

On the other hand, if we suppose that Φ(z, t) ≥ 0 for all z and fixed t , from (2.13) we can get

−
∂Φ(z, t)

∂z
≥

(
Φ(z, t)

C3(t)

) 2α
α+1

, (2.16)

which implies

Φ(z, t) ≤

[
Φ(0, t)

1−α
1+α +

α − 1
α + 1

C3(t)
−

2α
α+1 z

]−
α+1
α−1

. (2.17)

The inequality (2.17) gives a characterization of the spatial decay of the solution whenever it exists for all z ≥ 0. We
can state now the main result of this note:

Theorem 2.1. Let u be a solution of the initial–boundary value problem (1.1)–(1.3), where s, E and ρ satisfy (2.1)–
(2.4). Then, either the solution ceases to exist for a finite value of the spatial variable z or the solution satisfies the
decay estimate (2.17).

Remark 1. In a similar way, we can prove that the above results still hold for the case of homogeneous Dirichlet
boundary conditions.

It is worth noting that there are some typical examples of equations satisfying the conditions proposed in this work.
One paradigm is the following equation:

|ut |
εut t = k4u + λ|ut |

εut ,

where ε, k are positive constants and λ is an arbitrary parameter.
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