Large monochromatic components in colorings of complete 3-uniform hypergraphs

András Gyárfás \(^{a,}\)*, Penny Haxell \(^{b}\)

\(^{a}\) Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, P.O. Box 63, Budapest, H-1518, Hungary

\(^{b}\) C. and O. Department, University of Waterloo, Waterloo ON, Canada, N2L 3G1

* Corresponding author.

E-mail addresses: gyarfas@sztaki.hu (A. Gyárfás), pehaxell@math.uwaterloo.ca (P. Haxell).

0012-365X/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.09.004

Abstract

Let \(f(n, r) \) be the largest integer \(m \) with the following property: if the edges of the complete 3-uniform hypergraph \(K_3^n \) are colored with \(r \) colors then there is a monochromatic component with at least \(m \) vertices. Here we show that \(f(n, 5) \geq \frac{3}{4} n \) and \(f(n, 6) \geq \frac{5}{6} n \). Both results are sharp under suitable divisibility conditions (namely if \(n \) is divisible by 7, or by 6 respectively).

Keywords:

Hypergraph edge coloring

Monochromatic components

1. Introduction

A first exercise in graph theory – in fact an old remark of Erdős and Rado – states that for any graph \(G \), either \(G \) or its complement is connected. The following generalization (and the solution for \(r = 3 \)) was suggested in [3]: suppose that the edges of \(K_n \) are colored with \(r \) colors in any fashion, what is the order of the largest monochromatic connected subgraph? The answer for general \(r \), \(\left\lceil \frac{r + 1}{2} \right\rceil \), was given in [4] (it is sharp if \(r - 1 \) is a prime power and \(n \) is divisible by \((r - 1)^2 \)). This also follows from a result of Füredi [1] on fractional transversals of hypergraphs. The problem was generalized to hypergraphs in [2]. In the generalization, connectivity and components of hypergraphs are understood as follows. Let \(\mathcal{H} \) be a hypergraph. We say that \(\mathcal{H} \) is connected if the shadow graph of \(\mathcal{H} \), with vertex set \(V(\mathcal{H}) \) and edge set \(\{xy : xy \subseteq e \text{ for some } e \in E(\mathcal{H})\} \), is connected. A component of \(\mathcal{H} \) is a maximal connected subhypergraph. The main result of [2] says that any \(r \)-coloring of the edges of the complete \(t \)-uniform hypergraph on \(n \) vertices contains a connected monochromatic subhypergraph on at least \(\frac{n}{t} \) vertices, where \(q \) is the smallest integer satisfying \(r \leq \sum_{i=0}^{t-1} q^i \). The result is best possible if \(q \) is a prime power and \(n \) is divisible by \(q \).

The case \(t = 2 \) (with \(q = r - 1 \)) gives the graph case discussed above. This paper focuses on \(t = 3 \).

Let \(f(n, r) \) be the largest integer \(m \) with the following property: if the edges of the complete 3-uniform hypergraph \(K_3^n \) are colored with \(r \) colors then there is a monochromatic component with at least \(m \) vertices. Applying the result mentioned above for \(t = 3 \) we get that \(f(n, r) = \frac{n}{q} \) if \(r = q^2 + q + 1 \) with a prime power \(q \) and \(n \) is divisible by \(q^3 \). The case \(q = 2 \) solves \(r = 7 \) and the cases \(r \leq 4 \) are also solved in [2] (\(f(n, 3) = n \) and \(f(n, 4) \geq \frac{3}{4} n \) with equality if \(n \) is divisible by 4). The cases \(r = 5, 6 \) are left open and the purpose of this note is to fill this gap. We apply the proof method of Füredi used first in [1] (see also in [2]) which connects \(f(n, r) \) to fractional transversals of certain hypergraphs.

A hypergraph is \(r \)-partite if its vertices are partitioned into \(r \) classes and each edge intersects each class in exactly one vertex. A hypergraph is 3-wise intersecting if any three edges have nonempty intersection. A fractional transversal is a non-negative weighting of the vertices such that the sum of the weights over any edge is at least 1. The value of a fractional
transversal is the sum of the weights over all vertices of the hypergraph. Finally, \(\tau^*(\mathcal{H}) \) is the minimum of the values over all fractional transversals of \(\mathcal{H} \). We use the following lemma from [2].

Lemma 1. Let \(\tau^*(r) \) be defined as the maximum of \(\tau^*(\mathcal{H}) \) over all \(r \)-partite 3-wise intersecting hypergraphs \(\mathcal{H} \). Then \(f(n, r) \geq \frac{n}{r^{(r-1)/r}} \).

Theorem 1. \(f(n, 5) \geq \frac{5n}{7} \) and this is sharp if \(n \) is divisible by 7.

Proof. We start with a construction, showing that \(f(n, 5) \) is not larger than the claimed value if \(n \) is divisible by 7. Let \(n = 7k \) and partition \([n] = \{1, \ldots, n\} \) into seven \(k \)-element sets, \(X_i \). We define five subsets \(I_j \subset [7] \) as

\[
I_1 = \{1, 4, 5, 6, 7\}, \quad I_2 = \{2, 4, 5, 6, 7\}, \quad I_3 = \{3, 4, 5, 6, 7\}, \quad I_4 = \{2, 3, 6, 7\}, \quad I_5 = \{1, 2, 3, 4, 5\}.
\]

Observe that every triple of \([7] \) is covered by at least one \(I_j \). Thus every triple \(T \subset [n] \) is covered by at least one of the five sets \(A_j = \{\cup_{i \in I_j} X_i\} \). Color \(T \) with color \(j \) where \(j \) is the smallest index such that \(T \subset A_j \). Clearly each triple of \([n]\) is colored with one of five colors and there is no monochromatic component of size larger than \(5k = \frac{5n}{7} \).

On the other hand, \(f(n, 5) \geq \frac{5n}{7} \) follows from **Lemma 1** if we show that \(\tau^*(\mathcal{H}) \leq \frac{5}{7} \) holds for every 5-partite 3-wise intersecting hypergraph \(\mathcal{H} \). We shall define only the non-zero weights \(w(x) \) for \(x \in V(\mathcal{H}) \). Let \(A_j \) denote the vertex classes of \(\mathcal{H} \), vertices in \(A_j \) will be indexed with \(j \). Note that if there are two edges \(e, f \in E(\mathcal{H}) \) with \(|e \cap f| = 1 \) then all edges of \(\mathcal{H} \) intersect and \(\tau^*(\mathcal{H}) = 1 \) follows. Thus we may assume that any two edges of \(\mathcal{H} \) intersect in at least two vertices.

Case (i): there exist \(e, f \in E(\mathcal{H}) \) with \(|e \cap f| = 2 \). Assume \(e = \{x_1, x_2, y_3, y_4, y_5\}, f = \{x_1, x_2, z_3, z_4, z_5\} \). Set \(Y = \{y_3, y_4, y_5\}, Z = \{z_3, z_4, z_5\} \). Using that \(\mathcal{H} \) is 3-wise intersecting, it follows that the edge set of \(\mathcal{H} \) can be partitioned into \(E_1, E_2, E_3 \) where

\[
E_1 = \{h \in E(\mathcal{H}) : x_1, x_2, h \in h\}, \quad E_2 = \{h \in E(\mathcal{H}) : x_1, h, x_2 \notin h\}, \quad E_3 = \{h \in E(\mathcal{H}) : x_2, h, x_1 \notin h\}.
\]

We may assume that \(E_1, E_2 \) are both non-empty otherwise – as before – all edges of \(\mathcal{H} \) intersect and \(\tau^*(\mathcal{H}) = 1 \).

Assume first that there is a pair of edges \(e_1 \in E_1, e_2 \in E_2 \) such that \(e_1, e_2 \) intersect on \(A_3 \cup A_4 \cup A_5 \) in a 3-element set \(T = \{t_1, t_2, t_3\} \). Since \(e, e_1, e_2 \) each intersect in at least two vertices, \(T \cap Y, T \cap Z \) are non-empty sets, at least one of them, say \(T \cap Z \) has exactly one element. We may suppose without loss of generality that \(t_3 \neq y_5 \). Since \(E_1 \neq E_2 \), then \(\mathcal{H} \) is 3-wise intersecting T and \(T \cap Z \) is empty, thus assigning \(1 \) to each element of \(Z \) gives a fractional transversal of value \(\frac{3}{5} < \frac{5n}{7} \) finishing this part of the proof.

Fix \(t_5 = y_5 \) as, in the argument above, the existence of the triple intersections \(e \cap e_1 \cap b, e \cap e_2 \cap a, f \cap e_2 \cap a, f \cap e_1 \cap b \) for \(a \in E_1, b \in E_2 \) imply that all edges of \(E_1 \cup E_2 \) contain \(t_5 \). If there exists an edge \(e_{12} \in E_{12} \) such that neither \(t_3 \) nor \(t_4 \) is in \(e_{12} \) then the existence of the triple intersections \(e_{12} \cap e_1 \cap b, e_{12} \cap e_2 \cap a \) for \(a \in E_1, b \in E_2 \) imply that all edges of \(E_1 \cup E_2 \) contain \(t_3 \) as well. Moreover, then all edges of \(E_{12} \) must also contain \(t_3 \). Now every edge in \(E_1 \cup E_2 \) intersects \(\{x_1, x_2\} \) in one and intersects \(T \) in three elements; every edge of \(E_{12} \) intersects \(\{x_1, x_2\} \) in two and \(T \) in at least one element. Thus the weight assignment \(w(x_1) = w(x_2) = \frac{2}{5}, w(t_3) = w(t_4) = w(t_5) = \frac{1}{5} \) is a fractional transversal of \(\mathcal{H} \) with value \(\frac{7}{5} \).

If every edge in \(E_{12} \) intersects \(\{t_3, t_4\} \) then every edge in \(E_1 \cup E_2 \) intersects \(S = \{x_1, x_2, t_3, t_4\} \) in at least three elements thus assigning \(\frac{1}{5} \) to each element of \(S \) gives a fractional transversal of value \(\frac{3}{5} < \frac{5n}{7} \) finishing this part of the proof.

Now we may assume that any pair of edges \(e \in E_1, e \in E_2 \) intersect on \(A_3 \cup A_4 \cup A_5 \) in a set of at most two elements. Fix \(e_1 \in E_1, e_2 \in E_2 \). In fact – since the triple intersections \(e_1 \cap e_2 \cap a, e_1 \cap e_2 \cap b \) exist – \(e_1 \) and \(e_2 \) intersect on \(A_3 \cup A_4 \cup A_5 \) in a two-element set \(T = \{t_3, t_4\} \) say \(t_3 = y_3, t_4 = z_4 \). Since \(e_1, e_2 \) do not intersect on \(A_5 \), \(t_3, t_4 \) \(e_1 \cap e_2 \) the triple intersections \(e_1 \cap e_2 \cap a \) or \(e_1 \cap e_2 \cap b \) imply \(t_3 \in E_1, t_4 \in E_2 \). Since each intersection \(a \cap b \) for \(a \in E_1, b \in E_2 \) has at least two elements, one of \(t_3, t_4 \), say \(t_3 \) is in all edges of \(E_1 \cup E_2 \). Moreover each \(e_{12} \in E_{12} \) must intersect \(\{t_3, t_4\} \) because of the triple intersection \(e_{12} \cap e_1 \cap e_2 \). If \(t_4 \) is also in all edges of \(E_1 \cup E_2 \) then \(\{x_1, x_2, t_3, t_4\} \) intersects every edge of \(E_1 \cup E_2 \) in at least three elements, implying a fractional transversal of value \(\frac{4}{5} \). Otherwise \(E' = \{b \in E_2 : t_4 \cap b \neq \emptyset\} \neq \emptyset \). In this case, since \(|b \cap f| \geq 2 \) we see that each \(b \in E' \) contains \(z_5 \). Looking at \(b \cap a \) for \(a \in E_1, b \in E' \) tells us that \(z_5 \in a \) as well. Finally, \(b \cap e_1 \cap e_{12} \)
shows us that if \(t_3 \notin e_{12} \) for some \(e_{12} \in E_{12} \) then \(z_5 \in e_{12} \) (and we know that \(t_3 \notin e_{12} \) implies \(t_4 \in e_{12} \)). Summing up, we find that for each \(a \in E_1, x_1, t_3, t_4, z_5 \in a, \) and for each \(b \in E_2, x_2, t_3 \in b \) and \((t_4 \cup z_5) \cap b \) is nonempty. For each \(e_{12} \in E_{12}, x_1, x_2 \in e_{12} \) and either \(t_3 \in e_{12} \) or \(\{t_4, z_5\} \subseteq e_{12} \). Now the weighting \(w(t_3) = w(x_2) = \frac{1}{2}, w(x_1) = w(t_4) = w(z_5) = \frac{1}{2} \) gives the required fractional transversal.

Case (ii): Any two distinct \(e, f \in \mathcal{H} \) intersect in at least three vertices. Assume first that there is a pair \(e, f \in \mathcal{H} \) intersecting in three elements, \(e = \{x_1, x_2, x_3, x_4, x_5\}, f = \{x_1, x_2, x_3, y_4, y_5\} \). Observe then that every edge must intersect \(\{x_1, x_2, x_3\} \) in at least two elements. Again, if the set of edges \(E_i \) that intersect \(\{x_1, x_2, x_3\} \) in \(\{x_i, x_j\} \) is empty for some pair \(i, j \in [3] \) then, for \(k = [3] \setminus \{i, j\} \), all edges of \(\mathcal{H} \) contain \(x_k \) and \(\tau^*(\mathcal{H}) = 1 \). Thus these sets \(E_i \) are non-empty. Selecting \(e_{12} \in E_{12}, e_{13} \in E_{13}, e_{23} \in E_{23} \), the assumptions on the intersection sizes imply that for each of the three pairs of indices \(e_{ij} \cap (A_k \cup A_j) \) is the same pair, say \(\{x_4, y_5\} \). Any edge \(e_{23} \) that contains all of \(\{x_1, x_2, x_3\} \) must also intersect \(\{x_4, y_5\} \), otherwise \(|e_{23} \cap e_{12}| \leq 2 \). Now assigning \(w(x_1) = w(x_2) = w(x_3) = \frac{1}{2}, w(x_4) = w(y_5) = \frac{1}{2} \) we have a fractional transversal of \(\mathcal{H} \) with value \(\frac{5}{2} \).

Finally, if each pair of edges of \(\mathcal{H} \) intersect in at least four elements, we can assign weight \(\frac{1}{2} \) to vertices of any fixed edge. This gives a fractional transversal of \(\mathcal{H} \) with value \(\frac{5}{4} < \frac{7}{2} \). \(\square \)

Theorem 2. \(f(n, 6) \geq \frac{2n}{3} \) and this is sharp if \(n \) is divisible by 6.

Proof. To show that \(f(n, 6) \) is not larger than claimed value if \(n \) is divisible by 6, let \(n = 6k \) and partition \([n]\) into six \(k\)-element sets, \(X_i \). We define six subsets \(I_j \subseteq [6] \) as

\[
I_1 = \{3, 4, 5, 6\}, \quad I_2 = \{1, 4, 5, 6\}, \quad I_3 = \{2, 4, 5, 6\}, \\
I_4 = \{1, 2, 3, 6\}, \quad I_5 = \{1, 2, 3, 4\}, \quad I_6 = \{1, 2, 3, 5\}.
\]

Observe that every triple of \([6]\) is covered by at least one \(I_j \). Thus every triple \(T \subseteq [n] \) is covered by at least one of the six sets \(A_I = \{\cup_{j \in I} X_i\} \). Color \(T \) with color \(j \) where \(j \) is the smallest index such that \(T \subseteq A_j \). Clearly each triple of \([n]\) is colored with one of six colors and there is no monochromatic component of size larger than \(4k = \frac{2n}{3} \).

As in the proof of Theorem 1, \(f(n, 6) \geq \frac{2n}{3} \) follows from Lemma 1 if we show that \(\tau^*(\mathcal{H}) \leq \frac{3}{2} \) holds for every 6-partite 3-wise intersecting hypergraph \(\mathcal{H} \). To see that, let \(A_I \) denote the vertex classes of \(\mathcal{H} \). Note that if there are two edges \(e, f \in E(\mathcal{H}) \) with \(|e \cap f| = 1\) then all edges of \(\mathcal{H} \) intersect and \(\tau^*(\mathcal{H}) = 1 \) follows. Thus we may assume that any two edges of \(\mathcal{H} \) intersect in at least two vertices. We basically follow the argument of the proof of Theorem 1.

Case (i): There exist \(e, f \in E(\mathcal{H}) \) with \(|e \cap f| = 2\). Set \(e \cap f = \{x_1, x_2\} \) and define

\[
E_{12} = \{h \in E(\mathcal{H}) : x_1, x_2 \in h\}, \quad E_1 = \{h \in E(\mathcal{H}) : x_1 \in h, x_2 \notin h\}, \quad E_2 = \{h \in E(\mathcal{H}) : x_2 \in h, x_1 \notin h\}.
\]

Then as before \(\mathcal{H} = E_1 \cup E_2 \cup E_{12} \).

Let \(E_1 = \{a_1, a_2, \ldots, a_1\}, E_2 = \{b_1, b_2, \ldots, b_1\} \). We may assume that \(E_1, E_2 \) are both nonempty, otherwise – as before – all edges of \(\mathcal{H} \) intersect and \(\tau^*(\mathcal{H}) = 1 \). Notice that \(a_i \cap b_j \subseteq \cup_{k=1}^6 A_i \) for any \(a_i \in E_1, b_j \in E_2 \).

If all edges of \(E_1 \cup E_2 \) have a common vertex \(v \) then assigning weight \(\frac{1}{2} \) to the vertices in \(\{x_1, x_2, v\} \) we have a fractional transversal of value \(\frac{1}{2} \) and the proof is finished. Thus we may suppose that

\[
\bigcap_{i \in [6]} a_i \cap \bigcap_{j \in [6]} b_j = \emptyset. \quad (1)
\]

Lemma 2. Suppose there exist distinct edges \(a_1, a_2 \in E_1, b_1, b_2 \in E_2 \) such that \(a_1 \cap a_2 \cap b_1 \cap b_2 = \emptyset \). Then \(\tau^*(\mathcal{H}) \leq \frac{3}{2} \).

Proof. Observe that the four triple intersections among these edges are all disjoint (and nonempty). Let \(U \) denote the union over all four triple intersections, so \(|U| \geq 4\). Note that if \(x, x' \in U \) then one of (in fact, at least two of) \(a_1, a_2, b_1, b_2 \) contain both \(x \) and \(x' \). Thus we cannot have distinct \(x, x' \) in the same partite class \(A_i \). Therefore \(U = \{x_3, x_4, x_5, x_6\} \) for some \(x_i \in A_i \) for \(i = 3, 4, 5, 6 \), and we may assume without loss of generality that

\[
x_3 \in (a_1 \cap b_1 \cap b_2) \setminus a_2, x_4 \in (a_2 \cap b_1 \cap b_2) \setminus a_1, \\
x_5 \in (a_1 \cap a_2 \cap b_1) \setminus b_2, x_6 \in (a_1 \cap a_2 \cap b_2) \setminus b_1. \quad (2)
\]

We observe that – apart from the exceptional case when \(a_1 \cap U = \{x_3, x_4\} \) – each edge \(a_1 \in E_1 \) intersects \(U \) in at least three vertices. Indeed, if \(a_1 \cap U \subseteq \{x_3, x_4\} \) then the triple intersection \(a_1 \cap a_2 \cap b_2 \) is missing. If \(a_1 \cap U \subseteq \{x_4, x_5\} \) then \(a_1 \cap a_1 \cap b_1 \) is missing. Similarly, \(a_1 \cap U \subseteq \{x_3, x_5\} \) and \(\{x_4, x_5\} \) and \(\{x_5, x_6\} \) in turn imply the missing intersections \(a_1 \cap a_2 \cap b_1, a_1 \cap a_1 \cap b_2, a_1 \cap b_1 \cap b_2 \).

(The argument in the exceptional case would require missing \(a_1 \cap a_1 \cap a_2 \) but that intersection is present at \(x_1 \).)

Similarly, apart from the exceptional case when \(b_1 \cap U = \{x_5, x_6\} \), each edge of \(b_1 \in E_2 \) intersects \(U \) in at least three vertices. Finally, observe that any \(e_{12} \in E_{12} \) intersects \(U \) in at least two vertices. Indeed, \(e_{12} \cap U \subseteq \{x_i\} \) for some \(i \in \{3, 4, 5, 6\} \).
would contradict the existence of the triple intersection $e_{12} \cap a_i \cap b_j$ where $i, j \in \{2\}$ such that one of a_i, b_j does not contain x_i. Consider $e_{12} \in E_{12}$ exceptional if $e_{12} \cap \{x_3, x_4\}$ or $e_{12} \cap \{x_5, x_6\}$.

Based on the above observations we can define the required fractional transversal as follows. If no edge in $E_1 \cup E_2$ is exceptional, $w(x_i) = \frac{1}{4}$ for $i = 1, 2, \ldots, 6$ is suitable. If there exists an exceptional edge in $E_1 \cup E_2$, say a_i, then no $b_j \in E_2$ can be exceptional (otherwise $a_i \cap b_j$ cannot exist) — in fact the following stronger statement is true for any b_j: if $\{x_3, x_5\} \subseteq b_j$ then $U \subseteq b_j$. Indeed, $U \cap b_j = \{x_3, x_5, x_6\}$ (or $\{x_3, x_5, x_6\}$) contradicts the existence of $a_i \cap b_j \cap a_1(a_i \cap b_j \cap a_2)$. Moreover no $e_{12} \in E_{12}$ is exceptional with $e_{12} \cap \{x_3, x_5\}$ otherwise $e_{12} \cap a_i \cap b_j$ cannot exist. These properties ensure that $w(x_1) = w(x_3) = w(x_4) = \frac{1}{2}$, $w(x_2) = w(x_5) = w(x_6) = \frac{1}{6}$ is a suitable fractional transversal. □

By Lemma 2, from now on we may suppose that
\[a_1 \cap a_i \cap b_j \cap b_i \neq \emptyset \]
for every choice of the indices (if $i = j$ or $k = l$ the 3-wise intersecting property ensures it).

Because of (1) we can select a minimal nonintersecting subfamily of $E_1 \cup E_2$, that is $S \subseteq [s], T \subseteq [t]$ such that
\[\bigcap_{i \in S} a_i \cap \bigcap_{j \in T} b_j = \emptyset \]
but for any proper subset $S_1 \cup T_1 \subset S \cup T$

\[\bigcap_{i \in S_1} a_i \cap \bigcap_{j \in T_1} b_j \neq \emptyset. \tag{3} \]

Since $A = \bigcap_{l \in [s]} a_l \cap \bigcap_{j \in [t]} b_j$ are both nonempty ($x_1 \in A, x_2 \in B$), it follows that S, T are nonempty. Moreover $|S \cup T| \geq 4$ because \mathcal{H} is 3-wise intersecting. Set $u = |S \cup T|$. Then by choice of $S \cup T$, all $(u - 1)$-wise intersections of elements of $S \cup T$ are disjoint and nonempty, so their union U has size at least u, and as in the proof of Lemma 2 no two vertices in U are in the same partite class A_i. Thus if $|S|, |T| \geq 2$ then $U \subseteq \bigcup_{k=3}^6 A_k$, implying that $u = 4$. But then the assumptions of Lemma 2 hold, so the proof is done in this case.

Thus we may assume that one of S, T has one element only, say $T = \{1\}$. In this case $x_1 \in U$ and $x_2 \notin U$, so $U \subseteq \{x_1\} \cup \{x_3, x_5\}$ $\cup \{x_4, x_6\}$, implying that $u = 4$ or $u = 5$. In both cases, without loss of generality we may select three vertices $X = \{x_3, x_4, x_6\}$ from U with $x_i \in A_i$ for $i = 3, 4, 5$ as follows:

\[x_3 \in (a_1 \cap a_2 \cap b_1) \setminus a_3, x_4 \in (a_1 \cap a_3 \cap b_1) \setminus a_2, x_5 \in (a_2 \cap a_3 \cap b_1) \setminus a_1. \tag{4} \]

Lemma 3. Suppose there exists $a_i \in E_1$ such that $|a_i \cap X| \leq 1$. Then $\tau^+(\mathcal{H}) \leq \frac{3}{2}$.

Proof. Suppose without loss of generality that $a_1 \cap X \times \{x_3, x_4\} = \emptyset$. Then, for each $b_j \in E_2$, the (nonempty) quadruple intersection $a_1 \cap a_i \cap b_1 \cap b_j$ must in A_6. This is possible only if all b_j’s intersect on A_6, say in a vertex $x_6 \in a_3 \cap a_i \cap b_1$. Because of (1) the set $K = \{k \in \{x \mid x \in [s] \setminus \{a_k\}\}$ is nonempty. For every $k \in K, j \in [t]$ the quadruple intersection $a_k \cap a_i \cap b_1 \cap b_j$ contains x_3. This implies $x_3 \in B \cap (\bigcap_{k \in K} a_k)$.

Reversing the argument, $L = \{l \in [s] \mid x_l \notin a_i\}$ is nonempty implying that for every $l \in L, j \in [t]$ the quadruple intersection $a_l \cap a_i \cap b_1 \cap b_j$ contains x_6, implying $x_3 \in B \cap (\bigcap_{k \in K} a_k)$. Thus each edge in E_1 contains x_3 and at least one vertex of $\{x_3, x_4\}$. Every edge in E_2 contains both x_3, x_5 and every $e_{12} \in E_{12}$ contains x_3 and also at least one vertex of $\{x_3, x_4\}$ because the triple intersection $e_{12} \cap a_i \cap b_i$ is nonempty. Therefore $w(x_1) = w(x_3) = w(x_6) = \frac{1}{2}$ is a required fractional transversal. □

By Lemma 3 we may suppose from now on that every edge $a_i \in E_1$ meets X in at least two elements.

Claim: Either $X \subseteq B$ or $B \cap A_6 \neq \emptyset$. Indeed, if an element of X, say $x_3 \notin B$, for some $i \in [t]$ then the quadruple intersection $a_i \cap a_3 \cap b_1 \cap b_m$ is in A_6 for all $m \in [t]$. This implies that $B \cap A_6 \neq \emptyset$. The argument works similarly if x_4 or x_5 plays the role of x_3 considering $a_1 \cap a_3 \cap b_1 \cap b_m$ or $a_2 \cap a_3 \cap b_1 \cap b_m$, proving the claim.

We look at the two cases of the claim. If $X \subseteq B$ holds then $w(x_1) = \frac{1}{2}, w(x_2) = w(x_3) = w(x_4) = w(x_5) = \frac{1}{4}$ is a required fractional transversal. Indeed, each $a_i \in E_1$ contains x_1 and at least two elements of X, each $b_j \in E_2$ contains x_3 and all X. Each $e_{12} \in E_{12}$ contains x_1, x_2 and at least one element of X otherwise — considering the triple intersections $e_{12} \cap a_i \cap b_i$ — all a_i, b_i should intersect in A_6, contradicting (1). Thus we may assume that $X \subseteq B$ does not hold.

Select $x_6 \in A_6 \cap B$. By definition of S, at least one a_i with $j \notin S$ does not contain x_6, say $x_6 \notin a_1$. We show that $\{x_4, x_5\} \subseteq B$. Indeed, if $x_4 \notin a_k \cap x_5 \notin a_k$ then the quadruple intersection $a_k \cap a_3 \cap b_1 \cap b_j(a_2 \cap a_3 \cap b_1 \cap b_j)$ does not exist.

Therefore since $X \subseteq B$ does not hold, we know $x_3 \notin b_j$ for some $j \in [t]$. Define $K = \{k \in \{s\} \mid x_k \notin a_k\}$ as before. We show that for each $k \in K, \{x_3, x_4\} \subseteq a_k$. Indeed, if $x_4 \notin a_k \cap x_5 \notin a_k$ for some $k \in K$ then $a_1 \cap a_3 \cap b_1 \cap b_j(a_2 \cap a_3 \cap b_1 \cap b_j)$ does not exist.

Now we finish the proof by showing that $w(x_1) = \frac{1}{2}, w(x_2) = w(x_4) = w(x_5) = w(x_6) = \frac{1}{4}$ is a required fractional transversal. Notice that for every $a_i \in E_1 \text{ either } x_6 \in a_i \text{ or } i \in K \text{ and } \{x_4, x_5\} \subseteq a_i$. This property and that every a_i contains at least one of x_4, x_5 ensures that the weight of a_i is at least one. The weighting is also good for every $b_j \in E_2$ since $\{x_2, x_4, x_5, x_6\} \subseteq B$. Finally, each $e_{12} \in E_{12}$ contains x_1, x_2 and at least one vertex of $\{x_3, x_4, x_5\}$ because $e_{12} \cap a_3 \cap b_1 \neq \emptyset$. Thus the weighting is a required fractional transversal. □

Case (ii): $|e \cap f| \geq 3$ for each $e, f \in E(\mathcal{H})$. In this case let us first suppose that there exist e and f such that $e \cap f = M$ where $|M| = 3$. Then we define a fractional transversal by giving weight $\frac{1}{2}$ to each vertex in M. This is valid because every other edge g must intersect M in at least two vertices — otherwise either $|g \cap e| \leq 2$ or $|g \cap f| \leq 2$, contradicting the assumption
for Case (ii). Thus we have a fractional transversal of value $\frac{3}{2}$. Thus we may suppose that every pair of edges intersects in at least four vertices. Let e and f be an arbitrary pair and let $M \subseteq e \cap f$ be a set of size four. Define a fractional transversal by weighting each vertex of M with $\frac{1}{3}$. Now every other edge g intersects M in at least three vertices — otherwise either $|g \cap e| \leq 3$ or $|g \cap f| \leq 3$, contradicting our assumption. Now we get a fractional transversal of value $\frac{4}{3} < \frac{3}{2}$. □

Acknowledgments

The first author’s research was supported in part by OTKA Grant No. K68322. The second author’s research was supported in part by NSERC.

References