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1. INTRODUCTION 

We consider the differential equation 

u,-du+&-2(u3-u)=o (1.1) 

in a bounded domain Q c W, n > 2, with appropriate initial and boundary 
data. Our interest is in the limiting behavior of u = U’ as E + 0. Formal 
analysis suggests the following picture: ~8 separates Q into two regions, 
where U&Z +l and ~8% - 1, respectively, and the interface between them 
moves with normal velocity equal to the sum of its principal curvatures. 
Our goal here is to present two rigorous results which tend to confirm this 
picture. The first is a compactness theorem: we show that as E + 0, the 
solutions of (1.1) are in a certain sense compact as functions of space-time 
(see Theorem 2.3 and Remark 2.5). Thus it makes sense to discuss the 
limiting behavior. Our second result is a verification of the picture for cer- 
tain radial solutions: we prove that lim,,, U’ exists and has the expected 
form if Q is a ball, U’ is radial with one transition sphere, and the boundary 
condition is of Dirichlet type (see Theorem 3.1). 
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The scaling of (1.1) has been chosen so that the associated motion by 
mean curvature takes place on a time scale of order one. Studying (1.1) is 
equivalent to considering the solution of 

w,-e2Aw+w3-w=O (1.2) 

on a time scale of order ae2, since w(x, s) solves (1.2) if and only if 
24(x, t) = w(x, c*t) solves (1.1). 

The link between (1.1) and motion by mean curvature was first (to our 
knowledge) observed by Allen and Cahn [l] on the basis of a formal 
analysis. A much more systematic treatment, still formal in character, was 
given by Rubinstein, Sternberg, and Keller in [36]. The behavior of (1.1) 
in one space dimension is somewhat different, since then the transitions are 
at points rather than along surfaces, so curvature plays no role; this 
problem has been treated in [7,10, 11,20,21]. Prior to our work the only 
rigorous result in a multidimensional context was due to Freidlin and 
Ggirtner [19,23]; when applied to (1.2) their analysis shows that w(x, s) 
evolves on a time scale longer than e-l. Section two of this paper estab- 
lishes conclusively that the proper time scale for the evolution of w is in 
fact s - E-~, see especially Remark 2.4. Since the completion of our work de 
Mottoni and Schatzman have proved a result similar to our Theorem 3.1 
without the hypothesis of radial symmetry [16]. Although our result is 
more limited in scope than that of [16], we feel that it remains of inde- 
pendent interest, because the proof is totally different. 

The study of (1.1) is of value both for understanding phase transitions, 
and as a tool for discussing motion by mean curvature. In the former direc- 
tion, we note that this equation was proposed in [l] as a model for the 
motion of antiphase boundaries in crystalline solids. It is a non-conser- 
vative or “type A” Ginzburg-Landau equation, in the terminology of [26]. 
There are a number of other situations where Ginzburg-Landau type 
dynamics leads through a singular limit to a geometric model for phase 
boundary motion, see, e.g., [8, 9, 351. We hope that the tools developed 
here may help shed some light on these more difficult problems as well. As 
for geometric motivation, we note that motion by mean curvature has been 
the object of much recent interest among geometers, e.g., [2, 3, 5, 22, 25, 
401. Local-in-time existence and uniqueness of a classical solution was 
proved in [27]. If the initial data are suitably restricted, then the solution 
remains a classical one until it shrinks to a point [22, 25,281; however, in 
general the surface can develop singularities, beyond which the meaning of 
“motion by mean curvature” is unclear. The first attempt to define a 
generalized solution was due to Brakke [S]. He proved the global-in-time 
existence of a weak solution in the class of codimension-one varifolds; the 
uniqueness of such a solution is unfortunately not known. A more success- 
ful notion of weak solution has recently been developed independently by 
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Chen et al. [ 121 and Evans and Spruck [ 173. They prove the existence of 
a unique viscosity solution of a certain degenerate parabolic equation; 
where the solution is smooth, its level sets execute “flow by mean cur- 
vature.” The singular limit (1.1) provides a third alternative. We conjecture 
that it gives an example of a weak solution in the sense of [S]. It should 
be noted however that, like Brakke, we lack a uniqueness theorem: for all 
we know, different sequences sj + 0 might produce different limits. We hope 
that the model of motion by mean curvature obtained through (1.1) might 
be the same as that studied in [12, 171; if so, this would lend enhanced 
credibility to both approaches.f 

Viewed from the perspective of (1.2) we are studying an example of 
dynamical metastability, i.e., a pattern which persists for a long time though 
it eventually disappears. It is well known that as s -+ cc any solution of 
(1.2) is asymptotically stationary [31]; for generic initial data w tends to 
a local minimum of the “energy” 

(1.3) 

The solutions of (1.2) under consideration here are in no sense near to 
critical points of the energy, but they nevertheless evolve slowly, on a time 
scale s N C2. Such a phenomenon is to be expected when an evolution 
equation has a Liapunov function with a small parameter E, if there are 
more (local) minima at E = 0 than at E > 0. This is the case for (1.3): when 
E = 0 any measurable w taking the values + 1 is a minimizer, while for E > 0 
the perimeter of the transition interface becomes important, see, e.g., 
[32, 381. 

The analysis of de Mottoni and Schatzman is based on the use of an 
ansatz for the form of u’, and on estimates for the linearization of (1.1) 
about this ansatz. Our method is totally different, much closer in spirit to 
recent studies of the stationary problem which makes use of the notion of 
r-convergence [4, 18, 29, 30, 32, 33, 38, 391. It is convenient to normalize 
the energy so as to keep it positive and finite as E -+ 0; we therefore set 

(1.4) 

It is easy to verify that the solution u = U’ of (1.1) with a suitable boundary 
condition satisfies 

z A result of this type has recently been announced by L. C. Evans, M. Soner, and 
P. Souganides. 
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for any T > 0. Thus control over the energy of the initial data gives control 
over the energy at any time, and also an estimate for the space-time 
integral of u:. Modica showed in [32] how a bound on E, leads to com- 
pactness at any fixed time; our Theorem 2.3 is proved similarly, making 
use of the extra estimate on U: to obtain compactness in space-time. 

Our analysis of the radial problem begins by changing variables into a 
moving coordinate system with respect to which ~8 should be asymptoti- 
cally stationary. If the initial data have their transition at radius rO, then 
the expected radius of the transition at time t is Y = p(t), where 

. -(n-l) 
p= p(t) ’ P(O) = ro. 

Setting v’(R, r) = u”@(r) + R, r), we see that uE has its transition at r= p(t) 
exactly if oE has its transition at R = 0. One computes that Eq. (1.1) for u 
is equivalent to 

R 
VT - vRR + tn - l) p(z)(R + p(z)) vR + & --2(u3-u)=o, (1.5) 

which differs from the one-dimensional version of (1.1) only by the 
presence of a first order term. We used an energy-based argument in [7] 
to study (1.1) in one space dimension; the conclusion there was that the 
transitions move slower than any power of E. Our analysis of (1.5) is 
similar, though considerably more complicated due to the presence of the 
first order term. A central role is played by the weighted “energy” 

(1.6) 

with 

q4(R, t) = ec’“- 

which turns out to be a Liapunov functional for (1.5), see Proposition 3.2. 
When transformed back to the original variables, (1.6) becomes 

(1.7) 

with 
$(r, t)=p(t)-(“-‘)e-‘“-“C’/P”‘--l. 

Thus while our compactness theorem makes use of the “natural” energy E,, 
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our radial theorem relies instead on the somewhat bizarre Liapunov 
functional (1.7). 

A word is in order about the boundary and initial data. The boundary 
conditions satisfied by U’ enter our analysis only in verifying that E, [u] 
and i?, [u] are indeed Liapunov functionals. For the former U’ may satisfy 
a homogeneous Neumann condition 

ad z=o at aa, 

or else a Dirichlet condition 

28(X, t) = UE(X)) xEasz. (1.9) 

For the latter, which is relevant only in the radial case, our analysis works 
only for the Dirichlet condition (1.9): it seems that (1.6) is not a Liapunov 
functional when the boundary condition is of Neumann type. (See 
Remark 3.4.) As for the initial condition, we assume that its “energy” is 
controlled. More specifically, Section 2 requires that 

E,[u"](O)bM< 00. 

Section 3 requires in addition the stronger hypothesis 

(1.10) 

E, [u”](O) < cg + al’*, (1.11) 

where c0 = 2 ,/?/3. Both conditions demand that the initial data make the 
transition from - 1 to + 1 reasonably efficiently. To explain (1.1 1 ), we 
remark that the ,?e[cu”](0) must be at least cO- CE”~, according to 
Proposition 3.6; thus (1.11) asserts that the initial data waste no more than 
O(E”~) energy in making their transition. It is easy to construct functions 
satisfying (1.10) with a transition along any smooth, closed, orientable 
hypersurface in Q. The construction of radial functions satisfying (1.11) is 
not difficult either, by proceeding for example as in [38]. The analysis of 
de Mottoni and Schatzman requires much stronger hypotheses on the 
initial data. It should be noted, however, that like them we are obliged to 
consider initial values which depend on E. Only the probabilistic method of 
Freidlin and Gartner [ 19,231 is free of this deficiency. 

Our attention is focussed on the specific Eq. (1.1) only for the sake of 
simplicity. In fact our results extend to the more general equation 

u,-Au+&-2F’(u)=O, (1.12) 

where F is a bistable potential with both wells of equal depth. We suppose 
that the case of vector-valued u could be treated similarly, albeit with more 
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effort, by using the methods of [4, 18, 393. The situation is totally different, 
however, if F achieves its minimum value on a continuum rather than at 
isolated points. If, for example, F(u) = a (1~1 2 - 1)’ with u E R” then (1 .12) 
becomes 

and U’ converges to a solution of the evolution equation associated to the 
harmonic map functional for maps from 52 to S”- ’ [ 13, 14,371. 

We wish to highlight some of the questions that remain open concerning 
(1.1) and related equations. First, what is the limiting behavior of (1.1) 
when the initial partition is as in Fig. l? In other words, what does it mean 
for a stratified set to move by mean curvature? The appendix of [S] 
presents some similarity solutions which may be relevant to the motion of 
the “corners.” Second, is there a general relation between r-convergence of 
functionals and convergence of solutions of the associated parabolic evolu- 
tion equations? This question was first raised by de Giorgi [15]. Our 
example shows that one must allow for a change of scale in time. Indeed, 
the functionals E, r-converge to a perimeter problem, for which the evolu- 
tion equation is flow by mean curvature. However, the parabolic equation 
associated to E, is u,--E Au + a-‘(u3 -u)=O, not (1.1). Finally, what 
about the numerical calculation of flow by mean curvature? The method of 
[ 12, 171 had previously been introduced as a numerical method by Osher 
and Sethian [34,40]. It is reminiscent of (Ll), in that the moving surface 
is represented as the level set of a function; unlike (1.1 ), however, the 
evolution law of [ 12, 17, 34,403 contains no small parameter. Surely there 
must be some relation between these two evolutions. Can the method of 

FIG. 1. U&Z +I in the white region, uE x -1 in the shaded region. What does it mean for 
this interface to move by mean curvature? 
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[34,40] be used to compute the motion of a stratified set by its mean 
curvature (cf. Fig. l)? If so, does it give the same result as (ll)? 

The work presented here was strongly influenced by discussions with 
S. Luckhaus and R. Pego during the fall of 1987. It is a pleasure to 
acknowledge their significant role in the development of our ideas. 

2. A COMPACTNESS THEOREM 

This section presents a compactness theorem for solutions u = u~(x, t) of 
(1.1). The domain 52 c [w” must be a bounded, Lipschitz domain. The 
boundary condition may be of either Dirichlet or Neumann type, i.e., (1.8) 
or (1.9). The initial data are assumed to satisfy 

E, L-d(O) Q M (2.1) 

where E, is defined by (1.4) and A4 is independent of E. We also assume 
that the initial data converge in L’ to a limit vO(x): 

lim s I&(x, 0) - u,(x)1 dx = 0. (2.2) E’O Q 

Our goal is to show that for a subsequence aj + 0 the limit 

lim u&$x, t) = u(x, t) 
6, - 0 

exists almost everywhere on B x (0, ao). We shall show moreover that u is 
in a certain sense Holder continuous in time, and that u(x, 0) = uo(x). As 
discussed in the introduction, the interface where u makes its transition 
from + 1 to - 1 is expected to describe the motion by mean curvature of 
the interface associated to uo. 

We begin with some energy estimates associated to the existence of the 
Liapunov functional E,. 

PROPOSITION 2.1. Let U’ solve ( 1.1) with boundary conditions and initial 
data as discussed aboue. Then 

$ E, CuEI = --E j,(u:)’ dx, (2.3) 

from which it follows that 
sup E, [u”](t) d A4 
t>O 

(2.4) 

;yf c, ((u’)‘- 1)2 dx < 4M& (2.5 1 
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and,forO<t,<t,<co, 

E 
ff 

l2 (u;)‘dxdt=E,[uc](tl)-E,[uE](t,)<M. (2.6) 
(1 Q 

ProoJ: We multiply the equation by u,, integrate, and integrate by parts 
to obtain (2.3). Relations (2.4))(2.6) follow easily from (2.3) and (2.1). 

As in the analysis of the stationary case, the essential a priori estimates 
leading to compactness involve not U’ but rather g(S), where 

g(s)=$ll ,02- 11 da. (2.7) 

PROPOSITION 2.2. Let uc solve (1.1) with boundary conditions and initial 
data as discussed above. Then 

SUP I IVg(u”)l dx < M (2.8) 
I,0 Rx (1) 

and,forO<t,<t,, 

jr21 l~,g(u’)I dxdtf,jZM(t2-t,)1’2. (2.9) 
11 Q 

Proof: The fact that (2.4) implies (2.8) was first noted in [33]; we 
repeat the proof here for the sake of completeness. For any function U, one 
has 

= s o lit( IV4 dx 

= 
s 

IVg(u)l dx. 
0 

Taking 1.4 = U’ at any fixed time, we obtain (2.8) as a consequence of (2.4). 
The proof of (2.9) is only slightly different. We have 

!‘“j la,g(u’)I dxdt=j”/ Ig’(u”)l lu;l dxdt 
II Q <I R 

l/2 
G Ig’(u”),’ dx dt (u;)* dx dt , 
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by Holder’s inequality. The first term is controlled by 

j”j lg’(ue)/2dxdt=~jt2j ((U&)2-1)QXdl 
11 Q 11 Q 

< 2cM(t, - t, ), 

and the second term is controlled by (2.6). It follows that 

SI ‘* la,g(u’)I dxdt< [2eM(t2-t,)]“*++M]“*, 
II Q 

which is the same as (2.9). 
Since g’(s) = (l/d) (,s2 - 11 is positive except at s = fl, studying g(u”) 

rather than U’ amounts to making a harmless change of variables in the 
image space. The desired compactness follows rather easily from Proposi- 
tion 2.2, since BV is compactly embedded in L’. 

THEOREM 2.3. Let 1.8 solve (1.1) with boundary conditions and initial data 
as discussed above. For any sequence of E’S tending to zero, there is a 
subsequence ei such that the limit 

lim 249(x, t) = v(x, t) (2.10) 
c, - 0 

exists for a.e. (x, t) E Sz x (0, co). The function v(x, t) takes only the values 
+ 1; it satisfies 

s lv(x, t,)-v(x, t2)l dx< C Itz- t,I”2 (2.11) 
$2 

and 

sup s IVUI Q c; 
120 fix10 

(2.12) 

and its initial value is the limit of the initial data for 1.8, 

lim u(x, t) = vo(x) 
1-O 

a.e. (2.13) 

Proof First let us fix T < cc and prove the existence of a subsequence 
which converges a.e. on $2 x (0, T). Since 1 g(s)1 NC lsl3 when IsI is large, 

I g(u)1 < c, + C,(u’ - 1 I2 
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for a suitable choice of the constants C, and C,; it follows using (2.5) that 

ss oT R Is( dxdt6C (2.14) 

with C independent of E. Now (2.8), (2.9), and (2.14) assert that g(u”) 
remains in a bounded subset of J?V(Q x (0, T)), the space of bounded 
variation functions of space-time. By a standard compactness result, see, 
e.g., [24], there is a subsequence g(u+) which converges in L’, say to g*: 

II s(u”i) - g* II L’(Q x (0, T)) + 0. (2.15) 

Passing to a further subsequence if necessary we may also arrange that 

du”l) + g* a.e. on Q x (0, T). 

Since g is monotone there is a unique function u(x, t) such that g*(x, t) = 
g(u(x, t)), and clearly u ” + u a.e. By Fatou’s lemma and (2.5) we have 

IS = (u*- 1)2dxdt=0, 
0 R 

so u takes the values + 1. 
To prove (2.1 l), we observe that g(u”l) + g* in Lr(Q x {t}) for almost 

every t E (0, T), by (2.15); at time 0 we have 

s Ig(u”‘(x, 0)) - g(uo(x))l dx --f 0 R (2.16) 

by (2.2) and (2.8). Now, uE satisfies 

Idu”(x, tl))- g(u”(x, td)l <I” la,g(U&(x> t))l dt 
fl 

for any 0 < t, < t, ; integration in x yields 

s Ig(W, tt))-g(u”(x, fJ)l dx<>M It,--t,I”*, (2.17) 

making use of (2.9). We pass to the limit .si+O in (2.17) to conclude that 

s, lg*(x, t,)-g*(x, t2)l dx<$W-t#‘* (2.18) 



MOTION BY MEAN CURVATURE 221 

for almost every t i, t2 E (0, T). Since v takes only the values ) 1, 

Ig*(x> t1) - g*tx, tdl = Idv(x, t1)) - dv(4 t2))l 
=T l4-T t,)-4-K t2)l (2.19) 

with cO= g(l)- g( - 1). Thus (2.18) yields (2.11) for a.e. t,, t2. We may 
redefine v at the exceptional times to make it continuous as a map from 
[0, T] to L’(Q), and then (2.11) holds for every choice of t, and t,. 

To prove (2.13), we take tl = 0 in (2.17). Passage to the limit .sj + 0 gives 

il, Is(vo(x)) - ‘Y(v(x, fJ)l fix< fi w2P2 

for t2 > 0, making use of (2.16). By (2.19) this gives 

J-Q Iv&) - 4% f2)l dx < $ Jz wt2P2; 

we deduce (2.13) by passing to the limit t, + 0. 
It remains to prove (2.12). Here we understand Js2 [Vvl as the total varia- 

tion of the vector-valued measure Vv, or equivalently as twice the perimeter 
of the interface separating the sets {v = +l } and {v = -1 }, see, e.g., [24]. 
From (2.15), (2.8), and the lower semicontinuity of the total variation 
under L’ convergence, we have 

ess sup O<r<T s,.,,, IVg*l dxGM. (2.20) 

Now, g* = g(v); and since v takes only the values + 1, Vg* = (c,/2) Vv. 
Thus (2.20) gives 

ess sup 
o<r<= Lx,t) lVvlG$ 

(2.21) 

Since v is continuous in time with values in L’, (2.21) remains valid with 
“ess sup” replaced by “sup”, and this yields (2.12) for 0 < t d T. 

The assertions of the theorem have at this stage been established on an 
arbitrary finite time interval (0, T). Applying this for a sequence of times 
Ti + co, and taking a diagonal subsequence of {u”} in the usual manner, 
we easily deduce the assertions for the infinite interval (0, co). 

Remark 2.4. These results can naturally be reformulated as statements 
about w’, the solution of (1.2). The fact that wE evolves on a time scale of 
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order E-~ emerges quite clearly from (2.17): setting t, = 0 and z/(x, t) = 
W&(X, & -‘t), that relation gives 

i‘, Ig(w”(x, 0)) - g(w”(x, s))l dx 6 ,,h ME IsI 1’2 

for any s > 0. Thus nothing happens until s - se2. 

Remark 2.5. In work on the stationary problem it is customary to 
prove compactness in L’; the corresponding assertion in the present 
context is that ~9 + u in L:,,(Q x (0, co)). If the initial data are uniformly 
bounded independent of E then u’(x, t) remains bounded by an application 
of the maximum principle, and L:,,, convergence follows from (2.10). If the 
initial data are unbounded one can still deduce Li,, convergence by 
arguing as in [32, 381. 

3. THE RADIAL CASE 

This section proves that the formal picture is asymptotically correct in 
the radial case, for certain boundary and initial data. Our attention is 
henceforth restricted to radially symmetric solutions; resealing if necessary, 
there is no loss of generality in assuming that 

The evolution of u = zf(r, t) is governed by 

n-l 
ut - ur, --uu,+&-2(U3-z4)=0, 

r (3.1) 

which is (1.1) in radial coordinates. We consider only the case of a 
Dirichlet condition at XJ, 

U(1, t)= 1, t>o; (3.2) 

of course at r = 0, u must satisfy ~~(0, t) = 0. Our analysis requires that the 
initial data “have a single transition sphere,” and that they “make the 
transition from - 1 to + 1 rather efficiently.” More precisely, we require 
that 

u”( r, 0) < 0 for r<ro 

d(r, 0) > 0 for r>r, 
(3.3) 
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for some rO, 0 c r. -C 1, independent of E; evidently, r. is the “radius of the 
initial transition sphere.” We also require that at time t = 0 

l [ ‘$0(r) ~(~~)2+~((U.)‘-I)2]rn-1drbcn+Ct”i (3.4) 
0 

with 

tie(r) = rgcn- l)e~(“~lKr/ro-ll , co = 2 J93. (3.5) 

Finally, we assume that the initial data are uniformly bounded, inde- 
pendent of E, 

IuYr, O)l d C. (3.6) 

Data meeting these requirements are easily constructed by the methods of 
[38]. (We remark that (3.6) is almost redundant: (3.4) implies a uniform 
bound for &(r, 0) except near r = 0.) 

The formal picture asserts that the transition sphere “flows by mean 
curvature,” i.e., with normal velocity equal to the sum of its principal 
curvatures. This flow takes it to a sphere of radius p(t) at time t, where 

. -(n-l) 
p= p(t) ’ do) = ro. (3.7) 

It is easy to see that p(t)= (ri-2(n- l)t)1’2; in particular, the sphere 
shrinks to a point at time 

T 4 =- 
max 2(n - 1)’ 

Thus u’(r, t) is expected to resemble 

(3.9) 

forOct<T,,,. We will prove that this picture is asymptotically correct in 
the following sense: 

THEOREM 3.1. Zf Q and uE are as above then for any T < T,,,, 

T lim IS Id(r, t)-f(r, t)l r”-‘drdt=O, 
6’0 0 R 

where f is defined by (3.9). 

(3.10) 
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The rest of this section is devoted to the proof of Theorem 3.1. It is con- 
venient to work in a moving coordinate system with respect to which u’ 
should be asymptotically stationary. The distance to the moving sphere is 
R = r - p(t), so the appropriate change of variables is 

u(R, z) = u(R + p(z), z). (3.11) 

Note that the “spatial” domain of u changes in time: v is defined for 

-P(T) < R < 1 -P(T), O<z<T,,,. 

If u satisfies (3.1) then one easily computes that 

(n- l)R 
u’-VRR+p(t)(R+p(r)) 

u,+&-2(u3-Y)=o; (3.12) 

the boundary conditions for u yield 

uR( -dz), z, = 0, 

Equation (3.12) can be written as 

u( 1 - p(z), z) = 1. 

0, -f ($hR)R +&-‘(v3 - v)=o, 

if the integrating factor 4 = #(R, z) satisfies 

-(n- l)R 
BR=p(~)(R+p(d’ 

(3.15) 

We choose 

d(R, z) = e-‘“- 

(3.13) 

(3.16) 

one readily verifies that this C$ satisfies (3.15) and also 

0 < 4(R, z) < 1 

4 -P(T), 7) = 0, WA z) = 1 

&GO. 

Using these properties we will show that 

(3.17) 

(3.18) 

(3.19) 

$(R, z) E (z$J2 + $ ((u&)‘- 1)2] dR [ 2 (3.20) 
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is a decreasing function of r, with 

(3.21) 

(See Proposition 3.2.) Our condition (3.4) on the initial data is designed to 
bound the initial value of E,[v"]: when transformed to a statement about 
19, (3.4) becomes 

E&f](O)< co+ CE"~. (3.22) 

Note that the weighted energy E, [u](t) discussed in the introduction (see 
(1.7)) is simply E, [v’](z), expressed in the original variables. The initial 
data of vE converge in L' as E -+ 0 to a Heaviside function, 

lim v"(R,O)= +L R>O 
E'O 

-1 
3 R<O; 

(3.23) 

this is an easy consequence of (3.3), (3.4), and the compactness results in 
[32,38]. Our goal, Theorem 3.1, asserts in essence that v'(R, T) is 
asymptotically independent of z. 

The proof of Theorem 3.1 is somewhat involved, so we pause at this 
point to explain the strategy. Let us assume for the moment that RH 
v'(R, z) has “transition layer structure” at every time, and let R = z"(z) be 
the “location of the transition” at time t. (This discussion is strictly 
heuristic, so we do not propose to define these concepts precisely.) The 
structure of the initial data gives 

z”(0) x 0. 

In Section 2 we used the energy estimate (2.3) to show that t H ve(x, t) is 
Holder continuous in t with exponent i; a similar argument using the 
weighted energy estimate (3.21) will give 

for 0 < t1 < z2. Now, it turns out that there is a certain minimum energy 
associated to the presence of a transition layer. This is a consequence of the 
inequality 

;v;+$(v2- 1)22 ,v2- 1, lV/J = Ig(v)RI 
Jz 

(3.25) 

with g as in (2.7). We expect a sharp transition, i.e., we expect R H o(R, 7) 
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to pass from u z -1 to u x + 1 over a narrow range of R near z”(r); so 
(3.25) suggests that 

E, CO(T) 2 W(Z), 7). co (3.26) 

with co=g(l)-g(-1)=2$/3. Th e right hand side of (3.26) can be 
estimated using the Taylor expansion of R w qS( R, z) at R = 0: 

Finally, we recall from (3.22) that the initial weighted energy is controlled: 

E, CuEI S co. 

Taking z1 =O, we use these estimates to control the location of the 
transition at time z2 =r>O: 

IzE(z)l z IzE(z) - z”(O)/ 

2 Cr"2(E,[uE](0)-Ea[o"](z))"2 

( [ n-l 112 
ScP2 co-co l-- ZE r 2 

2P2(4 
I ( )I 1) 

5 c’z”*p-y2) Iz”(z)l. 

If t is chosen small enough so that 

(3.27) 

C’z”2p-‘(r) < 1, (3.28) 

then (3.27) forces lz’(r)l ~0. In other words, on the time interval deter- 
mined by (3.28)-which is short, but independent of E- the transition Z’(Z) 
moves a distance that tends to zero with E. Repetition of this argument 
finitely many times gives Iz’(r)l z 0 for r strictly smaller than T,,, (at 
which time p(r) + 0 and uE(R, z) ceases to be defined). 

The preceding outline can be made fully rigorous; this naturally involves 
proving that uE( ., z) has the anticipated “transition layer structure,” see [6] 
or [7, Sect. 41. Here, however, we take a slightly different approach, which 
avoids discussing the transition layer explicitly. Rather than estimate 
IzE(rl) -zE(r2)l, we shall control the L’ difference between g(v”)( ., r,) and 
g(u”)( ., r2), where g is given by (2.7). The argument sketched above can be 
rephrased in terms of this L' difference, because 

I Ig(u ~1) - g(u”)(R, ~211 dR = co Iz’(TI) - f(~d (3.29) 

with c0 = g( 1) - g( - 1 ), if uE has the expected transition layer form. 
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We turn now to the task of executing these ideas. 

PROPOSITION 3.2. The function #(R, z), defined by (3.11), satisfies the 
weighted energy relation (3.21). 

Proof Using the definition of E,[u’], (3.20), we compute that 

f E, [V’](Z) = I;,::= $(~vRvRr + E- ‘(v’ - v) 0,) dR 

The second term on the right is negative, by (3.19). We integrate by parts 
in the first term and use (3.14) to obtain 

(3.30) 

where B(r) consists of boundary terms 

B(T) = q%URU, ) t&y - 
8(i 

,;+q (fl- 1)2 (p 
> 

At R = -p(z) the weight 4 vanishes, by (3.18), and at R = 
u= 1, by (3.13); therefore 

B= o$u,u,-;&xi, 
( R= 1 -p(r) 

Now, differentiation of (3.11) gives 

1 - p(r) we have 

u,(R T)= P(T) u,(R + P(T), T)+ u,(R + P(T), ~1, 

U,(R, ~)=u,(R+p(~), 5). 

Since u satisfies the Dirichlet condition (3.2) at r = 1, we have u,( 1, z) = 0, 
and so 

Therefore 

UT(l -P(T), T) = P(T) UR(l -p(r), 7). 

(3.31) 
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The desired energy relation is an immediate consequence of (3.30) and 
(3.31). 

COROLLARY 3.3. ZfO<r,<t,< T,,,,, then 

72 

jj 

1 -P(T) 
& ~vfdRdz~~E,[v”](z,)-EI[u”](z2). (3.32) 

71 -&J(r) 

Proof: This follows from (3.21) by integration with respect to z. 

Remark 3.4. We are unable to prove the analogue of (3.32) when u has 
a Neumann boundary condition U, = 0 at r = 1, because in that case the 
boundary term B comes out positive. 

Our next goal is a rigorous version of (3.24). We wish to work on a 
space-time cylinder ( -a, a) x (0, T), whereas v’(R, z) is defined for 0 < z < 
T max and -p(z) < R < 1 -p(r), Since p(r) -+ 0 as z -+ T,,,, we must first 
choose T < T,,,,, ; then there exists a > 0, depending on T, such that 

C-a, al=(-dz), 1 -A~)), O<z<T. (3.33) 

Since the weight 4 vanishes only at R = --p(r), we may also arrange that 

#(R 7) 2 bmin for -a<R<a,O<z<T 

with ~min > 0, depending only on T. For 0 < z1 < z2 < T, we set 

(3.34) 

d’(~l, z,)= j+” Ig(WR z,)- g(u”)(R ~2)l dR. 
-a 

(3.35) 

PROPOSITION 3.5. Let T< T,,, and a > 0 be as above. Then there is a 
constant C, depending on T but not on E, such that 

d’(Tl, 72) < C(z, - q)l’* (EQ [u”l(z,) - E, [v”](q))“* (3.36) 

whenever 0 6 z1 < z2 Q T. 

Proof. By (3.34) and the Fundamental Theorem of Calculus we have 

+a T2 
07, > 72) < s s 

18, g(o”)l dz dR 
-a *, 
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using Fubini’s Theorem and the positivity of 4 in the last step. We estimate 
(3.37) by the same argument that was used to prove (2.9). Holder’s 
inequality yields 

Since Ig’(u”)12=i((uE)2- 1)2, we have 

using the fact that E+ [u”](r) is decreasing, and the hypothesis (3.22), 
which controls it at the initial time. The second term on the right hand side 
of (3.38) is controlled by (3.32). Combining these estimates leads easily to 
(3.36). 

Now we shall derive a lower bound on Ed [u’](z), in essence a rigorous 
version of (3.26). Recall from our informal discussion that Iz’(z)l z const . 
d&(0, z) (see especially (3.29)); therefore the lower bound we prove involves 
not &z&(r), r) but rather the value of 4 at R z const . d&(0, z). We continue 
to hold T < T,,, fixed, and to work in the cylinder JR1 < a, 0 < r < T, with 
a satisfying (3.33)-(3.34). We note that 

#(R z)>d(-R, 7) for 0 6 R < a, 0 < z < T, (3.39) 

as a consequence of the definition (3.16) and the fact that ePX(l +x) > 
eX( 1 -x) for all positive X. For convenience of notation we write d”(t) 
instead of d&(0, r). 

PROPOSITION 3.6. There are positive constants cl and c2, independent of 
E, such that 

E, [u’](z) 2 4(-cl d”(T) - C2, t) . (c,, - c~E~‘~) (3.40) 

whenever E is sufficiently small and 

c, d”(z) + &II2 <a. (3.41) 

Here cO=g(l)-g(-1)=2*/3, as usual. The value of c2 depends on T; 
a suitable choice for cl is cl = I g(0) - g(i)1 -l. 

Proof This is really a property of the functional E+; r is fixed, and the 
dynamics of u plays no role. The proof has two parts: first we show that 



230 BRONSARD AND KOHN 

vE takes values near both + 1 and - 1 in a certain neighborhood of 0; then 
integration of (3.25) yields the desired estimate. 

Let A = ( - cI d”(z) - e’/‘, c1 d”(z) + e1j2). The precise goal of the first 
step is to locate points R,, R, E A such that 

vE(RI, t)< -1 +cs”~, vE(RZ, z) > 1 - CE~‘~. 

To obtain R, , let 

z+ =(-cl d”(T)-& “‘, 0) n (R: vE( R, t ) > i} 

z- =(-c, d&(T)-& ‘j2, 0) n {R: vE(R, z) < $}. 

(3.42) 

Using (3.41) we have 

d”(T) = j +’ Ig(O(R, 0) - g(v”)(R, T)l dR 
-a 

2 s Ig(v”)(R, 0) - g(O(R T)l dR I+ 
z IdO) - &)I W’)? 

since v’(R, 0) < 0 and v’(R, T) 2 4 for R E I+. Substitution of 

m(z+)=c, dE(T)+&1’2-m(z-) 

yields 

d”(z). 
1 

Ig(o)-g($)l -cl 2&“*-4z-). 
> 

Taking cl > Jg(0) - g(i)1 ~’ we conclude that 

m(Z- ) > &1’2. 

Now recall that 

E, [V’](T) < c 

(3.43) 

since E, [u”] decreases as a function of z, and the initial value is controlled 
by (3.22). Since 4 2 drnin on A, we have 

~B,i.j,- ((~~)~_1)~dR~j~~.~((~~)*-l)‘dR 

GE, [u”](T), 
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and so 

s ((II’)’ - 1)2 dR < C&;E. (3.44) I~ 

It follows from (3.43) and (3.44) that there exists R, EZ- satisfying 

((zf)* (R,, z) - l)‘< C&;E~‘~. (3.45) 

Since u”(R,, r) < $ from the definition of I-, (3.45) yields 

uE(RI, z) < -1 + c&l’4 

with c depending on T but not on E, provided that E is sufficiently small. 
This establishes the first part of (3.42). The argument for the existence of 
R, satisfying the second part of (3.42) is essentially the same. 

We now proceed to the second step, which obtains (3.40) as a 
consequence of (3.42). The main point is the following property of the 
function g: 

if~,<-1+ccand<2>1-~withO<a<1, 

then lg(l,)-g(t2)l >c,-ca*. 

This is an easy consequence of the definition (2.7). Taking cl1 = a’( R, , z) 
and c2 = uE(R2, r), we conclude using (3.42) that 

Idu”)(R,, z)- g(u”)(&, 711 %o-d2 

for a suitable choice of the constant c2. Therefore 

2 s 4. Ia, dOI dR 
A 

3 bin 4). Ig(o”WIy z)- do”)(R2, z)l 
A 

2 (min 4). (cO - c2e”*), (3.46) 
A 

using (3.25) in the second step. It follows from (3.39) (using the property 
Rq3R 2 0) that 

rn? C$ = d( -cl d”(z) -&l’*, z), 

so (3.46) is the same as (3.40), and the proof is complete. 
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We remark for later use that we have actually proved a little more than 
(3.40). In fact, we have proved the “local” lower bound 

$ ((v”)~ - 1)2] dR 

2 4 --cl d”(r) - E”~, z)(c, - c2P) (3.47) 

with A = (-ci d”(z) - &1/2, cl d”(z) + &l/‘). 
Our next goal is a rigorous version of (3.27). We continue to work on 

the cylinder (-a, a) x (0, T), with a satisfying (3.33) and (3.34). We place 
one more smallness condition on a, 

q6(R,7)>I-$$$fR2 for IRI<u,O<~<T. (3.48) 

This holds when u/p(T) is sufficiently small, as a consequence of the defini- 
tion (3.16) and the inequality e ~(n-1)x(l+~)“~1>1-(~-1)2~Z,whichis 
valid for x in a neighborhood of 0 and IZ > 2. 

PROPOSITION 3.7. There is a positive constant q,, depending on T but not 
on E, such that 

d”(z) < EI’~ for O<z<z, (3.49) 

whenever E is sufficiently small. 

Proof: By Proposition 3.5, d”(z) is Holder continuous in z, uniformly in 
E; therefore by choosing z,, appropriately we may be sure that (3.41) holds 
for small values of E. Combining (3.22), (3.36), and (3.40), we have 

(d”(z))2 d WE, Cu”l(O) - E, CvEl(~)) 
@2z{c,[i -q5(-cl dE(T)--E112, r)] + CE~‘~}. 

It follows using (3.48) that 

(d”(T))’ < C’z{ (d”(r))2 + .s”~} (3.50) 

for a suitable choice of the constant C’, depending on T but not on E. 
Choosing z0 so that C’zO < 4, we obtain (3.49) as an easy consequence of 
(3.50). 

The preceding proposition controls d”(z) for z close to 0. The next one 
uses an inductive argument to control it for all z, 0 f z < T. 
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PROPOSITION 3.8. There is a constant C, depending only on T, such that 

d”(z) < CE”~ for O<t<T (3.51) 

provided that E is sufficiently small. 

Proof We shall prove inductively that 

d”(T) < 2N~1’4 for O<r<min(Nz,, T) (3.52) 

for a suitable choice of the constant rr > 0, provided that E is sufficiently 
small. Here N is a positive integer. The smallness condition on E will 
depend on N, but the value of rr will be independent of N and E. The 
desired assertion (3.51) clearly follows, by taking N = [T/z,] + 1. 

The initial step of the induction is provided by Proposition 3.7: Relation 
(3.52) with N = 1 is a consequence of (3.49), provided that rr < rO. Assuming 
that (3.52) holds with N = 1, 2, . . . . k, we seek to prove it with N = k + 1. Of 
course, we may assume that kz, < T, since otherwise the desired assertion 
is trivial. By the inductive hypothesis and the Holder continuity of d”(z) 
(Proposition 3.5), we can arrange that (3.41) hold for kT, 6 T < 
min((k+ 1) rr, T) by choosing r1 and E sufficiently small. (The smallness 
condition on E depends on N, but that for z1 does not.) 

Let z satisfy kz, d r < min((k + 1) rr, T). From (3.36) we have 

[d”(kz,, z)‘l< C(z -kdE, Cv”l(k~l) - E, Cv’l(~)) 

6 Cr,(E, Cd(O)- E, Cv’l(~)). 

From (3.40) and (3.48) we have 

-&[V”](T)2(Co-C2E1’2) I-- 
( 

$$ (c, d”(T) + c’/2)2) 

2 co- c(E”‘+ [d”(z)]‘); 

therefore, using (3.22), 

E, [v”](O) - E&‘](z) 6 C([d”(z)]’ + El”). 

The triangle inequality and the inductive hypothesis yield 

[d”(z)]‘< 2[d”(kz,)12 + 2[d”(kz,, z)]’ 

<2.22kE1’2+2[d”(ktl, e)12. 

Taken together, (3.52)-(3.55) yield 

[d”(r)]’ < 2. 22ke1’2 + C’r,( [d”(T)]’ + E”‘), 

(3.53) 

(3.54) 

(3.55) 

(3.56) 
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where C’ is a constant depending on T but not r, . We choose r, so that 
C’ri < b. Then (3.56) yields 

This proves (3.52) for N = k + 1, completing the induction. 

The preceding result is the main ingredient in the proof of Theorem 3.1. 
Indeed, the theorem asserts in essence that rE(R, r) is asymptotically inde- 
pendent of r, and Proposition 3.8 says this is so for R E (-a, a). We also 
have to rule out the appearance of a new “transition” outside (--a, a). This 
will be done using (3.47): it dictates that almost all the “energy” is con- 
sumed by the transition at R = 0, so there is not enough left for a transition 
to develop elsewhere. 

Proof of Theorem 3.1. Fixing T-c T,,,,, , our goal is to show that (3.10) 
holds. If not, then there is a sequence si -+ 0 and a constant 6 > 0 such that 

T ss juq(r, t)-f(r, t)l F1 drdt>& 
0 R 

We apply the compactness results of Section 2; note that the crucial 
hypothesis E[u”](O)<M follows from (3.4), since t,bo(r) (defined by (3.5)) 
is bounded below. By Theorem 2.3 there is a subsequence (still denoted ~9) 
which converges a.e., 

uE’-bu* a.e., (3.57) 

with U* taking only the values + 1. We have assumed that the initial data 
are uniformly bounded (see (3.6)); by an application of the maximum 
principle, ( UE( r, t ) } remains uniformly bounded for all time. We may thus 
pass to the limit sj -+ 0 in (3.56)‘, concluding that 

T l‘j ju*(r, t)-f(r, t)l r”-‘drdt>6. 
0 R 

We shall derive a contradiction by showing that in fact U* -f: 
Consider the functions U&J and v* corresponding to u&j and a* through 

the change of variables (3.11). From (3.23) we have 

lim u”J(R, 0) = 
R>O 

E-i0 R <O. 
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Applying Proposition 3.8 and the dominated convergence theorem, we 
conclude that 

R>O 
R<O 

for -a<R<a,O<z<T. (3.59) 

To handle values of R outside (-a, a), we apply Proposition 3.8 together 
with (3.47) and (3.48) to see that 

;(u;)~+$((u~)~-~)~ 1 dR&,-Ci?‘2 

for each z, 0 < z < T. Since E, [u’](r) < c0 + CE’/~, we conclude that 

It follows using (3.25) that 

s 

- csvJ 

q5 Ig(u”)RI dR < CE”*. 
-p(r) 

(3.60) 

Since 4 is strictly positive except at the endpoint --p(z), we may pass to 
the limit E = cj + 0 in (3.60) to see that g(u*) is constant on (-p(z), 0). By 
(3.59), its value must be g( - 1). A similar argument shows that g(v*) = 
g( + 1) for R E (0, 1 -p(z)). Using the monotonicity of g and returning to 
the original variables, we have shown that 

u*(r, I)= 
i 

+L r > At) 
-1 3 r < p(t), 

or in other words u* =J: This contradicts (3.58), completing the proof. 
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