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Entropy and the Uncertainty Principle

Roy LEerpNIK

Test Department, US NOTS, China Lake, California

A minimum principle is obtained for the sum of entropies of two

distributions related as the absolute squares of a Fourier transform
pair. The minimum is shown to be attained for a Gaussian pair. The
joint entropy is calculated for two other Fourier pairs of interest.
Applications to the uncertainty principle are made by defining a
joint entropy for position and momentum. A generalized uncer-
tainty principle, for any set of observables not simultaneously meas-
urable, is conjectured.
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() Gaussian position wave ¢s(z) Position wave function
function (Cauchy case)
&(p) Gaussilan  momentum  ¢q(p) Momentum wave fune-
wave function tion (Cauchy case)
e Natural base Ya(ax) Position wave function
Ar Entropic uncertainty in (uniform case)
x os(p) Momentum wave func-
Ap Entropic uncertainty in tion (uniform case)
P ¥ Euler’s constant

1. THE QUANTUM MECHANICAL BACKGROUND

Let ¥(x, t) be the quantum mechanical wave function for a physical
system in a given state. If [ | ¢(x, #) |° dx is finite for one value of ¢, then
it is a constant. If the integral is normalized to unity, then the probability
that the position coordinates lie in the set A in configuration space at
time ¢ is given by [4 | ¥(x, #) | dx. If configuration space is 3n-dimen-
sional, then the probability that the momentum coordinates lie in the
set B in momentum space is given by [» | ¢(p, t) |* dp, where

¢(p, t) = K" f ¥(x, ) exp [—2—;? (X-p)} dx (1)

is the 3n-dimensional Fourier transform of ¢(x, £). (See Kemble, 1937,
Chapter I11.)

According to the Heisenberg (1927) uncertainty principle, if Az;, Ap;
are the uncertainties, in some sense, in the simultaneous measurement of
position coordinate z,; and momentum coordinate p; , then Az;-Ap; is of
the order of h.

On the mathematical side, Weyl (1928) utilized a generalization of the
Schwarz inequality to show that if Var(z,), Var(p;) are the statistical
variances of z; , p; determined from the probability densities | y(x, #) |*
and | ¢(p, ¢) |*, then

Var(z,)-Var(p;) = (h/4r)". 2)

H. P. Robertson (1929) derived, by the same method, the more general
result that if a(p, x) and B(p, x) are observables which are polynomials in
the momentum coordinates, that
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where

27t
b=~ (a8 — Ba) (4)

is the commutator of « and 8, and
3= [ 94 Dot ) dx (%)

is the mean value of 5. He applied this to angular momentum with in-
teresting results.

2. ENTROPY AND THE UNCERTAINTY PRINCIPLE

In the Heisenberg-Weyl formulation, the measure of uncertainty in
the joint distribution of observables « and g is

Aa-AB = A/Var « Var 8.

Now there is another measure of uncertainty of a joint distribution,
namely the entropy (Boltzmann, 1912; Szilard, 1929; Shannon, 1948).
Brillouin (1956) has shown that some relations exist between the con-
cept of entropy, or information, and the uncertainty principle. His work
has many points of contact with the present paper.
In Sections 3 and 4, we show that if ¥(x) is square-integrable, and

¢(p) — h—1/2f¢(x)e-2ripx/h dx

is the Fourier transform of ¢(x), then

—f | ¥(@) [* log | p(@) [* do — f | 6(p) [* log | ¢(p) | dp = log (%)

The inequality becomes an equality when Y(x) and ¢(p) are complex
Gaussian pairs. This result motivates the definitions and assertions which
follow.

Let {a1, a2, ---} be a set of observables of a physical system and let
v be an observable (such as energy) of the system. Let f(ay, a2, -+ ;] ¢)
be the joint distribution function of «;, as, - - - at time ¢ when the sys-
tem is in an eigenstate ¢ of v. We define the joint entropy of a1, a2, - - -
in the eiﬁenstate ¢ as
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Loy, n, -5t ¢) = _f"'ff(al’a%"';tlc)
(6)
'1ng(a1,a2,"';tl(3) da1 da2~--

provided a reasonable meaning can be given to the above integral. (In
quantum mechanics the inequality f(e:, a2z, --- - ¢|¢) = 0 is not ob-
vious.) L is not dimensionless, but if % is a constant with dimensions
e} -[ag] - -« , then

Hay, a0z, - ;tle) =L —logk
is dimensionless. More generally, we can define L(en, a3, --- ;¢ |v) as
Zc p(7 = C)L(al y Qg y "7 ) l | C), ete.

In case o is linear position z, oy is linear momentum p, and the joint
distribution function of z, p is independent, so that

Flz, pitle) = | el O [ eelp, O [,

for some eigenstate ¢ of v, then from Section 1, we see that the mathe-
matical result mentioned above can be formulated physically as follows:
the joint dimensionless entropy of linear position and momentum has the
minimum value log(e/2) > 0 (taking k = h, H = L — log h). We con-
jecture that the above statement holds even when z and p are not
statistically independent, in which case

fapstl )= b [ 0@ — r/2, 0yl + 1/2,1) exp (_2”}3"7") ir

(Wigner, 1932; see also Moyal, 1949). We further conjecture that the
joint entropy H(on, as, - ; t]7v) has a positive minimum whenever
ar, az, - - - are not simultaneously observable, provided the constants are
suitable powers of h.

3. THE MINIMIZING EQUATIONS

The mathematical problem here considered is to find the minimum
value of

L) = = [ 19 [Flog | 9@ Fdz — [ |6(w) Flog | o) Fdp (D)



68 LEIPNIK

given that

[1v@ Pas = [ 1o Pap = 1. ®

The technique adopted is to approximate ¢(x) by finite Fourier series
1 « 2wtk
bos@) = 5 3 o) exp (2707 ®

of increasing order and period, minimize with respect to the Fourier co-
efficients en(k) of ¢,.(z), under the given constraints, and pass to the
limit after the minimizing equations are set up. The limiting equation is
then solved, and the minimum value of L{y) computed. (This heuristic
limiting procedure can be justified by standard arguments, which will
appear in a more extended treatment of the mathematical problem to be
published elsewhere). After submission of this paper, the author was ap-
prised of the important paper by Hirschman (1957), who proved by an
elegant method that L(y) = log & (in our notation), and conjectured the
stronger result shown here.

As expected, the minimizing wave functions are Gaussian, as in Weyl’s
version of the Heisenberg principle. If

Yan(z) = L i an(k) eXp(zzifx),

)TH? k=—mn
then (10)
I ( 27rz'k:v>
Ck(lﬂ) = e 1//n)\(x) exp “T dx

By the Parseval equality,

M /2
Moo= [ [¥ea@ o
—\h/2

M/ s
12 h [)\m ; a(k)en(7) exp (W) dx 1L
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[ 4@ [ do = Nia > 0,
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then
I ‘l’nk(m) |2
Noa
is a probability density on [—Mh/2, AR/2], and
| ex(k) 2
ANZA

is a discrete probability distribution over the 2n +- 1 integers
{—n, —m 4+ 1, -+, n}.
The corresponding entropy is

[ ol sl

2
w2 Naa Y

Ln,?\ = -

| ex(k) lz | (k) [
B Ic=2—:n AN >\Ni,>\

—1 iz 2 2 2
= V. [f [ ¥un(@) " log | ¥unlz) " dz — log Nn,)\:l (12)
[ 12 —Ah/2

—1 S 2 2
L 100 [ log L) — log 03 |

Clearly we must minimize L, with respect to the e (k) for fixed A, n,
and

AR /2
[, @ e =3 3 Ja®]

In accordance with Lagrange’s procedure, we look for the stationary
values of

Mux = Lax + & /_:}:/22 | $nn(2) I* da. (13)
Following Hausdorff’s method (Titchmarsh, 1948), we let
ea(k) = vy + 9vi, [kl =n, (14)
set
oM\ + Z.aMn,x -0,

ouy Ok
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and determine p implicitly by multiplication by ex*(k) and summation
over k.
Clearly

_ Mhi2 .
M .\ _ jl [f (1 + log | ¢ma(z) [ ) <¢n Ax) exp( ’}?fx)

dur Noao Lo

+ Yoz exp (—2’;;{“”)) du v:fw + %-m(l + log | ex(k) |2>] (15)

Aw/2 .
+ u f <¢n \(z) exp <2ka> + Yna(®) exp ( 21}7{6 x>> dx

AR[2
s~ [ (14 g g D) (#2609 exp (27087)
—\R/2

vk

— fYan() exp(—gq;:)\ﬁU))d VA 4= 2vk(1 +log | en(k) ) ] N (16)
M /2 2k ik
o[ (\l/:.x(ﬁ) exp( 7;;”) — ¥aa(@) exp( 7;;;‘) da.

Hence

OMun | OMun _ _[ 2 f””? 141 .
I it = | i [, Y@+ log [ ¥aa@) 1)

oxp ( mkx) dr + = C)\(k)(l + log | ex(k) | ):I ng,.)\ a7

M/2 .
+ 2p f Yaul@) eXp( fo) dz.

Thus
IM,, M,
auk)\ + vy t = 0
yields
1 ARf2

dun(@) 1og | fan() [ exp (—2”’“) oz
B2 hA

= a(B)Duh*N% .y — 2 — log | aa(k) 7]

R L (18)

Multiplication by e,*(k) and summation leads to
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1 Ah[2 \ .
Nia U_WZ | Yan(@) [* log | Yanlz) I* da

n (19)
+1 3 1al) Plog L) | = wkt Ny — 2
j=—n
Substitution in the preceding yields
L[ e 2 omika
i [ i Yaulz) log | Yunlz) I” exp <—_W dx
c k AR/2
=S [ 19sa) P log [ an@) (20)

+1 3 ) log 1) | — o) 1og |G F

If we now let » — o, A\ — o« in such a way that y,.\(z) — ¢(x),
N a— 1, k/A— p, 1/\ — dp, we formally obtain

o(k) — olp) = hél? f_ v(x) exp (_2#210%) dz,

I o 2D
y(@) = E f_ 3 ¢(p) exp( szx> dp
and as the stationary condition
o [ e 108 1900 oxp (272 a
= o) | [ 100) Plog lv(a) s
o (22)

+ f_w | (q) I” log | #(g) lqu] ~ ¢(p) log | ¢(p) |*

= ¢(@)—L ) — log | ¢(p) |'].

This condition can also be derived more rapidly by a formal applica-
tion of the calculus of variations to the original expression (7) under the
constraint (8), but the present state of the theory (Caratheodory, 1945)
is not sufficient to justify this application.

4. SOLUTION OF THE MINIMIZING EQUATION

The nonlinear minimizing equation (22) seems to be extremely difficult,
However, it is plausible that a solution would also furnish a minimum to
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the joint uncertainty Az-Ap. As Weyl (1928) proved, the y1(x) which
minimizes Az-Ap is a complex Gaussian wave packet, with

a@) = @ro") ™ exp (_(x4—02£) + 2#29075) (23)
H’l(x) \2 — (27“72)—1/2 exp <~_(x 2772@2) (24)

A familiar calculation yields

172 . . . i
$i(p) = (g> (2re™)'"* exp (— dro(p — B) _ 27"”5(2}1 - p)) (25)

h h?
and thus
8 2\ 1/2 8 2 2 B
| ¢u(p) [ = ( Z: ) exp | — 7;; (p — p)2> (26)
The mean and variance of (26) are, respectively, p and h’/167%"
Note that
B . h2 B h 2
Var X Var p = a m = 4:_1|" y
h

so the Weyl minimum is indeed attained.
The information in a Gaussian distribution of variance ¢” is well known
to be 14 log (2rs’e). Thus

2
; log (2wo’e + % log (M>

16720

log (he/2) = log h -+ log (e/2),

L(y)

il

27)

and
HW) = L) — log h = log(e/2) = 0.30685 - - -

It remains to calculate

xi(p) = h%ﬂ f ¥i(x) log | Ya(x) |” exp (__%;’pr) dx

and to check whether ¢ yields a solution of the minimizing equation.
Differentiation of (25) with respect to ¢° and a brief manipulation yields
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(2mg”) 1 dn'o*(p — p)° _ 2miE(p — p)
xi(p) = S S 02 - h

(28)
3 5/2 —-\2

. [_% (476" log (2n6”) — 200 + W]
On the other hand

1(p)(—L{¥1) — log | ¢u(p) [2)

2\ o 4’ (p — p) _ 2mii(p — p)
= (ﬁ) (2w0") " exp | — b - 7 )

2 1 8ra” 8#202(1) — ;5)2
(1°g <e_h> ~ples (T) L

Term-by-term comparison shows that

x1(p) = éu(p) (—L{yr) — log | éu(p) ")

for all p, B, Z, o". Hence ¢4(z) is indeed a solution of the minimizing equa-
tion (22), and we have shown that

L) =z L($1) = log (he/2), HEW) = H() = log (¢/2) > 0. (29)

Note that as h — 0, the inequality degenerates to L(§) = — o, just
as Az-Ap = h/4r degenerates to Az-Ap = 0.

It is interesting that if we define “entropic uncertainties” Az in posi-
tion and Ap in momentum by

o= exp (= [ 19(0) ' 10g |v(a) [ )

and

p = oxp (— [ 1) 1o | 4p) P ),
then it follows from the preceding that

Ax-Ap = exp (L(¥)) Z exp L(ys) = he/2. (30)
This closely resembles the Weyl formulation of the Heisenberg principle.

5. JOINT INFORMATION FOR NONMINIMIZING WAVE PACKETS

In order to see how sharp the minimum is, the calculation of L{y) for
some simple nonminimizing wave packets may be of interest. We con-
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sider two examples, one for reasons of mathematical convenience, the
other for its physical significance.

Let
1 -z 21rz'f)x)
¢2(x) - '\/_2—0- exp ( 27l' + h 9

so that

1 s

l¢2(x)|2='2—‘exp<—ix x|)'

g a

Now

f|¢z(x)|210g|¢2($)|2dx =21—610g§1;];wexp(_{x;x

_ 1 * . R . 1
50—2_”|x xlexp( —a——>d:c—log~2—g.
We also find
_ —1;2__exp (—2xii(p — PR
#lp) = Qo) S iy — preh
2 _ (h/0) 1
(6401 = 5 " [ = 7 + OAnoR

and

2, _ (W/a)[ (h/)° dp

[ oo P10 o) = S35 [10 320t | ((p = ) + (W/Ama )y
_ log ((p — $)* + (B/4wa)") dp
2[ ((p — P)? + (h/4wo)?)? }

From the result
®log (r* + )
0 q2 + x2
and from differentiating the above with respect to ¢, we find after sim-
plification

dx=;flog(r+q)

f | ¢a(p) |* log | ¢2(p) |* dp = log <%§>
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Hence
L(¥2) = log (4h/e),
H(ys) = log (4/e) = 0.38629 --- > H{yy) = log (¢/2) = 0.30685 - - -
The wave packet ¥3(z) defined by
Yi(z) = _\/_lz—zexp<27r—2@>’ le-al=4
0 , |z — 3| > A

has a physical interpretation to be discussed in a later communication.,
Obviously, it gives the uniform density

1
| () P = (24 ’
and so
f|¢3($) " log | ¢a(z) I dz = 10g2—1£.
Now

_ i _2miz(p — p)\ sin 2xA(p — PH)
o) = 00 xp (-G =) IR =
and

2 h (sin 2rA(p — pAHY
o0 [ = gy (B Crle = PRV,

It follows that

2 2, 1 24 [*sin’ u
f|¢3(’p)| log | ¢5(p) | dp——;l:long_w_urdu

® sin® u sin® u
-+ f_w o log< 7 )du]

0
. —2 . 9
and, since f usinudu = m,
—®%

oo s 2 + 9
Hs) = Lgs) — logh = — f S0 Y 1og (szu) du.
™ w

Lo u?
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Unfortunately, this definite integral does not seem to have been calcu-
lated previously. The derivation of its value may be of interest, inasmuch
as similar integrals arise frequently in ‘“‘continuous” applications of in-
formation theory.

The function log | 2 sin u | can be expanded into the Fourier series

o~ cos 2ku
- E k 7

convergent for u # nm, n = 0, =1, -+ . Since (sin® u/u”) is absolutely
integrable on (— «, ) the series

SlIl u

log|[2sinu| =

.2
_i sin” % cos 2ku
= k

is term-wise integrable, and thus

sin” u 4 sin® u
¢ 2[ u? log‘ 4u?

sm U

du=—7rlog4—4f log | u | du

2

9 Z sin’ u cos 2ku .
k=1

From sin” u = 15(1 — cos 2u), the multiplication formula for trigono-
metric funetions, and the integral

(-]
1 — cosax
——5— dx = an,
L 2%

we find that

s 2
f sin” % cos 2ku

o du =0 for k=123, -+,

and thus

sm U

Q:—W10g4—4f log |u|du.

Let

® sin’® w
4, = / du
0

u?

and recall that
f ) e e = Ig)
0 ud ’
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Thus
®gin’ u oL sin” u e
A4, = e ( 2 dz) / / e 2 dzdu
= f L) f sin® ue "”du) .
Now

f (sin’ u)e “du = f L (1 — cos 2u)e “du
) 0o 2

1 [e—m _ (—zcos 2u + 2sin 2u)}°°
Q0

21 =z 2+ 4
1(1_ 2 )
T2\z 2+ 4
_ 2
T 4+ 4)

hence

_ L 2 17, . 3_ <c
A= [ g e r<q>fo 1%

The right member converges at 0 when ¢ > 1 and at « when ¢ < 3.
Thus

2q—3 0 q—2

y

A, = —— ———d
)R T
_ 2% o (g — 2)r
T 2% 2
2%
~ " T(g) cos (gr/2)
forl < ¢ < 3.
Differentiating 4, with respect to ¢, we find
Uy o[ ez TUW 2
dq T'(q) cos (gr/2)  (T(g))* cos (¢n/2) = T(g)

T see 1T tan I°
2Sec 2tan2:|



78 LEIPNIK

At ¢ = 2, we have

dA, _ _w[4log2 4 ]_ IilogZ__I"(2):|
g | ot sl: e RSN Il 2

Now

Mg (‘2 -1
IW_/(, z—1

where v is Euler’s constant. Hence

dx_7;

1
F'(2)=fdx——'y=1—7,
0

and
4,
dq
On the other hand,

T
=2 2

log 2 4+ v — 1].

dd, f“’sirfu
i M log|uldu,
S0
0 - 2
sin® u _ d4,
f " log lu|du = T |
Hence
Q=—7rlog4—4-7—;(1—'y—log2)= — 27 (1 — 7).

Finally, then H(Ys) = —(@/7) = 2(1 — v) = 0.84557 - - -
Thus the joint entropy of a uniform position distribution is nearly
three times that of a Gaussian wave packet.
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