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Entropy and the Uncertainty Principle 

RoY LEIPNIK 

Test Department, US NOTS, China Latce, California 

A minimum principle is obtained for the sum of entropies of two 
distributions related as the absolute squares of a Fourier transform 
pair. The minimum is shown to be attained for a Gaussian pair. The 
joint entropy is calculated for two other Fourier pairs of interest. 
Applications to the uncertainty principle are made by defining a 
joint entropy for position and momentum. A generalized uncer- 
tainty principle, for any set of observables not simultaneously meas- 
urable, is conjectured. 
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¢1(x) Gaussian position wave ¢~(x) Position wave function 
function (Cauchy case) 

¢1(p) Gaussian momentum ¢2(p) Momentum wave func- 
wave function tion (Cauchy case) 

e Natural base ¢3(x) Position wave function 
5x Entropic uncertainty in (uniform case) 

x ¢a(p) Momentum wave func- 
5p Entropic uncertainty in tion (uniform ease) 

p ~ Euler's constant 

1. THE QUANTUM MECHANICAL BACKGROUND 

Let ¢(x, t) be the quantum mechanical wave function for a physical 
system in a given state. If f I ¢(x, t) ]2 dx is finite for one value of t, then 
it is a constant. If the integral is normalized to unity, then the probability 
that the position coordinates lie in the set A in configuration space at 
time t is given by f~ I ¢(x, t) 12 dx. If configuration space is 3n-dimen- 
sional, then the probability that the momentum coordinates lie in the 
set B in momentum space is given by fB I ¢(P, t) ]5 dp, where 

is the 3n-dimensional Fourier transform of ¢(x, t). (See Kemble, 1937, 
Chapter III.) 

According to the Heisenberg (1927) uncertainty principle, if Axj, Apj 
are the uncertainties, in some sense, in the simultaneous measurement of 
position coordinate xj and momentum coordinate pj ,  then Axe-. Ap~ is of 
the order of h. 

On the mathematical side, Weyl (1928) utilized a generalization of the 
Schwarz inequality to show that if Var(xj), Var(p~-) are the statistical 
variances of xj ,  pj determined from the probability densities [ ¢(x, t) I: 
and ]¢(p, t) t 2, then 

Var(xj) .Var(p~-) >= (h/47r) 2. (2) 

H. P. Robertson (1929) derived, by the same method, the more general 
result that if a(p, x) and f~(p, x) are observables which are polynomials in 
the momentum coordinates, that 

h 2 
Var a .Var~  _-> 1 ~ ] ~  l ~, (3) 
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where 

= 2 - h / ( ~  - ~ )  (4) 

is the commuta tor  of a and fl, and 

= f ¢*(x, t)8¢(x, t) dx (5) 

is the mean value of 8. He applied this to angular momen tum with in- 
teresting results. 

2. ENTROPY AND THE UNCERTAINTY PRINCIPLE 

In the Heisenberg-Weyl formulation, the measure of uncertainty in 
the joint distribution of observables a and fl is 

~ .  Af~ = v / V a r  a Var ~. 

Now there is another measure of uncertainty of a joint distribution, 
namely the entropy (Boltzmann, 1912; Szilard, 1929; Shannon, 1948). 

Brillouin (1956) has shown tha t  some relations exist between the con- 
cept of entropy, or information, and the uncer ta inty principle. His work 
has many  points of contact with the present paper. 

In  Sections 3 and 4, we show tha t  if ¢(x) is square-integrable, and 

h -1/2 f ~b(x)e -2~ip~/h dx  ¢(P) 

is the Fourier t ransform of ¢(x), then 

The inequality becomes an equality when ~b(x) and ~b(p) are complex 
Gaussian pairs. This result motivates  the definitions and assertions which 
follow. 

Let {al ,  a2, • • • } be a set of observables of a physical system and let 
be an observable (such as energy) of the system. Let f ( a l ,  as ,  • •. ; t l c) 

be the joint distribution function of a l ,  a2, • • • at t ime t when the sys- 
t em is in an eigenstate c of ~,. We define the joint entropy of as ,  a~, • • - 
in the ei~enstate c as 
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L ( a l ,  a , ,  • ' "  ; t  l c) = - - J "  J f ( a l , a 2 ,  . . • ; t [ c )  

• l o g f ( a l ,  a2 , . . . ;  t! c) dal da2. . .  

(6) 

provided a reasonable  meaning  can be given to  the  above  integral.  ( In  
q u a n t u m  mechanics  the  inequal i ty  f(al  , a2, . . .  " t l e) > 0 is not  ob- 
vious.) L is not  dimensionless, bu t  if k is a cons tant  wi th  dimensions 
[~1]'[~2] " ' "  , t hen  

g ( ~ l ,  c~2, . - .  ; t I c) = L - -  l o g  l~ 

is dimensionless• More  generally,  we can define L(ax ,  c~, - . -  ; t 13') as 

~_,~ P(3' = c)L(al , a2, " "  ; t i c ) ,  etc. 

In  case al is l inear posit ion x, a2 is l inear m o m e n t u m  p, and  the  joint  
d is t r ibut ion funct ion of x, p is independent ,  so t h a t  

f(x,  p; t I c) = I ~c(x, t) 12 I ¢o(p, t) ]2, 

for some eigenstate  c of ~, then  f rom Section 1, we see t h a t  the  m a t h e -  
mat iea l  result ment ioned  above  can be fo rmula ted  physical ly  as follows: 
the joint  dimensionless entropy of linear position and momentum has the 
m i n i m u m  value log(e/2) > 0 ( taking k = h, H = L -- log h). We  con- 
jecture  t h a t  the  above  s t a t emen t  holds even when x and  p are not  
s ta t is t ical ly  independent ,  in which case 

f(x,  p; t [ c)= f tp~*(x -- r/2, t)~c(x + r/2,  t) exp ( 2~riP")  

(Wigner,  1932; see also Moyal ,  1949). We fur ther  conjecture  t h a t  the 
joint  entropy H(cq ,  a 2 , . . .  ; t ] ~t) has a positive m i n i m u m  whenever 
a ~  , a 2 ,  . .  • are not simultaneously observable, provided the  cons tants  are 
sui table powers of h. 

3. T H E  M I N I M I Z I N G  E Q U A T I O N S  

The  ma thema t i ca l  p rob lem here  considered is to  find the  m i n i m u m  
value of 
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given that 

f = f = 1. (8) 

The technique adopted is to approximate ~(x) by finite Fourier series 

1 w° c~(k) exp {2,~ikx~ (9) ~.,x(z) 

of increasing order and period, minimize with respect to the Fourier co- 
efficients cx(k) of ~,,x(X), under the given constraints, and pass to the 
limit after the minimizing equations are set up. The limiting equation is 
then solved, and the minimum value of L(~) computed. (This heuristic 
limiting procedure can be justified by standard arguments, which will 
appear in a more extended treatment of the mathematical problem to be 
published elsewhere). After submission of this paper, the author was ap- 
prised of the important paper by Hirschman (1957), who proved by an 
elegant method that L(~) > log h (in our notation), and conjectured the 
stronger result shown here. 

As expected, the minimizing wave functions are Gaussian, as in Weyl's 
version of the tteisenberg principle. If 

~b~,x(x) - 1 £ cx(k) exp(27rikx~ 
)thll2k~n \ hX ] '  

then 

1/'x'2 ( 
cx(lc) = ~i~ o-hx/2 ~.x(x) exp - -  

By the Parseval equality, 

fxh/2 12 2 I ~ , x ( x )  dz 
s~n.X = --Xh/2 

If 

2~rikx ~ dx 
~ /  

1 [ xt',2 ( ~ ) 
- -  X2 h o-xh/2 ~ cx(k)cx(j) exp 27ri( j)x dx 

1 ~ Icx(k)12. 
k ~ n  

f~/~ l g'~,x(x) ]2 dx N 2 = ~ ,x  > 0 ,  
J--).h/2 

(10) 

(11) 
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then 

I ~.,~(x)]2 
N ~ nt~ 

is a probability density on [ -Xh /2 ,  ;~h/2], and 

[ c~(k) 12 

is a discrete probability distribution over the 2n + i integers 

{ - n , - n  + 1, . . . , n } .  

The corresponding entropy is 

f x ~  I ¢.,~(x)15 ] ¢.,x(x)12 
L.,x = - j_ 2 log 2 dx 

-~,h12 Nn,x Nn,x 

+ lc~(k) l 2 I~(k)  l 2 
h ~ log 2 k=-nz" N .  ,x ),N. ,~ 

- 1  V f"~' 1' I' ] - N.,×~ [.J--xh/2 [ ¢.,x(x) log I ¢.,~(x) dx - log N~,xj (12) 

--1 [~-]~ ! [5 [5 (XN~,x)]. 

Clearly we must minimize Ln,x with respect to the cx(h) for fixed X, n, 
and 

] ¢,~,x(x)12 dx = ~ I c~(h) 
d--Xh]2 ~ k=--n 

In accordance with Lagrange's procedure, we look for the stationary 
values of 

f 
Xh]2 

M~,x = L.,x + ~ ~-xhn ] ¢.,~(x) [2 dx. (13) 

Following Hausdorff's method (Titchmarsh, 1948), we let 

c~(k) = u~ + / v ~ ,  [k[  =< n, (14) 

set 

OM,.x + i 0....,~ --~ _ O, 
Ou~ Ovk 
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~nd determine ~ implicitly by multiplication by cx*(k) and summation 
over k. 

Clearly 

2 (1 + log I ,,/,,~,(x)12) * 2 ¢~,x(x) exp - -  
Ouk N~,x L --Xhl* 

+ ~b.,x(X)exp ( 2~rikx~ ]]dxha,, ~.1,o + ~.2uk(1 + log' cx(k)12) 1 (15) 

+ ~ ~-x~l, ¢,~,~(x) exp k hX I + ~,~,~(z) exp ~ II 

OYk h -:'.hi* (1 + lOg I ,/'.,,~,(Z) I*) # ' . ,X (X)  exp \ h X l  

--i¢.,x(x) exp( 21rikx~dx'~--~ ]1 +~-2vk(1 -I-log c~,(k),2)]~ (16) 

+ i ,  ~b~,×(x) exp -- ~b~,x(x) exp dx. 

Hence 

OM.,x+iOM~,x_ [ 2 [ xh'2 Ouk " Ovk ~ ~-xh/, ~,,~,x(x)(1 + log ] ~b,~,~,(x) I ~) 

2mkx~ 2 cx(k)(1 + log I Cx(k)12) x N.,~ exp hh ] dx + ~ , (17) 

[~h/, ( 27rikx~ + 2g J-xh/* ~b~,x(x) exp ~ ] dx. 

Thus 

yields 

OM,,,x OM,,.x - - + i  - -  - 0  Ouk Ovk 

1 ( J-xhn ~b.,x(x) log I ~b~,x(x)J* exp 27rikx~ hX ] dx 

Q~\ r~, hl l2~r* = ~ Jv,~, ~ ~ ,~  - 2 - log l c~(k)]~] 

Multiplication by cx*(k) and summation leads to 

( is)  
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N ~ I¢~,~(x) log t~,~(x) dx 
n,X k --Xh/2 

(19) 
-4-X " I c x ( j )  loglcx( j )  l 2 . ,1t2 ~2 A ~ n ,  "xv  n ,X - -  2 .  

3 ~ - - n  

Substitution in the preceding yields 

it/? ( L -Xh/2 ¢.,x(X) log I ¢~,~(x)t ~ exp 27rikx~ hh ] dx  

- N~x L,,-xh/2 I ¢'.~,x(x)12 log I ¢'•,x(x)12 dx (20) 

1 
I cx( j )  ]" log I cx(j)12] - cxCk) log 1 cx(k) 1~. 

If we now let n --+ oo, X -+ co in such a way that  ¢,,x(x) --+ ~b(x), 
N 2 ,,.x --~ 1, k / X  --+ p, 1 /X --~ dp,  we formally obtain 

1/; 
cx(k) -+ ¢(p) = ~ ¢(x) exp dx, 

Qo 

(21) 

1 f =  ( ~ )  ~b(x) = h ~  ¢(p) exp dp 

and as the stationary condition 

1/; ( vD 
hll- ~ ~b(x) log I ~b(x) 12 exp - -  dx  

(22) 

+ f_" i ¢(q) I ~ log l ¢(q) 12 dql~_l -- nS(p) log I ns(P) 
oo 

= ¢(p)[--L (~) - log [ nS(p) i2]. 

This condition can also be derived more rapidly by a formal applica- 
tion of the calculus of variations to the original expression (7) under the 
constraint (8), but the present state of the theory (Caratheodory, 1945) 
is not sufficient to justify this application. 

4. SOLUTION OF THE M I N I M I Z I N G  EQUATION 

The nonlinear minimizing equation (22) seems to be extremely difficult, 
However, it is plausible that  a solution would also furnish a minimum to 
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the joint uncertainty hx. Ap. As Weyl (1928) proved, the ~l(X) which 
minimizes Ax. Ap is a complex Gaussian wave packet, with 

~bl(x) = (27r¢2) -1/4 exp (-(x-2)2+4(~2 2ZhxP- ) (23) 

[¢x(X) L 2 = (27rz2) -'/2 exp ( (x - 2)2~ ~ / (2~) 

familiar calculation yields 

¢~(p) = (~)1/2 (27ra2)1/4 exp ( 

and thus 

i s 
= k-h~- / 

47r~ 2(Ph 2- ~)2 27ri2(Ph - P!) (25) 

e x p (  - 8~r2a2~ (p -- p)~) (26) 

The mean and variance of (26) are, respectively, ~5 and h:/167r2a 2. 
Note that  

2 . 

Vat x • Var p = ~ 167r2~ 2 ~ , 

h 
Ax • Ap 47r' 

so the Weyl minimum is indeed attained. 
The information in a Gaussian distribution of variance a s is well known 

to be 1/~ log (2~2e). Thus 

l log (2~'~2e d- 1 (27r-h2e~ 
L(~b~) = 2 ~ log \ 16~2~2 / (27) 

and 

= log (he/2) = log h d- log (e/2), 

H(~bl) = L(~bl) -- log h = log(e/2) = 0.30685 . . .  

I t  remains to calculate 

xl(p) = ~i~ ~bl(x) log I ~bl(x)[ 2 exp -- dx 

and to check whether ~bl yields a solution of the minimizing equation. 
Differentiation of (25) with respect to o 2 and a brief manipulation yields 
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and 

7~p= exp(-  f l¢(p) 12log ] ¢(p)12 dp), 

then it follows from the preceding that  

7xx.TXp = exp (L(~)) > exp L(~I) = he/2. (30) 

This closely resembles the Weyl formulation of the Heisenberg principle. 

5. J O I N T  I N F O R M A T I O N  FOR N O N M I N I M I Z I N G  WAVE PAC KETS 

In order to see how sharp the minimum is, the calculation of L(~b) for 
some simple nonminimizing wave packets may be of interest. We con- 
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(271"O"2) -(I/4) ( 4 ~ 2 q 2 ( p -  ~) 2 27ri2(p -- p))  
XI(P) = h~/2 • exp h2 h 

(28) 
• I--l(4~ra~)I/2log(2~a2)-- 2z~r~/2-F 16a37rs/2(P--'fi)2 

On the other hand 

4~(p)(-L(~I) - log I ¢1(p)[2) 

= (2)1/2 (27/.G2) 1/4 exp ( 4T'2G2(p -- p) 2 h 2 27f'ix(p --p)) h 

l (8~'a2~ 87r~a2(p _ ~)2) (l°g (I) h2 
Term-by-term comparison shows that  

Xl(p) = 41(p) (--L(¢1) -- log I ~(p)  t 2) 
for all p, p, ~, ¢2. Hence ~l(X) is indeed a solution of the minimizing equa- 
tion (22), and we have shown that  

L(~b) >= L(~b~) = t, og (he~2), g(¢)  => g(~b~) = log (e/2) > 0. (29) 

Note that  as h --~ 0, the inequality degenerates to L(~b) > - m, just 
as Ax. Ap = h/4~r degenerates to Ax-Ap ->_ 0. 

I t  is interesting that  if we define "entropic uncertainties" ~x in posi- 
tion and Ap in momentum by 

7~x = exp ( -  f l ~(x) i21og [ ~(x)12 dx) 
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sider two examples, one for reasons of mathematical convenience, the 
other for its physical significance. 

Let 

~b2(x) = 1 ( ~ exp 

so that 

I x - - 2 [  27r~x) 
+ - -  , 

[$2(x)12 1 ( I x - 2 1 )  = ~ exp - cr " 

N o w  

f l, 2(x) 12 log i ¢2(x) 12 dx 1 l f ?  ( I x - 2 )  = ~ l o g ~  ~exp -- - - ~  

We also find 

l f_ ~ ( ] x - - 2 ! )  2(r2 Ix -- 2[ exp 
c¢ O" 

dx 

1 
dx = log 2ae" 

~b2(p) = (2(rh) -1/2 exp (-2~ri2(p - /3)h -1) 
(4~) -1 + 4~(p  -/3)2~h-2 

I ~2(P) 12 = (h/cr)3 • 1 
327r 4 ((p - /3)2 -]- (h/47ra)2) 2 

and 

(hi,T) 3 r .  (h/~) 3 f dp 
f I ¢2(p) I ~ log I ¢2(p) t 2 dp - J 32~r 4 ((p /3)2 + (h/4~)2)2 

.f log ((p - /3)2 A- (h/4~r¢) 2) 
(-~ - ~-~ -~- (h/47ra)2) 2 dP / 2 

From the result 

fo ~ dx = log(r  + q) 
log ( r  2 A- X 2 ) 

q2 -t- x 2 q 

and from differentiating the above with respect to q, we find after sim- 
plification 

f I ~2(P) 12 log [ ~b2(p)]2 dp = log 
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[-~ence 

L(~b2) = log (4h/e), 

H(~2) = log (4/e) = 0.38629 . . .  > H(~bl) = log (e/2) = 0.30685 . . .  

The wave packet ¢3(x) defined by 

Ca(x) = 

0 , ] x - 2 [ > A  

has ~ physical interpretation to be discussed in ~ later communication. 
Obviously, it gives the uniform density 

[ ¢~(x)15 = ' Ix - 21 < A 

, I x - ~ l > A  

and so 

Now 

and 

f 1 I ¢3(x)12 log ]Ca(x)12 dx = log ~-~. 

~b3(p) = (2Ah) -~'2 exp ( 2~i2(Ph - P ) ) s in  (2~rA(p(~/h)(p --P)h-1)p) 
1~3(p) ]2 = ~A (sin (2~rA(p - P)h-1)~ 2 

It follows that 

f ] ~3(p)]2 log [ Ca(p) ]2 dp 

and, since f;°  

I 2A I ~ sin 2 u . = 1 log --ff ~ -  ctu 

+ i "  s in ' u  ( s i e  u~ 1 --U- V- log du \ u 2 / 

- 2  sin2u du = ~r, 

H(~b3) = L(~b3)- log h -- 1 c sin2u 
- ~. J_ ~ l o ~  du. 
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Unfortunately, this definite integral does not seem to have been calcu- 
lated previously. The derivation of its value may be of interest, inasmuch 
as similar integrals arise frequently in "continuous" applications of in- 
formation theory. 

The function log I 2 sin u I can be expanded into the Fourier series 

~ ,  cos 2ku 
k=l ~ k 

convergent for e ~ nlr, n = O, -I-I, -... Since (sin 2 u/u 2) is absolutely 
integrable on ( -  ~ ,  ~ )  the series 

sm U l o g l 2 s i n u l  = - sin 2 u c o s 2 k u  
k=l u s k 

is term-wise integrable, and thus 

f sin~ u 4 sin2 u Fsin u 
Q = ~ l o g  ~ du = - v l o g 4 -  4 ~ l ° g ] u ] d u  

~-, 1 f sin 2 u cos 2ku 
2 du. 

k~l  ~ ~ J U 2 

From sin ~ u = 1/~(1 - cos 2u), the multiplication formul~ for trigono- 
metric functions, and the integral 

f ~ 1 -- cos ax 
• d x  a ~ ,  

2X ~ 

we find that  

f 
and thus 

Let  

and recall tha t  

• 2 sin u cos 2ku 
~2 du = 0 for k = 1, 2, 3 , - - . ,  

o¢ • 2 

Q = - ~ - l o g 4 -  4 f l  sm U l o g t u l d u  
U 2 

f0 ~ s in  2 u Aq = ~ du 

fo * r(q) e - U Z z q - l  d z  _ ,u9 • 
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Thus  

A~ 

Now 

fo 

= f o C C S i n 2 u (  ~ ) ¢¢ / ' ' s i n 2 u  ~ ~.~zO!~ ~ : ~ ~o ~(~) °-.~z~-l~u 

= f0~ (F~q) fo ~ "2sin ue-~'~du) zq-ldz. 

fo ~ (1 -- cos 2u)e-~'du 
1 (sin 2 u)e-~'~du = § 

lle-U~ _u~ ( - z  cos 2u + 2 sin 2 u ) l :  
- 2 z e z ~ + 4  

) 2 z 2 + 4 

2 
z(z 2 "-~ 4) 

hence 

f S  1 2 2 Ji ~ z q-2 
Aq = F(q) z(z 2 -4- 4) zq-ldz - r (q )  _ z 2 -4- dz. 

4 

The  right member  converges at  0 when q > 1 and at  ~ when q ( 3. 
Thus  

Aq- 2a-3 fo ~ yq-2 dy 
~(q) y2 4- 1 

2 q-2 ~r (q - 2)7r 
= r (q~ " ~ see 

2q-3~. 
r ( q )  cos  ( q ~ / 2 )  

for 1 < q < 3. 
Differentiating Aq with respect to  q, we find 

_ 2 q d ~  ~ [  ? ~ l o g 2  2or'(q) + _ _  
dq 8 LF(q) cos (qTr/2) - (F(q)) 2 cos (q~r/2) F(q) 

~r q~-. q~'7 • ~ see ~ ~an - ~ j  
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At q = 2, we have 

dAq _ ~ I 4  log 2 4 F , (2) I  
dq q=2 8 - - 1  - -1  

N o w  

P'(q) _ [ 1  x q - 1  1 

F(q) h x = 1- 

where 5" is Euler 's  constant.  Hence 

~ [lo22 F'(2)] 

- -  d x  - " y ,  

1 

F'(2) = f0 dx - 5" = 1 - 5", 

f0 * sin S u dAq 
- ~ - -  log ! u [ du - dq q=2 

Hence 

~r(1 - 5' - log 2) = - 27r(1 - 5") Q = - 7 r l o g 4 - 4 . ~  

Finally,  then  H(~ba) = --(Q/~r) = 2(1 - 5") = 0.84557 . . . .  
Thus  the joint ent ropy of a uniform position distr ibution is nearly 

three t imes t ha t  of a Gaussian wave packet.  
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SO 

and 

dAq q=2 ~" [log 2 -4- ~ - 1] 
dq = ~ 

On the other hand,  

dAq 
_ f ~  sin 2 u log I u I d u ,  

dq Jo uq 
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