A characterization of $[a, b]$-compact

George N. Miliaras

American University of Athens, Sohou 4, P. Psychico, Athens, Greece

1. Introduction

Throughout this paper, a, b, k and r denote cardinal numbers with a and b infinite and $a \leq b$. The set of all cardinals k such that $a \leq k \leq b$ is designated by $[a, b]$. The cardinality of a set X is denoted by $|X|$.

The theory of $[a, b]$-compactness gives a unified approach to the important notions of compactness, the Lindelof property, countable compactness, and subsets having complete accumulation points. See, for example [1–4,7–9,11,12] and the references cited therein.

Before we proceed, we state the following definitions:

Definition 1.1. A space is $[a, b]$-compact if every open cover of X of cardinality less than or equal b, has a subcover of cardinality less than a.

Remark 1.1. In Definition 1.1, if $a = b$ then X is called $[a, a]$-compact. It is clear that X is $[a, b]$-compact if and only if X is $[k, k]$-compact for every k with $a \leq k \leq b$.

Definition 1.2. A space is $[a, b]$ r-compact if it is $[k, k]$-compact for every regular cardinal k with $a \leq k \leq b$.

(The readers may find the above definitions and some of their consequences in [4,6,13].)
There have been in the past some efforts to find sufficient conditions for an \([a, b]^r\)-compact space to be \([a, b]\)-compact. In 1929, Alexandroff and Urysohn [2], established the following theorem:

Theorem 1.1. ([2]) An \([a, b]^r\)-compact space is \([a, b]\)-compact if \(a = \omega_0\), where \(\omega_0 = |\mathbb{N}|\).

In 1962, Miscenko [10], established the following theorem:

Theorem 1.2. ([10]) If \(X\) is \([a, b]^r\)-compact, \(a\) is regular and for every open cover \(\mathcal{U}\) of \(X\), there is a closed cover \(\mathcal{F} = \{F_U \mid U \in \mathcal{U}\}\) such that \(F_U \subseteq U\) for all \(U \in \mathcal{U}\).

In 1970, Howes [5], established the following theorem:

Theorem 1.3. ([5]) If \(X\) is \([\omega_1, \infty]^r\)-compact, countably metacompact space, \(X\) is \([\omega_1, \infty]\)-compact, where \(\omega_1\) is the smallest uncountable cardinal and a space is countably metacompact if every countable open cover has a point-finite open refinement.

In 1974, Hodel and Vaughan [4], gave the following definition:

Definition 1.3. ([4]) A topological space \(X\) is said to satisfy \(I(\gamma)\) if for every increasing open cover \(\mathcal{U} = \{U_\gamma \mid 0 \leq \gamma \leq k\}\) of \(X\) with \(k < a\), there is a closed refinement \(\mathcal{F}\) of \(\mathcal{U}\) with \(|\mathcal{F}| \leq a\).

Taking into account the above definition, the same authors proved the following theorem:

Theorem 1.4. ([4]) Let \(a\) be regular. If \(X\) is \([a, b]^r\)-compact and satisfies \(I(a)\), then \(X\) is \([a, b]\)-compact.

In this paper, we find a necessary and sufficient condition for an \([a, b]^r\)-compact space to be \([a, b]\)-compact.

2. Main result

Before we proceed we will need the following definitions:

Definition 2.1. Let \(X\) be a set and \(\mathcal{U}\) be a cover of \(X\). A refinement \(\mathcal{V}\) of \(\mathcal{U}\) is a cover of \(X\) such that, for every \(V \in \mathcal{V}\) there exists \(U \in \mathcal{U}\) such that \(V \subseteq U\).

Definition 2.2. A family of sets \(\mathcal{V}\) is called star-\(k\) if and only if for every \(V \in \mathcal{V}\), \(|\mathcal{V}(V)| < k\), where \(\mathcal{V}(V) = \{V' \in \mathcal{V} \mid V' \cap V \neq \emptyset\}\).

Definition 2.3. A space \(X\) is \([a, b]\)-star-refinable if every open cover \(\mathcal{U}\) of \(X\) with \(|\mathcal{U}| = k \in [a, b]\), has a star-\(k\) open refinement.

Notation. Throughout this paper we will use the notation: Let \(\mathcal{U}\) be a cover of \(X\). Then for every \(x \in X\), \(St(x, \mathcal{U}) = \bigcup\{U \in \mathcal{U} \mid x \in U\}\).

The following two lemmas are needed for the proof of the main theorem:

Lemma 2.1. Let \(X\) be \([k, k]\)-compact, where \(k\) is a regular cardinal. Then:

(i) \(X\) is \([\lambda, \lambda]\)-compact for every \(\lambda > k\) with \(cf(\lambda) = k\).

(ii) Furthermore, if \(X\) is \([a, b]^r\)-compact, then \(X\) is \([k, k]\)-compact for every singular cardinal \(k\) such that \(a \leq k \leq b\) and \(cf(k) \geq a\).

Proof. Let \(\mathcal{U} = \{U_\gamma \mid \gamma < \lambda\}\) be an open cover of \(X\), choose cardinals \(\lambda, \beta < k\) with \(sup(\lambda, \beta) = \lambda\). For every \(\beta < k\), let \(V_\beta = \bigcup\{V_\beta \mid \gamma < \lambda_\beta\}\) and \(V = \{V_\beta \mid \beta < k\}\). Then \(V\) is an open cover of \(X\), with \(|V| = k\), and has a subcover \(V'\) of cardinality \(\mu < k\), since \(X\) is \([k, k]\)-compact. Let \(V' = \{V_\beta \mid \beta < \mu\}\), then \(V_{\mu+1} = X\), but \(V_{\mu+1} = \bigcup\{U_\gamma \mid \gamma < \lambda_{\mu+1}\}\). Put \(\mathcal{U}' = \{U_\gamma \mid \gamma < \lambda_{\mu+1}\}\), we have \(|\mathcal{U}'| = \lambda_{\mu+1} < \lambda\) and since \(\mathcal{U}'\) is a subcover of \(\mathcal{U}\), \(X\) is \([\lambda, \lambda]\)-compact. The proof of Part (i) is complete.

Part (ii) is direct from Part (i).

The proof of the lemma is complete.

Lemma 2.2. If \(\mathcal{W}\) is an open cover of a topological space \(X\) and \(\xi\) is a regular cardinal such that \(|\mathcal{W}| \geq \xi\), and \(\mathcal{W}\) has no subcover of cardinality smaller than \(\xi\), and for every \(W \in \mathcal{W}\), \(|\mathcal{W}(W)| < \xi\), then every infinite cardinal \(\lambda \leq \xi\) there exists an open cover of \(X\) of cardinality \(\lambda\) with no subcover of smaller cardinality.
Proof. Pick any point \(x_0 \in X \) and \(W_0 \in \mathcal{W} \) with \(x_0 \in W_0 \). By recursion pick for all \(\alpha < \xi \) points, \(x_0 \notin \bigcup_{\beta < \alpha} \text{St}(x_\beta, \mathcal{W}) = Y \), and sets \(W_\beta \in \mathcal{W} \) with \(x_\beta \in W_\beta \). This is possible because at step \(\alpha \), \(\bigcup_{\beta < \alpha} \text{St}(x_\beta, \mathcal{W}) \neq X \). For otherwise, every one of the \(\xi \) or more elements of \(\mathcal{W} \) would intersect \(Y \), but for all \(\beta \), \(\text{St}(x_\beta, \mathcal{W}) \) is a union of less than \(\xi \) elements of \(\mathcal{W} \), hence one of the less than \(\xi \) many elements would have to intersect at least \(\xi \) many elements of \(\mathcal{W} \) (since \(\xi \) is regular), which contradicts the hypothesis.

The recursion gives us a set \(S = \{ x_\alpha : \alpha < \xi \} \) and a family \(\{ W_\alpha : \alpha < \xi \} \) of open sets with \(x_\alpha \in W_\alpha \) for all \(\alpha < \xi \). We also have

\[(\forall \mathcal{W} \in \mathcal{W}) \quad |\mathcal{W} \cap S| \leq 1, \quad \text{i.e., no \(\mathcal{W} \) contains two elements of \(S \).} \]

Now define \(B = \bigcup \{ \text{St}(x, \mathcal{W}) : x \notin \bigcup_{\alpha < \xi} \text{St}(x_\alpha, \mathcal{W}) \} \). Then

\[B = \{ B \} \cup \{ \text{St}(x_\alpha, \mathcal{W}) : \alpha < \xi \} \]

is an open cover of \(X \), and \(\text{St}(x_\alpha, \mathcal{W}) \) is the only member of \(B \) that contains \(x_\alpha \). Thus \(B \) is a cover of \(X \) of cardinality \(\xi \) with no subcover of smaller cardinality. If \(\lambda < \xi \) then put \(C_\lambda = \bigcup \{ \text{St}(x_\alpha, \mathcal{W}) : \lambda < \beta < \xi \} \). Then \(\{ B, C_\lambda \} \cup \{ \text{St}(x_\alpha, \mathcal{W}) : \tau < \lambda \} \) is an open cover of \(X \) of cardinality \(\lambda \) with no subcover of smaller cardinality. The proof is complete. \(\square \)

Theorem 2.1. A space \(X \) is \([a, b] \)-compact (\(a \) is a regular cardinal), if and only if \(X \) is \([a, b]^\prime \)-compact and \([a, b] \)-star-refinable.

Proof. Assume that \(X \) is \([a, b] \)-compact (\(a \) is a regular cardinal). Then, in view of the definition of \([a, b] \)-compact, it is obvious that \(X \) is \([a, b]^\prime \)-compact, and \([a, b] \)-star-refinable.

Let \(X \) be \([a, b] \)-compact, and \([a, b] \)-star-refinable.

Assume, for the sake of contradiction, that \(X \) is not \([a, b] \)-compact.

Let \(k \) be the smallest singular cardinal with \(k > a \) such that \(X \) is not \([k, k] \)-compact, then by Lemma 2.1, \(cf(k) < a \). Let \(U \) be an open cover of \(X \) with \(|U| = k \), and \(U \) has no subcover of smaller cardinality. By the hypothesis \(U \) has an open refinement \(V \), where \(V \) is star-\(k \). Then \(V \) has no subcover of cardinality less than \(k \).

Step 1: We may assume that \(V \) has a subcover of cardinality \(k \), for if it did not, then setting \(\xi = k^+ \) and \(\mathcal{W} = V \), the hypothesis of Lemma 2.2 is satisfied. Taking \(\lambda = a \) the lemma says that there is an open cover of \(X \) of cardinality \(a \) with no subcover of cardinality less than \(a \). Since \(a \) is regular, this contradicts that \(X \) is \([a, b]^\prime \)-compact. By passing to this subcover of cardinality \(k \) we may assume that \(|V| = k \).

Step 2: Since \(k \) is singular, let \(\mu = cf(k) \) and let \(\{ \lambda_\alpha : \alpha < \mu \} \) be an increasing sequence of cardinals such that \(k = \sum_{\alpha < \mu} \lambda_\alpha \). Since \(a < k \) we may as well assume that \(\lambda_0 = a \). In view of Lemma 2.1, we have \(\mu < a \). Write

\[V = \bigcup_{\alpha < \mu} V_\alpha \]

where \(|V_\alpha| \leq \lambda_\alpha \).

Step 3: For \(\beta < \mu \) let \(A_\beta = \{ V \in V : |V(V)| \leq \lambda_\beta \} \). Then

\[V = \bigcup_{\alpha < \mu} A_\alpha. \]

Note further that \(V = \bigcup \{ V_\alpha \cap A_\alpha : \alpha < \mu \} \) because both \(V_\alpha \)'s and \(A_\alpha \)'s are increasing.

Define

\[O_\alpha = \bigcup \{ V \in V : V \cap W = \emptyset \text{ for all } W \in V_\alpha \cap A_\alpha \}. \]

Step 4: For \(\alpha < \mu \) the family

\[\{ O_\alpha \} \cup \{ V \in V : V \cap W \neq \emptyset \text{ for some } W \in V_\alpha \cap A_\alpha \} \]

satisfies two properties: (i) it covers \(X \), and (ii) it has cardinality at most \(\lambda_\alpha < \mu \) since there are at most \(\lambda_\alpha \) many \(W \in V_\alpha \cap A_\alpha \) and each such \(W \) covers at most \(\lambda_\alpha \) sets in \(V \).

Step 5: By \([a, b]^\prime \)-compactness and definition of \(k \) as “smallest”, the open cover in Step 4 has a subcover of cardinality less than \(a \); call it \(V_\alpha \). Put \(W_\alpha \setminus V_\alpha = W_\alpha \setminus O_\alpha \). Then \(W_\alpha \setminus V_\alpha \) covers \(\bigcup \{ V_\alpha \cap A_\alpha \} \).

Step 6: \(\bigcup_{\alpha < \mu} W_\alpha \setminus V_\alpha \) covers \(X \).

Step 7: \(|\bigcup_{\alpha < \mu} W_\alpha \setminus V_\alpha| < a \). This follows because \(a \) is regular, \(|W_\alpha \setminus V_\alpha| < a \) for all \(\alpha < a \) and \(\mu < a \).

Step 8: Since \(\bigcup_{\alpha < \mu} W_\alpha \setminus V_\alpha \subset V \), we see that \(V \) has a subcover of cardinality less than \(a \) and since \(V \) is a refinement of \(U \), so does \(U \). This contradicts the original assumption about \(U \), and that completes the proof. Thus \(X \) is \([a, b] \)-compact.

The proof of the theorem is complete. \(\square \)
Acknowledgement

The author would like to thank the anonymous referee for his/her valuable suggestions on the previous manuscript.

References