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Abstract 

A reset word takes all states of a finite automaton to a single state. In this paper, it is shown 
that the length of the shortest reset word for a solvable automaton with n states is at most n - 1 
and this bound is reachable. 

1. Introduction 

The results of this paper originated from the investigation of Cerny’s hypothesis 

about the minimum length of reset words for a finite automaton [l]. Cerny supposed 

that this length for an n-state automaton is at most (n - 1)2 and showed that this bound 

is reachable [ 11. This hypothesis has been proved for several special cases [2,9]. The 

general upper bound (n3 - n)/6 has been obtained for arbitrary automaton with n 

states [ 51. 

It is easy to see that the minimum length of reset words for a monogenic (one input) 

n-state automaton is at most n - 1. In this paper, we prove that this bound is also valid 

for commutative, solvable and strongly reset automata. 

2. Definitions and preliminaries 

A finite deterministic automaton (without outputs) A is defined as a homomorphism 

of monoids: 

A : x* + Map(S), (1) 

where X* is the free monoid of words over a finite input alphabet X and Map(S) is 

the multiplicative monoid of unary mappings on a finite set of states S. The number 

n = IS\ is the number of states of an automaton A. 
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Homomorphism (1) associates with a word w = xi . . .x, the composition (superpo- 
sition) of mappings A(w) = A, = &xl ). . . . -A&). The identical mapping is associated 
with the empty word. The submonoid ,4(X*) of Map(S) is called the monoid of an 
automaton A and is denoted by Man(A). 

The value A,(s) of the mapping A, in the state s E S is denoted also by A(s,w). 
The image of a subset of states T G S under the action of a word w in A is defined 
by the formula 

A( T, w) = {A(s, w) 1 s E T}. 

The number r(w) = IA(S,w)( IS called the rank of a word w with respect to A. 
If r(w) = 1, then w is said to be a reset word for A. In this case A(w) is a constant 

mapping. An automaton is called reset if there is a reset word for it. The following 
proposition is evident. 

Proposition 2.1. An automaton A is reset if and only iffor every two states s, t there 

is a word w such that A(s, w) = A(t, w). 

A state s E S is stable for A if A(s,x) = s for all x E X. A reset automaton with 
a stable state is called a O-automaton. In this case there exists only stable state which 
is called the zero state 0. Note that the zero state is reachable from any other state. 

The mapping 2 such that Z(s) = 0 for all s E S is called the zero mapping for 
a O-automaton. If w is a reset word for a O-automaton A, then A(w) = Z and A(w) 

is an algebraic zero of the monoid Man(A). Therefore, reset words are called zero 
words for a O-automaton. An automaton is monogenic (autonomous) if [XI = 1. The 
following proposition is obvious. 

Proposition 2.2. Any reset monogenic automaton is a O-automaton, and there is 

a zero word of length at most n - 1 for it. 

If we let A(si,x) = si+l for all i, 1 <i < n, and A(s,,x) = s,, then 9-l will be the 
shortest zero word. Thus, the bound in Proposition 2.2 is tight. 

A subset T G S defines a subautomaton B of A if A( T,x) C T for all x E X. In this 
case it is supposed that B(s,x) = A(s,x) for all s E T and x E X. A subset T defines 
a proper subautomaton if T c S. 

The factorautomaton A/B is defined for a subatomaton B of A on the factorset 
S\TU{T} in the usual way: A/B(s,x)=A(s,x) if A(s,x) 6 T and A/B(s,x)=A/B(T,x)=T 
if A(s,x) E T for all s E S\ T and x E X. Thus, the state {T} is stable for the fac- 
torautomaton A/B. Note that any subautomaton and factorautomaton of a O-automaton 
are also O-automata. 

Proposition 2.3. Zf w is a zero word for a subautomaton B and v is a zero word for 
the factorautomaton A/B, then VW is a zero word for an automaton A. 

An automaton A is transitive (strongly connected) if for every pair of states s, t 
there is a word w such that A(s, w) = t. A O-automaton is called O-transitive if 
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each of its state is reachable from any nonzero state. The following proposition is 

evident. 

Proposition 2.4. An automaton (O-automaton) is transitive (O-transitive) if and only 

if there are no proper (nonzero) subautomata in it. 

Denote by Cen(A) the submonoid of mappings in Map(S) which commute with all 

mappings in A(X) = {A(x) /x E X}. The submonoid Cen(A) is called the centralizer 

of an automaton A. If f E Cen(A), then f . A(x) = A(x) . f for all x E X, and f is 

called an endomorphism of A. Note that the zero state of a O-automaton A is a stable 

point for all endomotphisms in &n(A). Therefore, the zero mapping Z is an algebraic 

zero of the monoid Cen(A). The next conjecture is the multiplicative analog of the 

well-known Shur’s lemma from ring theory [6]. 

Lemma 2.5. The centralizer of a transitive (O-transitive) automaton is a group (with 

zero). 

Proof. We sketch the proof only for O-automata. Let A be a O-transitive automaton 

and f E Cen(A). It is easy to see that the subset f(S) of states defines a subautomaton 

of A. Then, by Proposition 2.4, we conclude that f(S) = S or f (8) = (0). In the 

first case f is a bijection, and in the second case f is the zero of Cen(A). Thus, all 

nonzero mappings in Cen(A) form a subgroup. 0 

3. Commutative automata 

An automaton A is commutative if A(x) . A(y) = A(y) . A(x) for all x, y E X. 

Note that each subautomaton and factorautomaton of a commutative automaton are 

also commutative. 

Theorem 3.1. There is a zero symbol x E X for a commutative O-transitive automa- 
ton A. 

Proof. We have A(X) C Cen(A) for a commutative O-automaton A. Then from Lemma 

2.5 it follows that all nonzero mappings in A(X) are permutations. Thus, there is the 

zero mapping in A(X), since the zero state is reachable from other states. 0 

Now consider reset commutative automata. It is evident that any monogenic au- 

tomaton is commutative. Therefore, the following theorem generalizes Proposition 2.2 

[11,41. 

Theorem 3.2. Any reset commutative automaton A is a O-automaton, and there is 
a zero word of length at most n - 1 for it. 
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Proof. We argue by induction on n. If II = 1, then the theorem is trivial. If n > 1, 

then there is a proper subautomaton of A. Indeed, otherwise by Proposition 2.4 and 

Lemma 2.5 an automaton A is transitive and Cen(A) is a group of permutations. Since 

A is commutative, then A(X) C Cen(A) and all mappings in A(X) are permutations. 

Then by Proposition 2.1 A is not reset, and we have a contradiction. 

Let B be a maximal proper subautomaton of A with the subset of states T. Then the 

factorautomaton A/B is O-transitive. Indeed, for any two states s, t E S \ T there is a 

word u such that A(s, u) = t, and A(s, w) E T for a reset word w. Thus, by Theorem 3.1, 

there is a zero symbol x for A/B. By induction hypothesis, B is a O-automaton, and 

there is a zero word w for B whose length is at most n-2. Hence, from Proposition 2.3 

it follows that xw is a zero word for A of length at most n - 1. 0 

The tightness of this bound follows from the tightness of the bound in Proposi- 

tion 2.2. 

4. Solvable O-automata 

In this section, we extend Theorem 3.2 to more general class of automata. A com- 

posite chain for a O-automaton A is a series of subautomata: 

{O}=BOcB,c~~~cB,=A, (2) 

in which all composite factors B;/Bi_ 1, 1 < i dm, are O-transitive. It is well known that 

composite factors are isomorphic to the strongly connected components (layers) of a 

O-automaton [7]. Therefore, two composite chains have isomorphic composite factors 

and the same length. In other words, the analog of Jordan-Helder’s theorem from 

algebra [6] takes place for O-automata. Thus, we may define the length Z(A) of a 

O-automaton A as the length m of its composite chain (2). 

A O-automaton is called solvable if its composite factors are commutative. It is 

evident that any commutative O-automaton is solvable. Another interesting subclass 

of solvable automata consists of nilpotent automata. A O-automaton is nilpotent if 

there is a number rn such that all words of length at least m are zero words. It is 

easy to see that a O-automaton is nilpotent if and only if there are no cycles and 

loops which pass through nonzero states. It is evident that any nilpotent automaton is 

solvable but not vice-versa. As an example, consider the automaton with three states: 

A(x) = (133), A(y) = (223). This O-automaton is solvable but not commutative or 

nilpotent. 

Theorem 4.1. There is a zero word of length at most l(A) for a solvable automaton A. 

Proof. For each composite factor Bi/Bi_1 7 by Theorem 3.1, there is a zero sym- 

bol Xi, 1 <id m. Then by Proposition 2.3 the word x,x,-i . . .x1 is a zero word 

for A. 0 
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This theorem and the trivial inequality Z(A) < n imply the following statement. 

Corollary 4.2. There is a zero word of length at most n- 1 for a solvable O-automaton 
with n states. 

5. Strongly reset automata 

It is evident that there are many reset automata without a zero state. However, 

sometimes it is possible to extend the results from O-automata to reset automata. Here 

we demonstrate this for strongly reset automata. 

Let us refer to a O-automaton as a strongly reset automaton (SRO-automaton) if for 

each of its composite factors there is a zero input symbol. Theorem 3.1 implies that 

commutative and solvable O-automata are SRO-automata. The proof of Theorem 4.1 is 

directly extended to SRO-automata, so we have the following statement. 

Theorem 5.1. There is a zero word of length at most l(A) for a strongly-reset 

O-automaton A. 

Now let us consider a reset automaton A : X* -+ Map(S). Denote by A2 the square 

of A which is defined on the set S x S as follows: A2((s, t),x) = (A(s,x),A(t,x)). The 

subautomaton of A2 defined on the diagonal D = {(s,s) 1 s E S} is isomorphic to A. 
Therefore, we may consider the factorautomaton A2 = A*/A which is called the pair 

automaton of A. The next proposition is evident. 

Proposition 5.2. A word is reset for A if and only if it is a zero word for AZ. 

Thus an automaton is reset if and only if its pair automaton is a O-automaton. A reset 

automaton is called nilpotent (solvable) if its pair automaton is a nilpotent (solvable) 

O-automaton. Proposition 5.2 implies that an automaton is nilpotent if and only if 

any sufficiently long input word is reset for it. Nilpotent automata are known also 

as definite automata [3,8]. It is easy to see that there are nilpotent automata without 

a zero state. The simplest example is the following automaton with two states and two 

input symbols (trigger): A(x) = (1 l),A(y) = (22). 
An automaton is said to be strongly reset (SR-automaton) if its pair automaton is an 

SRO-automaton. It is evident from definitions that any nilpotent automaton is solvable 

and any solvable automaton is strongly reset. 

A binary relation R, D c R 2 S x S is called invariant for A if A2(R,x) C_ R for all 

x E X. Every invariant relation R defines the subautomaton A(R) of A2 and vice versa. 

An invariant equivalence relation is called a congruence of A. The rank of a congruence 

is the number of classes in it. For an invariant relation R denote by cg(R) the minimal 

congruence which contains it. Note that cg(R) is the transitive closure of the relation 

R U R-‘, where R-’ is the inverse relation for R. From the definitions it is easy to 

prove the following statement. 
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Proposition 5.3. If E is a congruence of A, E &R and x is a zero symbol for the 
factorautomaton A(R)/A(E), then x is also a zero symbol for the factorautomaton 

A(cg(R))/A(E). 

Proof. Note that x is a zero symbol for A(R)/A(E) if and only if A’(R,x) C E. Then 

A2(cg(R),x) C E, since E is a congruence. Thus x is a zero symbol for the factorautoma- 

ton A(cg(R))/A(E). 0 

The maximal length m of the following chain of congruences: 

D=EocElc..,cE,=SxS (3) 

is called a height h(A) of an automaton A. Note that h(A) < n, since the rank of Ei 

decreases for 0 <i d m. Now we can prove the most general result. 

Theorem 5.4. There is a reset word of length at most h(A) for any strongly reset 

automaton A. 

Proof. Let (3) be a maximal chain of congruences of an SR-automaton A and Ri 
be a minimal invariant relation which satisfies the condition Ei_1 c Ri C Ei, 1 <i <m. 

Then each factorautomaton A(Ri)/A(Ei-1 ), 1 G i dm, is a composite factor of AZ. We 

also have cg(Ri) = Ei for all i, 1 <i <m, since there are no congruences between 

Ei_l and Ei in A. Then from the definition of SR-automata and Proposition 5.3 it 

follows that for each factorautomaton A(Ei)/A(Ei_ 1) there is a zero symbol xi, 1 <i $ m. 
Hence, from Proposition 2.3 we conclude that the word xmx,,_i . . .x1 is a zero word 

for AZ. Then Proposition 5.2 and the inequality m <h(A) imply the statement of the 

theorem. 0 

Theorem 5.4 and the inequality h(A) < n imply the following fact. 

Corollary 5.5. There is a reset word of length at most n - 1 for a strongly reset 
(nilpotent, s 1 61 ) o vu e automaton with n states. 

6. General O-automata 

It is easy to see that any O-automaton with n states has a zero word of length at 

most (n - 1)2. Thus Cemy’s hypothesis for O-automata is trivially true. The tight bound 

for O-automata was obtained in [lo] and is given in the following statement. 

Theorem 6.1. There is a zero word of length at most (n2 +n)/2 for any O-automaton 
with n nonzero states, and this bound is tight. 

Proof. It is easy to see that the length of the shortest word in a O-automaton A which 

takes some state from a subset T to the zero state is not greater than n + 1 - ITI. 
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Hence, the length of the shortest zero word is not greater than the following number: 

~(n+l-i)=f+~. 
i=n j=l 

To prove the tightness of this bound let us consider the automaton with states S = 

(0, 1, . . . , n}, input symbols X = {xl,. . . , x,} and the transition function which is defined 

as follows. Let A(xi ) = (0,0,2,. . , n) and let A(xi) = (i - 1, i) be a transposition of 

states i - 1 and i for all i > 1. Denote by sum(T) the sum of the states in a subset 

T and by I(W) the length of an input word W. Using the definition of A the following 

inequality may be proved for all T and x,: 

sum(T) - 1 dsum(A(T,xi)). 

From this by induction on the length of a word w we get the following inequality: 

sum(S) - I(w)<sum(A(S, w)). 

Then we have (n* + n)/2 = sum(S)< I(w) for a zero word w, since in this case 

sum(A(S, w)) = 0. So the theorem is proved. 0 

7. Conclusion 

Theorem 3.2 is surprising in some sense. It shows that reset properties of commu- 

tative automata are similar to those of monogenic automata. Corollary 5.5 demonstrate 

that the same bound is valid for nilpotent, solvable and strongly reset automata. In 

opposite to Theorem 6.1 Cerny’s hypothesis for general reset automata is still open. 
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