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Abstract

We generalize Engelfriet’s decomposition result stating that the class of transformations induced
by top–down tree transducers with regular look-ahead is equal to the composition of the class of
top–down tree transformations and the class of linear tree homomorphisms. Replacing the input trees
with an arbitrary storage type, the top–down tree transducers are turned into regular storage-to-tree
transducers. We show that the class of transformations induced by regular storage-to-tree transducers
with positive look-ahead is equal to the composition of the class of transformations induced by regular
storage-to-tree transducers with the class of linear tree homomorphisms. We also show that the classes
of transformations induced by bothIO andOI context-free storage-to-tree transducers are closed under
positive look-ahead, and are closed under composition with linear tree homomorphisms.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The notion of look-ahead is an efficient tool in tree language theory, see
[1,4,5,11–13,19,20]. Top–down tree transducers with regular look-ahead are capable of
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inspecting subtrees before deleting or translating them. Engelfriet[4] showed the decom-
position result

T R = T ◦ LH, (1)

whereT R, T, andLH denote the classes of transformations induced by top–down tree trans-
ducers with regular look-ahead, top–down tree transducers, and linear tree homomorphisms,
respectively (cf. Corollary 2.13 in[4]).

A top–down tree transducer can be considered as a nondeterministic recursive program
that acts on trees and generates trees. If the recursive functions in this program are provided
with parameters, the macro tree transducer of[7] is obtained. We can describe such a
program as a grammar which operates on a storage type. Thus, we obtain the concepts of
regular,IO context-free andOI context-free storage-to-tree transducers which provide us
with a general and uniform framework to transducers, see[5,8].

In a regular tree (RT) grammar the nonterminals have rank 0, see[14]. Context-free tree
(CFT) grammars are obtained fromRTgrammars by allowing nonterminals of rank greater
than 0.CFTgrammars can be considered with unrestricted derivation and with two restricted
modes of derivation: inside–out (IO) and outside–in (OI). A CFT grammar depending on
the restricted mode of derivation is said to be either an inside–out (IO) context-free tree
grammar or an outside–in (OI) context-free tree grammar, see[6].

The concept of a storage type was introduced in[5,8]. Roughly speaking, a storage type
S consists of a set of input elements and a set of configurations. The input elements are
encoded as configurations. The configurations can be tested by predicates ofS and can
be transformed by instructions ofS. Let MOD be the set{RT, IO,OI,CF } of modifiers,
whereCF denotes the type of context-free (string) grammars. Let modifierK range over
MOD. A K S-to-tree transducer, orK(S) transducer for short, is aK grammar of which
every rule is provided with a test, and every nonterminal of the right-hand side of the rule
has an instruction. Considering a derivation of theK(S) transducer, each occurrence of a
nonterminalA is associated with a configurationc, different occurrences may be associated
with different configurations. A rule of theK(S) transducer can be applied to the tuple
A(c) as a rule of aK grammar can be applied to the nonterminalA, provided that the test
specified by the rule holds forc, and the instructions also specified by the rule are defined
on c. The new configurations for the nonterminals of the right-hand side of the rule are
obtained by transformingc according to the instructions of the respective nonterminals.
The initial nonterminal of the grammar is associated with a configuration that is an encoded
input element. Thus, theK(S) transducer induces a transformation from the input set to the
set of terminal trees or strings. IfK or S is not specified, we speak about a storage-to-tree
transducer. Note that theRT(S) transducer can be viewed as either theIO(S) or theOI(S)
transducer in which only rank 0 is allowed for nonterminals.

We also study deterministic transducers:DK(S) transducers. In the sequel,DMODstands
for the set{DRT,DIO,DOI,DCF } of deterministic modifiers. For modifierK ∈ MOD∪
DMOD, the class of transformations induced byK(S) transducers is denoted byK(S).
For example,DIO(S) is the class of tree transformations induced by deterministicIO(S)

transducers.
For particular storage typesS, CF(S) transducers can be associated with indexed gram-

mars, attribute grammars, generalized syntax directed translation schemes, etc., see[5].
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Top–down tree transducers areRT(S) transducers for a particular storage typeS. The tree
storage type, denoted byTR, is a storage type in which the input elements and the con-
figurations are trees, the root of trees can be tested and the trees can be transformed into
their immediate subtrees. Top–down tree transformations are the same asRT(TR) trans-
formations, and deterministic top–down tree transformations are the same asDRT(TR)
transformations, that is,

T = RT(TR) and DT = DRT(TR), (2)

see Corollary 3.20 in[8].
The concept of a storage typeSwith look-ahead, denoted bySCF, was introduced in[5,8]

as a generalization of regular look-ahead. Storage typeSCF is obtained fromSby adding
special tests, so-called look-ahead tests, to the set of predicates ofS. These look-ahead tests
are written in the form〈L〉, whereL is aCF(S) transducer. Look-ahead test〈L〉 is true on a
configurationc if and only if theCF(S) transducerLcan derive a terminal string fromAin(c),
whereAin is the initial nonterminal ofL. For each modifierM ∈ MOD∪DMOD, we define
the storage typeSwith M look-ahead, denoted bySM , from SCF by replacing theCF(S)
transducers in the look-ahead tests withM(S) transducers. Recall that the class of domains
of top–down tree transformations is exactly the class of recognizable tree languages, see
[14]. The class of recognizable tree languages is closed under the Boolean operations. Since
the test of a rule is a Boolean expression of predicates, one can show that

T R = RT (TRRT), (3)

see the first line of p. 335 in[8]. Hence by (2), Engelfriet’s decomposition theorem (1) takes
the form

RT (TRRT) = RT(TR) ◦ LH. (4)

We show that theRT, IO, OI, andCF look-ahead tests are all equivalent, and that theDRT,
DIO, andDCF look-ahead tests are pairwise equivalent as well. On the basis of this result
we show that for each storage typeS, and for every modifierK in MOD∪DMOD,K(SRT) =
K(SIO) = K(SOI) = K(SCF) andK(SDRT) = K(SDIO) = K(SDCF) ⊆ K(SDOI).

We show that for each modifierK ∈ {RT, IO,OI } and storage typeS,

K(SK) ⊇ K(S) ◦ LH. (5)

This result is a generalization of the inclusionRT(TRRT) ⊇ RT(TR) ◦ LH , see (4).
The reverse of inclusion (5) does not hold for the notion of look-ahead as defined in the

literature. Hence the generalization of Engelfriet’s result (4) does not hold. We, therefore,
introduce the notion of positive look-ahead. In the literature, the test of a rule can contain
the negation of a look-ahead test. This is nice and convenient for the particular storage
types considered in, e.g.,[5,8], but it is not acceptable for other storage types. In fact, if
one considers the tape of a Turing machine as a storage type, then a look-ahead test can
test membership in an arbitrary recursively enumerable set. Allowing negation, this means
that a regular storage-to-tree transducer with look-ahead on this storage type can induce
functions that are not computable (such as the characteristic function of a recursively enu-
merable set that is not recursive). This is undesirable and also means that the generalization
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of Engelfriet’s result cannot hold for this notion of look-ahead because any composition
of a regular storage-to-tree transducer with a linear tree homomorphism clearly induces
computable functions only. For this reason, we forbid the negation of look-ahead tests and
call it positive look-ahead. Obviously, storage-to-tree transducers with positive look-ahead
induce computable functions only, and so positive look-ahead is, in general, less powerful
than look-ahead. Positive look-ahead is still a very natural notion of look-ahead. In partic-
ular, the two notions of look-ahead are equivalent for top–down tree transducers (because
the recognizable tree languages are closed under complement), and so Engelfriet’s result
can as well be viewed as a result on positive look-ahead.

Let K ∈ MOD andM ∈ MOD. Let Sbe a storage type. AK S-to-tree transducer with
positiveM look-ahead (K+(SM) transducer for short), is aK(SM) transducer, where the
test of each rule is of the form

b and 〈L1〉 and · · ·and 〈Ln〉.

Hereb is a Boolean expression over the predicate symbols ofS,n�0, and for each 1� i�n,
〈Li〉 is a look-ahead test of the storage typeSM . Note that if negation of anyM look-ahead
test does not occur in any test of aK(SM) transducer, then that is aK+(SM) transducer,
because it can easily be shown that one can eliminateor from tests of rules. Now, it is
immediate from the definition ofT R thatT R ⊆ RT +(TRRT). By (3), RT(TRRT) = T R =
RT +(TRRT). By (4), Engelfriet’s decomposition theorem (1) takes the form

RT +(TRRT) = RT(TR) ◦ LH. (6)

We generalize (6) by showing the following. For every storage typeS,RT+(SRT) = RT (S)◦
LH .

We show that for every storage typeS, IO(S) is closed under positive look-ahead, is closed
under composition with linear tree homomorphisms, and is even closed under composition
with tree homomorphisms. That is, for every storage typeS, IO+(SIO) = IO(S) = IO(S) ◦
LH = IO(S)◦H . We also show that for every storage typeS, OI(S) is closed under positive
look-ahead, and is closed under composition with linear tree homomorphisms. That is, for
every storage typeS, OI+(SOI) = OI(S) = OI(S) ◦ LH .

For the tree storage typeS = TR(discussed above), theIO(S) andOI(S) transducers are
the same as theIO andOI macro tree transducers of[7] (see[8]). In [7] the classes ofIO
andOI macro tree transformations are denoted byMTIO andMTOI , respectively. Thus

IO(TR) = MTIO and OI(TR) = MTOI

and similarly for the deterministic case. The above results on positive look-ahead general-
ize the fact thatMTIO andMTOI are closed under regular look-ahead[7]. For the trivial
storage typeS = S0, theIO(S0) andOI(S0) transducers are essentially the same as theIO
andOI context-free tree grammars (cf. Lemma 3.9 of[8]). The above results on closure
under composition with (linear) tree homomorphisms generalize the fact that theIO and
OI context-free tree languages are closed under tree homomorphisms[6] and linear tree
homomorphisms[17], respectively. They are new for macro tree transducers.
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2. Preliminaries

In this section, we present a review of the notions, notations, and results used in the paper.

2.1. General notations

Let n�0 and for each 1� i�n, let bi ∈ { true, false}. We define the Boolean value∧
(b1, . . . , bn) as follows. Forn�2, let

∧
(b1, . . . , bn) = b1 and · · · and bn. Forn = 1,

let
∧

(b1) = b1. Finally, let
∧

( ) = true. Analogous notation will be used for Boolean
expressions.

For two setsA andB, a binary relation� from A into B is any subset ofA × B. The
domaindom(�) of � is the set{ u | there is av ∈ B such that(u, v) ∈ � }. For two binary
relations�1 and�2, the composition�1 ◦ �2 of �1 and�2 is the set{ (u,w) | (u, v) ∈
�1 and(v,w) ∈ �2 for somev }. Let A = B. Then� is a binary relation overA. For each
k�1, thekth power of� is denoted by�k. Thereflexive, transitive closureand thetransitive
closureof � are denoted by�∗ and�+, respectively. The domaindom(C) of a relation class
C, and the compositionU ◦ V of relation classesU andV are defined in the natural way.

A partial function ffrom A into B, denoted byf : A → B, is a subset ofA × B such
that for eacha ∈ A andb, c ∈ B, if (a, b) ∈ f and(a, c) ∈ f , thenb = c. For each
a ∈ A, we say that partial functionf is defined ona if a ∈ dom(f ) . For (a, b) ∈ f , we
write b = f (a), as usual. Afunction or a mapping ffrom A into B is a partial function
f : A → B such thatdom(f ) = A. For a setA, let idA = { (a, a) | a ∈ A } denote the
identity functiononA.

2.2. Strings and trees

Let � be a set. As usual,�∗ is the free monoid generated by� under the operation of
concatenation, with the empty string,�, as identity. Thelengthof a stringw ∈ �∗ is denoted
by |w|. For the rest of the paper, let� be an infinite set. We consider� as a symbol base.
An alphabet� is a finite subset of�.

A ranked set� is a (possibly infinite) set in which every symbol has a uniquerank(arity)
in the set of nonnegative integers. For anyn�0, we denote by�n the set of symbols in�
which have rankn. The rank of a symbol is sometimes indicated as a superscript, that is,
�(2) means that� is of rank 2. For the rest of the paper,� denotes an infinite ranked set
such that, for everyn�0, �n is infinite. We consider�, too, as a symbol base. Aranked
alphabet� is a finite subset of�.

Definition 2.1. Let Z andC be arbitrary sets. ThenZ(C) is the set{ z(c) | z ∈ Z andc ∈
C }. Herez(c) is a string of length four over the set containingZ, C, and the left and right
parentheses. We consider an elementz(c) of Z(C) as a symbol rather than a string of length
four. If Z is a ranked set, then the symbolz(c) has the same rank asz has.

For a ranked set� and a set of variablesY with Y ∩ � = ∅, the set of trees(or terms)
over� indexed by Y, denoted byT�(Y ), is the smallest setU satisfying the following two
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conditions:
(i) �0 ∪ Y ⊆ U ,

(ii) �(t1, . . . , tn) ∈ U whenevern > 0, � ∈ �n andt1, . . . , tn ∈ U .
Theset of trees over� is T�(∅), and we simply writeT� for T�(∅). A tree languageis any
subset ofT� for some ranked alphabet�.

For a treet ∈ T�(Y ), root(t)and the setsub(t)of subtreesof t is defined by tree induction.
(i) If t ∈ �0 ∪ Y, thenroot(t) = t andsub(t) = {t}.

(ii) If t = �(t1, . . . , tn) with � ∈ �n, n > 0, then root(t) = � and sub(t) = {t} ∪
(
⋃n

i=1 sub(ti)).
We specify a countable setX = { x1, x2, . . . } of variables and setXn = { x1, . . . , xn }

for everyn�0. We distinguish a subset̄T�(Xn) of T�(Xn) as follows: a treet ∈ T�(Xn)

is in T̄�(Xn) if and only if each variable inXn appears exactly once int. For example,
if � = �0 ∪ �2 with �0 = { a } and �2 = {� }, then�(x1,�(a, x1)) ∈ T�(X1) but
�(x1,�(a, x1)) /∈ T̄�(X1). On the other hand,�(x2,�(a, x1)) ∈ T̄�(X2).

The notion oftree substitutionis defined as follows. Letn�0, t ∈ T�(Xn) andh1, . . . ,

hn ∈ T�(X). We denote byt[h1, . . . , hn] the tree which is obtained fromt by replacing each
occurrence ofxi in t by hi for every 1� i�n. Furthermore, let 1� i�n andh ∈ T�(X)

be arbitrary. We denote byt[xi ← h] the tree which is obtained fromt by replacing each
occurrence ofxi in t by h.

Let� and� be two ranked alphabets. Then any subset ofT�×T� is atree transformation
from T� to T�.

2.3. Deterministic bottom–up tree automata

A deterministic bottom–up tree automatonis a tupleA = (Q,�,Qf , �), where
(i) Q is the state set,

(ii) � is a ranked alphabet,� ∩Q = ∅,
(iii) Qf is the set of final states, and
(iv) � = (��)�∈� is a family of transition functions�� : Qm → Q, where� ∈ �m and

m�0.
Each treet ∈ T�(Xn), n�0, determines a mappingtA : Qn → Q as follows. Let
q1, . . . , qn ∈ Q be arbitrary.
• If t = xi , where 1� i�n, thentA(q1, . . . , qn) = qi .
• If t = �(t1, . . . , tm), where� ∈ �m,m�0, t1, . . . , tm ∈ T�(Xn), thentA(q1, . . . , qn) =

��(t
A
1 (q1, . . . , qn), . . . , t

A
m (q1, . . . , qn)).

We will need the fact that, fort0 ∈ T�(Xm), t1, . . . , tm ∈ T� andq1, . . . , qn ∈ Q,

(t0[t1, . . . , tm])A(q1, . . . , qn) = tA0 (tA1 (q1, . . . , qn), . . . , t
A
m (q1, . . . , qn)). (7)

Obviously, for each treet ∈ T�, tA is an element ofQ. The tree language recognized
by A is L(A) = { t ∈ T� | tA ∈ Qf }. A tree language isrecognizableif it is recognized
by a deterministic bottom–up tree automaton. The class of recognizable tree languages is
denoted byRECOG.

2.4. Grammars

A context-free(CF) grammar Gis a tuple(N,�, Ain, R), where
(i) N is the nonterminal alphabet,

(ii) � is the terminal alphabet,� ∩N = ∅,
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(iii) Ain is the initial nonterminal, and
(iv) Ris the finite set of rules. Each rule is of the formA→ 	 withA ∈ N and	 ∈ (N∪�)∗.

The derivation relation ofG, denoted by⇒G, is a binary relation on(N ∪ �)∗, defined
as follows. For all words
,� ∈ (N ∪ �)∗, 
⇒G � if and only if
(i) there is a ruleA→ 	 in R, and

(ii) 
 = 
1A
2, � = 
1	
2 for some
1, 
2 ∈ (N ∪ �)∗.
The language generatedby G is L(G) = {w ∈ �∗ | Ain⇒∗G w }.

A context-free tree(CFT) grammar Gis a tuple(N,�, Ain, R), where
(i) N is the nonterminal ranked alphabet,

(ii) � is the terminal ranked alphabet,� ∩N = ∅,
(iii) Ain is the initial nonterminal of rank 0, and
(iv) R is the finite set of rules. Each rule is of the formA(x1, . . . , xn) → 	 with n�0,

A ∈ Nn, and	 ∈ TN∪�(Xn).
If N = N0, thenG is called aregular tree(RT) grammar.

We define three binary relations: theunrestricted, theinside–outandoutside–in derivation
relation of G. The unrestricted derivation relation ofG, denoted by⇒G,U , is a binary
relation onTN∪�(X) defined as follows. For all trees
,� ∈ TN∪�(X), 
⇒G,U � if and
only if
(i) there is a ruleA(x1, . . . , xn)→ 	 in R, and

(ii) 
 = 
1[xi ← A(�1, . . . , �n)], � = 
1[xi ← 	[�1, . . . , �n]], where
1 ∈ TN∪�(X),
i�1, the variablexi appears exactly once in
1, and�1, . . . , �n ∈ TN∪�(X).

The definition of the inside–out derivation relation ofG, denoted by⇒G,IO, is the same as
that of⇒G,U , except that�1, . . . , �n are required to be terminal trees, that is�1, . . . , �n ∈
T�. The definition of outside–in derivation relation ofG, denoted by⇒G,OI , is the same as
that of⇒G,U , except that variablexi does not occur in a subtree of
1 with nonterminal root,
i.e.,xi does not occur in a subtree of
1 of the formB(�1, . . . ,�k), wherek�1, B ∈ Nk,
and�1, . . . ,�k ∈ TN∪�(X).

Let M ∈ {U, IO,OI }. Thetree language M-generatedby G is

LM(G) = { t ∈ T� | Ain
∗⇒

G,M
t }.

For anRTgrammar, the above three derivation relations obviously coincide. The class
of tree languages generated byRT grammars is equal toRECOG, see[14]. Fischer[10],
Engelfriet and Schmidt[6] showed that for anyCFT grammarG, LOI(G) = LU(G) and
LIO(G) ⊆ LOI(G). Whenever we want to consider aCFT grammarG with OI-derivation,
we say thatG is anOI (context-free tree) grammarand we denote⇒G,OI by⇒G. Similarly,
when we want to consider aCFT grammarG with IO-derivation, we say thatG is anIO
(context-free tree) grammarand we denote⇒G,IO by⇒G.

In the sequel, we shall also consider, forK ∈ {RT, IO,OI }, a generalized K
grammar Gin which both the set of nonterminals and the set of rules can be finite or
infinite. We extend the definitions of the relations⇒G,U , ⇒G,IO, and⇒G,OI and of
the definitions of the tree languagesLU(G), LIO(G), andLOI(G) for this case in the
natural way.

Let MOD be the set{RT, IO,OI,CF } of modifiers.
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2.5. Storage types

We adopt the concept of a storage type from[5,8].A storage type Sis a tuple(C, P, F,m,

I, E) whereC is the nonempty set of configurations,P is the set of predicate symbols,F
is the set of instruction symbols,P ∩ F = ∅, I is a set called the input set ofS, and
E is a set of partial functionse : I → C, everye ∈ E is called an input encoding of
S. Furthermore,m is the meaning function that associates with everyp ∈ P a mapping
m(p) : C → { true, false}, and with everyf ∈ F a partial functionm(f ) : C → C.
BE(P ) denotes the set of all Boolean expressions overP, with the usual Boolean operators
and, or, not, true, andfalse. Forb ∈ BE(P ), m(b) : C → { true, false} is defined in the
obvious way. The elements ofBE(P ) are also calledtests. We say thatb1, b2 ∈ BE(P ) are
equivalent ifm(b1) = m(b2).

We also assume thatC,P, F, I are subsets of� introduced as a base set in the prelimi-
naries.

The trivial storage typeS0 = (C, P, F,m, I, E) is defined byC = { c }, wherec is an
arbitrary object,P = ∅, F = { id }, andm(id) = idC , I = { c }, andE = { idC }.

2.6. Transducers

Let S = (C, P, F,m, I, E) be a storage type. Acontext-free S transducer, or CF(S)
transducer, is a tupleA = (N, e,�, Ain, R), where
(i) N is the nonterminal alphabet,

(ii) e ∈ E is the encoding,
(iii) � is the terminal alphabet (disjoint withN),
(iv) Ain ∈ N is the initial nonterminal, and
(v) R is the finite set of rules. Every rule is of the form

A→ if b then 	

with A ∈ N , b ∈ BE(P ), and	 ∈ (N(F ) ∪ �)∗. Here we callA the left-hand side of
the rule andb the test of the rule.

Recall that, according to Definition2.1,

N(F) = {A(f ) | A ∈ N andf ∈ F }
and

N(C) = {A(c) | A ∈ N andc ∈ C }.
In what follows, we shall consider an element ofN(F) ∪ N(C) as a symbol rather than a
string of length four.

The derivation relation ofA, denoted by⇒A, is a binary relation on the set(N(C)∪�)∗,
defined as follows. For allA ∈ N , c ∈ C, and�1, �2 ∈ (N(C) ∪ �)∗, if A→ if b then 	
is in R, m(b)(c) = true, andm(f )(c) is defined for allf ∈ F occurring in	, then
�1A(c)�2⇒A �1	′�2 where	′ is obtained from	 by substitutingB(m(f )(c)) ∈ N(C) for
every occurrence ofB(f ) ∈ N(F) for all B ∈ N andf ∈ F .
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Thetransformation inducedby A is 
(A) = { (u, v) ∈ I ×�∗ | Ain(e(u))⇒∗A v }. Note
that 
(A) ⊆ dom(e) × �∗. As usual, twoCF(S) transducersA andB areequivalentif

(A) = 
(B).

Let K range over the set of modifiers{ IO,OI,RT}. A K(S) transducerA is a tuple
(N, e,�, Ain, R), where
(i) N is the nonterminal ranked alphabet; ifK = RT , then each element ofN is of rank 0,

(ii) e ∈ E is the encoding,
(iii) � is the terminal ranked alphabet (disjoint withN),
(iv) Ain ∈ N is the initial nonterminal of rank 0, and
(v) R is the finite set of rules. Every rule is of the form

A(x1, . . . , xn)→ if b then 	

with n�0,A ∈ Nn, b ∈ BE(P ), and	 ∈ TN(F)∪�(Xn). Again, we callA the left-hand
side of the rule andb the test of the rule.

Recall that in Definition2.1we introduced the setsN(F) andN(C). For anyA ∈ N and
f ∈ F andc ∈ C, the symbolsA(f ) andA(c) have the same rank asA has.

To define the derivation relation ofA, we introduce the following notation.

Definition 2.2. Let	 ∈ TN(F)∪�(X), andc ∈ C be arbitrary. If for every instructionf ∈ F

occurring in	, c ∈ dom(m(f )), then we define	c from 	 by substitutingB(m(f )(c)) ∈
N(C) for every occurrence ofB(f ) ∈ N(F) for all B ∈ N andf ∈ F . Otherwise,	c is
undefined.

The derivation relation ofA, denoted by⇒A, is a binary relation onTN(C)∪�(X), defined
as follows.We associate withA a generalizedK grammarG(A) = (N(C),�, Ain(c0), RC),
wherec0 is any element ofC, i.e.,c0 is irrelevant. We define the setRC as follows. For each
c ∈ C, we put the rule

A(c)(x1, . . . , xn)→ 	c

in RC if there is a rule

A(x1, . . . , xn)→ if b then 	

in Rsuch that
(i) m(b)(c) = true, and

(ii) for every instructionf ∈ F occurring in	, c ∈ dom(m(f )).
The derivation relation ofA, denoted by⇒A is defined to be⇒G(A). Thetransformation
inducedby A is 
(A) = { (u, v) ∈ I ×T� | Ain(e(u))⇒∗A v }. Note that
(A) ⊆ dom(e)×
T�.

We call anIO(S) transducer anIO context-freeS-to-tree transducer. We call anOI(S)
transducer anOI context-freeS-to-tree transducer. We call anRT(S) transducer a regular
S-to-tree transducer.

As usual, twoK(S) transducersA andB areequivalentif 
(A) = 
(B).

Definition 2.3. Let K ∈ MOD, and letS be an arbitrary storage type. AK(S) trans-
ducerA is deterministicif, for every configurationc ∈ C of Sand any two different rules
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A(x1, . . . , xn)→ if b1 then 	 andA(x1, . . . , xn)→ if b2 then � of A, m(b1)(c) = false
orm(b2)(c) = false. A deterministicK(S) transducer is referred to as aDK(S) transducer.

Let DMOD be the set{DRT,DIO,DOI,DCF } of modifiers. LetK range over the set of
modifiersMOD∪DMOD, and letSbe an arbitrary storage type. The class of transformations
induced byK(S) transducers is denoted byK(S). We note that Engelfriet and Vogler[8]
denoted the classOI(S) by CFT1(S).

Note that for every storage typeS, RT(S) ⊆ IO(S) andRT(S) ⊆ OI(S). In fact, each
RT(S) transducer is also anIO(S) transducer and anOI(S) transducer, inducing the same
transformation.

Thetree storage type(TR for short) is(C, P, F,m, I, E), where
• C = T�,
• P = { root = � | � ∈ � },
• F = { seli | i�1},
• for everyc = �(t1, . . . , tk) ∈ T�, with � ∈ �k, k�0, andt1, . . . , tk ∈ T�, m(root =

�)(c) = true if and only if � = �, andm(seli )(c) = ti if 1� i�k, otherwisem(seli )(c)
is undefined,
• I = T�, and
• E = { idT� | � is a ranked alphabet}.

Note that, for a ranked alphabet�, idT� is a partial functionI → C, because� ⊆ �.
The purpose of the encodingidT� of a K(TR) transducerA (K ∈ MOD ∪ DMOD) is to
specify the ranked input alphabet� of A.

Let K ∈ MOD∪ DMOD and letA = (N, idT� ,�, Ain, R) be aK(TR) transducer. We
say thatA is in normal formif each rule ofA has the form

A(x1, . . . , xn) → if (root = �) then 	,

where� ∈ �k, k�0, and for any instructionseli occurring in	, i�k holds. Engelfriet
and Vogler showed the following. For eachK(TR) transducerA, there is an equivalent
K(TR) transducerB in normal form, see Lemma 3.18 of[8]. Engelfriet and Vogler also
showed that top–down tree transformations are the same asRT(TR) transformations and
that deterministic top–down tree transformations are the same asDRT(TR) transformations,
see Corollary 3.20 in[8]. It is easy to see that theOI(TR) andIO(TR) transducers are the
OI and IO macro tree transducers of[7], respectively, see also Theorem 3.19 of[8]; this
also holds for the deterministic transducers.

We now recall the notion of tree homomorphism from[14], applying the terminology of
RT(TR) transducers. AnRT(TR) transducerH = (N, idT� ,�, Hin, R) is a tree homomor-
phismif
• H is in normal form,
• N = N0 = {Hin },
• every� ∈ � appears in exactly one rule, and the test of this rule isroot = �.

For every tree
 ∈ T�(Xn), n�0, H(
) denotes the unique tree� ∈ T�(Xn) for which
there is a tree	 ∈ T̄�(Xk), k�0, such that
• Hin(
)⇒∗H 	[Hin(xi1), . . . , Hin(xik )], 1� i1, . . . , ik �n, and
• � = 	[xi1, . . . , xik ].
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Clearly,


(H) = { (
,H(
)) | 
 ∈ T� }.
We observe that the mappingH : T�(X)→ T�(X) is completely determined by the trees
H(�(x1, . . . , xn)), for every� ∈ �n, n�0. In fact,

H(�(
1, . . . , 
n)) = H(�(x1, . . . , xn))[H(
1), . . . ,H(
n)].
More generally,H distributes over substitution, i.e., fort ∈ T�(Xn),

H(t[
1, . . . , 
n]) = H(t)[H(
1), . . . ,H(
n)].
These facts will often be used in proofs.

We say thatH is linear if for any integeri�1, seli occurs at most once in any rule. The
class of tree transformations induced by tree homomorphisms is denoted byH. Furthermore,
the class of tree transformations induced by linear tree homomorphisms is denoted byLH.

Let H = ({Hin }, idT� ,�, Hin, R) be a tree homomorphism and� be a ranked alphabet
which is disjoint from� ∪ �. Theextensionof H for � is theRT(TR) transducerH� =
({Hin }, idT�∪� ,� ∪�, Hin, R�) where

R� = R ∪ {Hin → if root = � then �(Hin(sel1), . . . , Hin(seln)) | n�0, � ∈ �n }.
ObviouslyH� is a tree homomorphism. Note thatH�(�(x1, . . . , xn)) = �(x1, . . . , xn) for
all � ∈ �n.

Definition 2.4. Let K ∈ MOD ∪ DMOD. Let S = (C, P, F,m, I, E) be a storage type.
The storage typeS with K look-ahead, denoted bySK , is the tuple(C, PK, F,mK, I, E),
where
• PK = P ∪ { 〈L〉 | L is anK(S) transducer},
• mK restricted toP ∪ F is equal tom, and
• for every configurationc ∈ C, mK(〈L〉)(c) = true if and only if Condition (i) or (ii)

holds:
(i) K ∈ {CF,DCF } and there is a stringw ∈ �∗ such thatAin(c)⇒∗L w, whereAin is

the initial nonterminal ofL, and� is the terminal alphabet ofL,
(ii) K∈{RT, IO,OI,DRT,DIO,DOI } and there is a treet ∈ T� such thatAin(c)⇒∗L t ,

whereAin is the initial nonterminal ofL, and� is the terminal ranked alphabet
of L.

Predicate symbol〈L〉 is called aK look-ahead test on S. Let K1,K2 ∈ MOD ∪ DMOD
and letLi be aKi(S) transducer for 1� i�2. We say that〈L1〉 and〈L2〉 are equivalent if
mK1(〈L1〉) = mK2(〈L2〉).

3. Results on look-ahead tests

Consider an arbitrary storage typeS.We now show that theRT, IO,OI, andCF look-ahead
tests are all equivalent. Furthermore, we also show that theDRT, DIO, andDCF look-ahead
tests are pairwise equivalent as well. Observe thatDOI is missing from the above list of
deterministic look-ahead tests.
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Let � be a ranked alphabet,Y be a set of variables, and� ⊆ � ∪ Y . The�-projection
pr�(t) ∈ �∗ of a treet ∈ T�(Y ) is defined as follows.
(i) Let t ∈ �0 ∪ Y . If t ∈ �, thenpr�(t) = t elsepr�(t) = �.

(ii) Let t = �(t1, . . . , tn), where� ∈ �n, n > 0, andt1, . . . , tn ∈ T�(Y ). If � ∈ �, then
pr�(t) = �pr�(t1) · · ·pr�(tn), otherwisepr�(t) = pr�(t1) · · ·pr�(tn).

Lemma 3.1. Let S be an arbitrary storage type. For any CF look-ahead test on S, there
is an equivalent RT look-ahead test on S. Determinism is preserved, that is, for any DCF
look-ahead test on S, there is an equivalent DRT look-ahead test on S.

Proof. It is well known that the context-free languages are equal to the yield languages
of recognizable tree languages. In the light of this result the lemma is quite obvious. Let
A = (N, e,�, Ain, R) be aCF(S) transducer. We define the ranked alphabet� as follows.
For eachn�1, let

�n = { 〈A→ if b then 	〉 | A→ if b then 	 is a rule inR and|	| = n }.
Moreover, let

�0 = � ∪ { 〈A→ if b then �〉 | A→ if b then � is a rule inR }.
We construct theRT(S) transducerB = (N, e,�, Ain, R

′), where for anya1, . . . , an ∈
N(F) ∪ �, n�0, the rule

A→ if b then 〈A→ if b then a1 · · · an〉(a1, . . . , an) is in R′

if and only if

A→ if b then a1 · · · an is in R.

Obviously, determinism is preserved.
It is straightforward to show, by induction on the length of the derivations, that for every

A(c) ∈ N(C) and every stringw ∈ �∗, A(c)⇒∗A w if and only if there is a treet ∈ T�
such thatA(c)⇒∗B t andpr�(t) = w. �

Lemma 3.2. Let S be an arbitrary storage type. For every IO look-ahead test on S there is
an equivalent CF look-ahead test on S. Determinism is preserved.

Proof. LetA = (N, e,�, Ain, R) be anIO(S) transducer. We define theCF(S) transducer
B = (N, e,∅, Ain, R

′) as follows. For each rule

A(x1, . . . , xn)→ if b then 	

in R, we put the rule

A→ if b then prN(F)(	)

in R′.
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Obviously, determinism is preserved.
We show that for any treep ∈ TN(C)∪� and integerl�0 the following two statements

are equivalent:
(i) p⇒l

A t for somet ∈ T�,
(ii) prN(C)(p)⇒l

B �.
((i)⇒ (ii)) Let us assume that Condition (i) holds. We show (ii) by induction onl.

Base case: l = 0. Thenp = t ∈ T�. HenceprN(C)(p) = �.
Induction step: l > 0. Thenp = p0[A(c)(t1, . . . , tn)]⇒A p0[	c[t1, . . . , tn]] ⇒l−1

A t ,
wheren�0,A(c) ∈ Nn(C), t1, . . . , tn ∈ T�, p0 ∈ T̄N(C)∪�(X1),

A(x1, . . . , xn)→ if b then 	 ∈ R,

m(b)(c) = true and for every instructionf ∈ F occurring in	, c ∈ dom(m(f )). Hence

A→ if b then prN(F)(	) ∈ R′. (8)

By the induction hypothesis,

prN(C)(p0[	c[t1, . . . , tn]])⇒l−1
B �. (9)

Let prN(C)∪X1(p0) = ux1v for some stringsu, v ∈ N(C)∗. Then

prN(C)(p0[	c[t1, . . . , tn]]) = u(prN(C)(	c))v. (10)

HenceprN(C)(p) = uA(c)v ⇒B u(prN(C)(	c))v by (8)
= prN(C)(p0[	c[t1, . . . , tn]]) by (10)
⇒l−1

B � by (9).
((ii)⇒ (i)) Let us assume that Condition (ii) holds. We now show (i) by induction onl.
Base case: l = 0. ThenprN(C)(p) = �. Hencep ∈ T�. Let t = p. Then (i) holds true.
Induction step: l > 0. Condition (ii) implies that

prN(C)(p) = uA(c)⇒
B

u(prN(C)(	c))⇒l−1
B �, (11)

whereu ∈ N(C)∗, A(c) ∈ Nn(C) for somen�0,

A→ if b then prN(F)(	) ∈ R′,

m(b)(c) = true and for every instructionf ∈ F occurring in	, c ∈ dom(m(f )). Hence

A(x1, . . . , xn)→ if b then 	 ∈ R. (12)

Then it follows fromprN(C)(p) = uA(c) that

p = p0[A(c)(t1, . . . , tn)] (13)

for somep0 ∈ T̄N(C)∪�(X1), t1, . . . , tn ∈ T�. FurthermoreprN(C)∪X1(p0) = ux1.
We observe thatprN(C)(p0[	c[t1, . . . , tn]]) = u(prN(C)(	c)). Hence by (11),
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prN(C)(p0[	c[t1, . . . , tn]]) ⇒l−1
B �. By the induction hypothesis, there is a treet ∈ T�

such that

p0[	c[t1, . . . , tn]] ⇒l−1
A t. (14)

Thusp = p0[A(c)(t1, . . . , tn)] by (13)
⇒A p0[	c[t1, . . . , tn]] by (12)
⇒l−1

A t by (14).
Now that we have shown that Conditions (i) and (ii) are equivalent, we finish the proof

of the lemma by takingp = Ain(c). Observe thatprN(C)(Ain(c)) = Ain(c), and that the
rules ofR′ do not include any terminal symbol. Hence for eachc ∈ C, mIO(〈A〉)(c) =
mCF(〈B〉)(c). �

The following result is essentially shown in the proof of Lemma 8.8 of[8], but we repeat
the proof for completeness sake.

Lemma 3.3. Let S be an arbitrary storage type. For every OI look-ahead test on S there is
an equivalent CF look-ahead test on S.

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage type. As in the proof of Lemma
8.8 of [8], we define the storage typeS′ = (C, P, F,m,C, { idC }).

To everyOI(S) transducerA = (N, e,�, Ain, R) we assign theOI(S′) transducerA′ =
(N, idC,�, Ain, R). We obtain by direct inspection that for each configurationc ∈ C,
mOI(〈A〉)(c) = true if and only if c ∈ dom(
(A′)).

Now let A = (N, e,�, Ain, R) be an arbitraryOI(S) transducer. By Definition 5.22
of [8] and Lemma 6.11 of[8], dom(OI(S′)) ⊆ dom(CF(S′)). Hence there is aCF(S′)
transducerC = (N1, idC,�, Cin, R1) such thatdom(
(C)) = dom(
(A′)). Consider the
CF(S) transducerB = (N1, e,�, Cin, R1). ThenB′ = C. Hence for each configurationc ∈
C,mOI(〈B〉)(c) = true if and only ifc ∈ dom(
(C)). Thus for everyc ∈ C,mOI(〈A〉)(c) =
mCF(〈B〉)(c). �

We now show that the deterministic version of Lemma3.3does not hold. We adopt the
notion of a deterministicOI macro tree transducer from[7]. We denote the class of all tree
transformations induced by deterministicOI macro tree transducers byDMTOI . It is well
known thatdom(DMTOI) = RECOG, see Theorem 6.18 of[7]. By Theorem 3.19 in[8],
DOI(TR) = DMTOI . Hence

dom(DOI(TR)) = RECOG. (15)

By Lemma3.1, the domain of anyDCF(TR) transformation is the domain of aDRT(TR)
transformation. Theorem 3.1 of[4] states that the domains of allDRT(TR) transformations
are the tree languages recognized by deterministic top–down tree automata. It is well known
that there exist recognizable tree languages that cannot be recognized by a deterministic
top–down tree automaton. Hence there is aDOI(TR) transducerA such that look-ahead
test〈A〉 onS is not equivalent with anyDCF look-ahead test.
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Theorem 3.4. Let S be an arbitrary storage type.
(i) The RT, IO, OI, and CF look-ahead tests on S are pairwise equivalent.

(ii) The DRT, DIO, and DCF look-ahead tests on S are pairwise equivalent.

Proof. Observe that everyRTlook-ahead test onSis also anIO and anOI look-ahead test
on S. Similarly, everyDRT look-ahead test onS is also aDIO look-ahead test onS. Hence
our result follows from Lemmas3.1–3.3. �

We now give a storage typeSsuch that there is noDOI look-ahead test onSequivalent
to someOI look-ahead tests onS. Let S = (C,∅, { f1, f2 },m,C, { idC }), whereC =
{ c1, c2, c3 } andm(fi) = id{ ci } for i = 1,2. It is not hard to see that{ c1, c2 } ∈
dom(OI(S)) and{ c1, c2 } �∈ dom(DOI(S)).

From Theorem3.4and the fact that everyDRT look-ahead test onS is also aDOI look-
ahead test onS, we obtain the next corollary.

Corollary 3.5. Let S be an arbitrary storage type, and letK ∈ MOD ∪ DMOD. Then
K(SDRT) = K(SDIO) = K(SDCF) ⊆ K(SDOI) ⊆ K(SRT) = K(SIO) = K(SOI) =
K(SCF).

Definition 3.6. LetK,M ∈ MOD∪DMOD. LetS = (C, P, F,m, I, E) be a storage type.
Let A be aK(SM) transducer.

(i) A haspositive look-ahead on S(is aK+(SM) transducer for short) if the test of each
rule ofA is of the form

b and 〈L1〉 and · · ·and 〈Ln〉, (16)

whereb ∈ BE(P ), n�0, and for each 1� i�n, 〈Li〉 is anM look-ahead test onS.
(ii) A has1-positive look-ahead on S(is aK1+(SM) transducer for short) if the test of

each rule ofA is of the form (16) with n = 1.

The class of transformations induced byK+(SM) transducers is denoted byK+(SM). The
class of transformations induced byK1+(SM) transducers is denoted byK1+(SM).

We now show that these two classes are the same, because look-ahead tests onS are
closed underand.

Theorem 3.7. Let S be an arbitrary storage type. LetK,M ∈ MOD∪DMOD be arbitrary.
ThenK+(SM) = K1+(SM).

Proof. By Definition3.6, K+(SM) ⊇ K1+(SM).
We now show thatK+(SM) ⊆ K1+(SM). First we consider the case thatM �∈ {CF,

DCF }.
LetA = (N, e,�, Ain, R1)be aK+(SM) transducer.We construct aK1+(SM) transducer

B = (N, e,�, Ain, R2) equivalent toA. We define the rule setR2 of B as follows. By
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Definition3.6, each test appearing inR1 is of the form (16). For each rule

A(x1, . . . , xn)→ if b and 〈L1〉 and · · · and 〈Ln〉 then 	

in R1, we put the rule

A(x1, . . . , xn)→ if b and 〈L〉 then 	

in R2. Here theM(S) transducerL = (N0, e,�0, Ain, R) is defined as follows:
If n = 0, then letL = ({Ain }, e, {�(0) }, Ain, {Ain → if true then � }).
If n = 1, then letL = L1.
If n�2, then assume thatLi = (Ni, ei,�i , Ai

in, R
i) for 1� i�n, and that the setsNi

are pairwise disjoint. Then let
(i) N0 =⋃n

i=1 N
i ∪ {Ain }, whereAin �∈⋃n

i=1 N
i .

(ii) �0 =⋃n
i=1 �i ∪ {�(n) }, where� is a new terminal symbol.

We put the rule

Ain → if b1 and · · ·and bn then �(	1, . . . , 	n)

in R, where for each 1� i�n, Ai
in → if bi then 	i ∈ Ri . Moreover, we put all elements of

the set
⋃n

i=1 R
i in R. It should be clear that transducerB is equivalent toA.

The construction forM ∈ {CF,DCF } is exactly the same, except that we take	1 · · · 	n
instead of�(	1, . . . , 	n). �

The next corollary is obtained in the same way as Corollary3.5.

Corollary 3.8. Let S be an arbitrary storage type, and letK ∈ MOD ∪ DMOD. Then
K+(SDRT) = K+(SDIO) = K+(SDCF) ⊆ K+(SDOI) ⊆ K+(SRT) = K+(SIO) =
K+(SOI) = K+(SCF).

Theorem 3.9. DRT+(TRDRT) ⊂ DRT+(TRDOI).

Proof. By Corollary3.8, DRT+(TRDRT) ⊆ DRT+(TRDOI). We are going to show that
DRT+(TRDRT) �= DRT+(TRDOI). Fülöp and Vágvölgyi[11] introduced the deterministic
top–down tree transducer with deterministic top–down check denoted byDT DTRC. We ob-
tain by direct inspection that the deterministic top–down tree transducer with deterministic
top–down check is the same as theDRT+(TRDRT) transducer. Hence

DT DTRC= DRT+(TRDRT). (17)

Fülöp and Vágvölgyi [12] have shown that there is a recognizable tree language
K0 not in dom(DRT+(TRDRT)). By (15), K0 ∈ dom(DOI(TR)). Hence K0 ∈
dom(DRT+(TRDOI)). �

We now give an additional normal form for transducers with positive look-ahead.
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Lemma 3.10. Let S be an arbitrary storage type. LetK ∈ MOD andM ∈ MOD∪DMOD
be arbitrary. LetA = (N, e,�, Ain, RA) be aK1+(SM) transducer. Then there is an
equivalentK1+(SM) transducerB = (N, e,�, Ain, RB) such that the following condition
holds. LetA(x1, . . . , xn) → if b and 〈C〉 then 	 be an arbitrary rule ofRB. Then the
M(S) transducerC = (NC, eC,�C, Cin, RC) has exactly one rule withCin appearing in the
left-hand side, and that rule has the formCin → if true then �.

Proof. LetA = (N, e,�, Ain, RA) be aK1+(SM) transducer. We defineK1+(SM) trans-
ducerB = (N, e,�, Ain, RB) as follows. LetA(x1, . . . , xn)→ if b and 〈C〉 then 	 be an
arbitrary rule ofRA. LetC = (NC, eC,�C, Cin, RC). Letk�0 and letCin → if bi then �i ,
1� i�k, be all rules ofC with left-hand sideCin. For each 1� i�k, we defineCi =
(NC ∪ {Ci

in }, eC,�C, Ci
in, Ri) as follows.Ci

in is a new nonterminal with rank 0. We put the
ruleCi

in → if true then �i in Ri . We put each rule ofC in Ri . For each 1� i�k, we put
the ruleA(x1, . . . , xn)→ if b and bi and 〈Ci〉 then 	 in RB.

It is left to the reader to show that
(A) = 
(B). �

4. RT transducers

By the decomposition theorem (6) of Engelfriet,RT+(TRRT) = RT(TR) ◦LH . We now
generalize this composition result for an arbitrary storage typeS.

Lemma 4.1. For every storage type S, RT+(SRT) ⊇ RT (S) ◦ LH and DRT+(SDRT) ⊇
DRT(S) ◦ LH .

Proof. Let S = (C, P, F,m, I, E). Let A = (N, e,�, Ain, R1) be anRT(S) transducer
and letH = ({Hin }, idT� ,�, Hin, R2) be a linear tree homomorphism. Without loss of
generality we may assume that� = �.

We define theRT+(SRT) transducerA ◦H = (N, e,�, Ain, R3) as follows. We put the
rule

A→ if b and 〈L〉 thenHN(F)(	) (18)

in R3, where Conditions (A) and (B) hold.
(A) The rule

A→ if b then 	 (19)

is in R1.
(B) L = (N ∪ {Bin }, e,�, Bin, R

′
1) is anRT(S) transducer, whereBin is a new nonter-

minal with rank 0 andR′1 = R1 ∪ {Bin → if true then 	 }.
We say that rule (18) is theimageof rule (19).

If A is deterministic, thenA ◦H is anDRT+(SDRT) transducer.
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Claim 4.2. Let L be as in Condition(B). For each configurationc ∈ C, mRT(〈L〉)(c) =
true if and only if for every instructionf ∈ F occurring in	, c ∈ dom(m(f )), and there
is a treew ∈ T� such that	c⇒∗A w. (For the definition of	c, see Definition2.2.)

Proof. By the construction of the transducerL. �

Intuitively, Claim4.2states that the look-ahead testL is true on an arbitrary configurationc
if and only if	c is defined and the transducerAcan derive a terminal tree from	c ∈ TN(C)∪�.

It is sufficient to show that


(A ◦H) = 
(A) ◦ 
(H). (20)

To this end we show the following result.

Claim 4.3. For each
 ∈ TN(C)∪� andt ∈ T�, Conditions(I) and(II) are equivalent.
(I) 
⇒∗A p for somep ∈ T� andHN(C)(
)⇒∗A◦H t ,

(II) 
⇒∗A s andH(s) = t for somes ∈ T�.

Proof. First we show that Condition (I) implies Condition (II). Let
 ∈ TN(C)∪� andt ∈ T�
be arbitrary. Let
⇒∗A p for somep ∈ T� and

HN(C)(
)⇒l
A◦H t (21)

for somel�0. We show by induction onl that (II) holds.
Base case of the proof of(II): If l = 0 then

HN(C)(
) = t. (22)

We show by tree induction on
 that

H(p) = t. (23)

Base case of the proof of(23): 
 ∈ N(C) ∪ �0. In this case by (22) andt ∈ T�, 
 ∈ �0.
By (I) p = 
, hence by (22) H(p) = H(
) = t .

Induction step of the proof of(23): As t ∈ T�, by (22) HN(C)(
) ∈ T�. Thusroot(
) �∈
N(C). Hence
 = �(
1, . . . , 
n) for somen�1, � ∈ �n, and
1, . . . , 
n ∈ TN(C)∪�.
By (22),

t = t̄[t1, . . . , tn], (24)

wheret̄ = H(�(x1, . . . , xn)) ∈ T�(Xn) and

ti = HN(C)(
i ) ∈ TN(C)∪� for 1� i�n. (25)

Let

APP= { i | 1� i�n andxi appears in̄t }.
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By (I), for eachi = 1, . . . , n, 
i⇒∗A pi for somepi ∈ T�, andp = �(p1, . . . , pn). Since
t ∈ T�, for eachi ∈ APP , ti ∈ T�. By the induction hypothesis, for eachi ∈ APP ,
H(pi) = ti . ThenH(p) = t̄[H(p1), . . . ,H(pn)] = t̄[t1, . . . , tn] = t , by (24). Hence the
proof of (23) is complete.

Let s = p. Then by (23), Condition (II) trivially holds. The base of the proof of (II) is
complete.

Induction step of the proof of(II): Let l > 0. The first step of derivation (21) is the result
of applying rule (18). From that it follows that Conditions (A) and (B) hold. Reordering
some of its steps, we can rewrite derivation (21) in the following way:
(a) HN(C)(
) = �̄[A(c)]⇒A◦H �̄[�] ⇒j

A◦H �̄[q] ⇒k
A◦H t for some�̄ ∈ T̄N(C)∪�(X1),

A(c) ∈ N(C), and� ∈ TN(C)∪�, q ∈ T�, j, k�0 with j + k = l − 1.
Furthermore, Conditions (b)–(d) hold:
(b) mRT(b and 〈L〉)(c) = true.
(c) HN(F)(	)c = �.

(d) �⇒j

A◦H q.
Moreover, asH is linear, the following two conditions hold:
(e) 
 = 
̄[A(c)], for some
̄ ∈ T̄N(C)∪�(X1).
(f) HN(C)(
̄) = �̄.
Now, the derivation
⇒∗A p can be written as follows:
(g) 
 = 
̄[A(c)]⇒∗A 
̄[p′]⇒∗A p̄[p′] = p for somep′ ∈ T� andp̄ ∈ T�(X1).
(h) 
̄⇒∗A p̄.

By (b) and Claim4.2, there is a treew ∈ T� such that	c⇒∗A w. Observe thatHN(C)(	c)

= HN(F)(	)c. By (c) and (d), we haveHN(C)(	c) = �⇒j

A◦H q. By the induction hypoth-
esis, there is a trees′ ∈ T� such that

	c
∗⇒
A

s′ (26)

and

H(s′) = q. (27)

Then by (f), (27), (a), and the fact that the tree homomorphismHN(C) distributes over
substitution,HN(C)(
̄[s′]) = HN(C)(
̄)[H(s′)] = �̄[q] ⇒k

A◦H t . By (h), 
̄[s′]⇒∗A p̄[s′] ∈
T�. By the induction hypothesis, there is a trees ∈ T� such that̄
[s′]⇒∗A s andH(s) = t .
Hence by (e), (A), (b), Claim4.2, and (26), 
 = 
̄[A(c)]⇒A 
̄[	c]⇒∗A 
̄[s′]⇒∗A s and
H(s) = t .

Second we show that Condition (II) implies Condition (I). Let
 ∈ TN(C)∪� andt ∈ T�.
Assume that


⇒l
A s (28)

andH(s) = t for somel�0 ands ∈ T�. We show by induction onl thatHN(C)(
)⇒∗A◦H t .
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Base case: Let l = 0. Then
 = s and H(
) = t . Then HN(C)(
) = t , hence
HN(C)(
)⇒∗A◦H t .

Induction step: Let l > 0. Then the first step of derivation (28) is the result of applying
rule

A→ if b then 	 (29)

in R1. Let


 = 
̄[A(c)], (30)

where
̄ ∈ T̄N(C)∪�(X1) andc ∈ C. Furthermore, there is a trees′ ∈ T� such that


 = 
̄[A(c)]⇒
A


̄[	c] ⇒j

A 
̄[s′] ⇒k
A s, (31)

with j + k = l − 1 and
(i) 	c ⇒j

A s′.
Let
(ii) t ′ = H(s′) ∈ T�,

(iii) �̄ = HN(C)(
̄) ∈ TN(C)∪�(X1), and
(iv) � = HN(F)(	).

Note that since tree homomorphismHN(C) is linear, �̄ contains in fact at most one
occurrence of the variablex1 but we will not make use of this fact.

By (30), (iii) and the distribution ofHN(C) over substitution,HN(C)(
) = �̄[A(c)].
Recall that rule (29) is in R1. By the definition ofA ◦H, and (iv), the rule

A→ if b and 〈L〉 then � (32)

is in R3, whereL is as in Condition (B). Recall thats′ ∈ T�. Since	c is defined, by (i) and
Claim 4.2, mRT(〈L〉)(c) = true. Hence we can apply rule (32) in the following derivation
as many times asx1 occurs in�̄:

HN(C)(
) = �̄[A(c)] ∗⇒
A◦H

�̄[�c]. (33)

By (iv), HN(C)(	c) = �c. By (i), (ii), and the induction hypothesis,HN(C)(	c) = �c

⇒∗A◦H t ′. Hence

�̄[�c] ∗⇒A◦H �̄[t ′]. (34)

By the last part of (31), the fact thatH(s) = t , and the induction hypothesis,

HN(C)(
̄[s′]) ∗⇒
A◦H

t. (35)

By (iii) and (ii),

HN(C)(
̄[s′]) = �̄[t ′].
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Hence by (35),

�̄[t ′] ∗⇒
A◦H

t. (36)

By (33), (34), and (36), we obtain that

HN(C)(
)
∗⇒

A◦H
�̄[�c] ∗⇒A◦H �̄[t ′] ∗⇒

A◦H
t.

Hence Condition (I) holds in this case, too.�

We now continue with the proof of Eq. (20). Letu ∈ I be arbitrary. We now distinguish
two cases.

Case1: u ∈ dom(
(A)). In this case by Claim4.3for everyt ∈ T�,

Ain(e(u)) = HN(C)(Ain(e(u)))
∗⇒

A◦H
t

if and only if

Ain(e(u))
∗⇒
A

s andH(s) = t for somes ∈ T�.

Case2: u �∈ dom(
(A)). In this case by Claim4.2for every rule

Ain → if b and 〈L〉 thenHN(C)(	)

in R3, mRT(b and 〈L〉)(e(u)) = false. Thusu �∈ dom(
(A ◦H)).
These two cases prove Eq. (20). �
To generalize Engelfriet’s decomposition result (6) for an arbitrary storage typeS, we

have to show the following.

Lemma 4.4. For every storage type S, RT+(SRT) ⊆ RT (S) ◦ LH .

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage type. LetB = (N0, e,�0, Ain,

R0) be anRT+(SRT) transducer. Without loss of generality, we may assume thatB is an
RT1+(SRT) transducer, see Theorem3.7. We construct anRT(S) transducerA and a linear
tree homomorphismH. Then for theRT(S) transducerA and the linear tree homomorphism
H, we construct theRT+(SRT) transducerA ◦H as in the proof of Lemma4.1. Then we
show that
(B) = 
(A ◦H). By the proof of Lemma4.1, 
(A) ◦ 
(H) = 
(A ◦H). Hence

(B) = 
(A) ◦ 
(H).

We construct theRT(S) transducerA = (N, e,�, Ain, R1) in the following way. Let us
number the rules ofR0 by the numbers 1, . . . , r, for somer�0. Let us assume that theith
rule is of the form

Ai → if bi and 〈Li〉 then 	i (37)

where 1� i�r, Ai ∈ N0, bi ∈ BE(P ), Li = (Ni, e,�i , Ai
in, R

i) is anRT(S) transducer,
	i ∈ T

N0(F )∪�0. By Lemma3.10, we may assume that theRT(S) transducerLi has only
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one rule withAi
in appearing in the left-hand side. That rule is of the form

Ai
in → if true then 	i . (38)

We may assume that the setsN0, N1, . . . , Nr and�0,�1, . . . ,�r are pairwise disjoint.
Let � be a new terminal symbol of arity 2, and let
• N =⋃r

i=0 N
i and

• � =⋃r
i=0 �i ∪ {�(2) }.

• For each 1� i�r, we put the rule

Ai → if bi then �(	i , 	
i ), (39)

in R1, where rule (37) is theith rule ofR0, and the rule (38) is in Ri .
We put each rule of the set

⋃r
i=1 R

i in R1.

Claim 4.5. For anyA(c) ∈ N0(C) andw ∈ T�0, if A(c)⇒∗B w, thenA(c)⇒∗A s for some
s ∈ T�.

Proof. LetA(c)⇒l
B w for somel�1. We can proceed by induction onl. �

Let H = ({Hin }, idT� ,�
0, Hin, R2) and the rule setR2 consists of the following rules:

• Hin → if root = � then Hin(sel1)
• Hin → if root = � then �(Hin(sel1), . . . , Hin(seln)), wheren�0, � ∈ �n − {� }.
For theRT(S) transducerA and the linear tree homomorphismH, we construct theRT(SRT)

transducerA ◦H as in the proof of Lemma4.1. Observe that, broadly speaking, the non-
terminals in the set

⋃r
i=1 R

i are not reachable from the initial nonterminal ofA ◦H. Let
us define the transducerD from A ◦H by dropping the images of the rules in

⋃r
i=1 R

i . By
our observation


(D) = 
(A ◦H). (40)

For each 1� i�r, the image of rule (39) of R1 is a rule ofA ◦H, and is of the form

Ai → if bi and 〈Ci〉 then 	i , (41)

where

Ci = (N ∪ {Cin }, e,�, Cin, R1 ∪ {Cin → if true then �(	i , 	
i ) })

andCin is a new nonterminal symbol. For 1� i�r, rules (41) are the rules of transducer
D. For each 1� i�r, conditionbi and 〈Ci〉 in rule (41) implies the conditionbi and 〈Li〉
in rule (37). Hence
(D) ⊆ 
(B). On the other hand, letc ∈ C be arbitrary. Assume that
there is a derivationAi(c)⇒B(	i )c⇒∗B w for somew ∈ T�0, where we apply rule (37) in
the first step. Then by Claim4.5, the conditionbi and 〈Ci〉 in rule (41) is true forc. Hence
we can apply rule (41) for Ai(c). Hence
(B) ⊆ 
(D). By (40), 
(B) = 
(A ◦H). By the
proof of Lemma4.1, 
(A) ◦ 
(H) = 
(A ◦H). Hence
(B) = 
(A) ◦ 
(H). �
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Theorem 4.6. For every storage type S, RT+(SRT) = RT (S) ◦ LH .

Proof. By Lemmas4.1and4.4we are done. �

By Lemma4.1,

DRT+(TRDRT) ⊇ DRT(TR) ◦ LH. (42)

Inclusion diagram of Fig. 1 in[11], and Theorem 5 in[13] imply the proper inclusion

DT DTRC⊃ DT ◦DT ⊇ DT ◦ LH, (43)

whereDT DTRC has been introduced in the proof of Theorem3.9, andDT denotes the class
of tree transformations induced by all deterministic top–down tree transducers. Hence by
(2) and (17),

DRT+(TRDRT) ⊃ DRT(TR) ◦ LH. (44)

This shows that the deterministic version of Theorem4.6does not hold.
In Theorem4.6we have generalized Engelfriet’s decomposition result forS = T R. We

wish to observe here that Theorem4.6 also generalizes the well-known fact that the class
RECOGof recognizable tree languages is closed under linear tree homomorphisms (see,
e.g., Theorem II.4.16 of[14]). In fact, this is Theorem4.6 for S = S0, the trivial storage
type. To see this, note that it is easy to show thatRT(S0) is closed under look-ahead, i.e.,
that, forS = S0, RT+(SRT) = RT (S) (see, e.g., Lemma 2.6 of[9]). And it is easy to see
(cf. Lemma 3.9 of[8]) thatRT(S0) is essentially the class of tree languages generated by
regular tree grammars, i.e.,RECOG.

5. IO transducers

We show that for every storage typeS, IO(S) is closed under positive look-ahead and
is closed under composition with tree homomorphisms. That is, for every storage typeS,
IO+(SIO) = IO(S) = IO(S) ◦ LH = IO(S) ◦H .

In order to prove thatIO(S) is closed under composition with tree homomorphisms,
we need the special case that the tree homomorphism is the identity onT� where� is
a subalphabet of the terminal alphabet of theIO(S) transducer. The proof of this result
is nontrivial and of the same complexity as that of the next, more general, fact:IO(S) is
closed under composition with the identity on a recognizable tree language. The proof is
standard. It generalizes, forS = S0, the fact that theIO context-free tree languages are
closed under tree homomorphisms (see Corollary 6.2 of[6]). LetIDRECOGdenote the class
of all mappingsidL with L ∈ RECOG.

Lemma 5.1. For every storage type S, IO(S) ◦ IDRECOG⊆ IO(S).
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Proof. Let A = (N, e1,�, Ain, R1) be anIO(S) transducer. LetB = (Q,�,Qf , �) be a
deterministic bottom–up tree automaton withL(B) = L. We construct anIO(S) transducer
D such that
(D) = 
(A) ◦ idL.

To this end we generalize the notion of anIO(S) transducer. We now construct anIO(S)

transducerC with finitely many initial states. LetC = (NC, e1,�, {A�
in | � ∈ Qf }, R2),

whereNC = {A� | A ∈ Nn, n�0, and� : Qn → Q } and everyA� ∈ NC has the same
rank asA.

In order to defineR2, first, we extend the deterministic bottom–up tree automatonB for
the set of symbols�′ = � ∪ NC(C ∪ F). Let B′ = (Q,�′,Qf , �

′) be the deterministic
bottom–up tree automaton where�′� = �� for � ∈ �, �′

A�(c)
= � for A�(c) ∈ NC(C)

and�′
A�(f )

= � for A�(f ) ∈ NC(F ). Note that, for eacht ∈ T�, tB′ = tB. Furthermore,
for each
 ∈ T�′(Xn), n�0, we define
̄ ∈ T�∪N(C∪F)(Xn) from 
 by replacing every
A� ∈ NC by A ∈ N . Note that, fort ∈ T�, t̄ = t .

Now,R2 consists of all the rules

A�(x1, . . . , xn)→ if b then 	, (45)

whereA(x1, . . . , xn)→ if b then 	̄ is in R1 and� = 	B′ .
We define⇒C in the same way as for anIO(S) transducer. Thetransformation induced

by C is


(C) = { (u, v) ∈ I × T� | A�
in(e(u))

∗⇒
C

v for some� ∈ Qf }. (46)

The following statement holds:
(a) For any
,� ∈ T�∪NC(C), if 
⇒C � then
̄⇒A �̄ and
B′ = �B′ .
Indeed, if
 = 
0[A�(c)(
1, . . . , 
n)]⇒C 
0[	c[
1, . . . , 
n]] = � for rule (45) in R2,

with 
0 ∈ T�∪NC(C)(X1) and
1, . . . , 
n ∈ T�∪NC(C), then, by the definition ofR2,


̄ = 
̄0[A(c)(
̄1, . . . , 
̄n)]⇒A 
̄0[	̄c[
̄1, . . . , 
̄n]] = �̄

and, by (7) and� = 	B′ = 	B′
c ,


B′ = 
B′
0 (�(
B′

1 , . . . , 
B′
n )) = 
B′

0 [	B′
c [
B′

1 , . . . , 
B′
n ]] = �B′ .

By (a) we have
(b) for any
,� ∈ T�∪NC(C), if 
⇒∗C � then
̄⇒∗A �̄ and
B′ = �B′ .

Thus
(c) for any� ∈ Q, c ∈ C andt ∈ T�, if A�

in(c)⇒∗C t thenAin(c)⇒∗A t and� = t B.
Conversely, we show the following statement.

(d) For any�, � ∈ T�∪N(C) and� ∈ T�∪NC(C), if �⇒A � and�̄ = �, then there is a tree

 ∈ T�∪NC(C) such that̄
 = �, and
⇒C �.

To prove (d), assume that� = �0[A(c)(�1, . . . �n)]⇒A �0[�c(�1, . . . �n)] = � for the
ruleA(x1, . . . , xn)→ if b then � inR1, c ∈ C,�0 ∈ T�∪N(C)(X1),�1, . . . , �n ∈ T�∪N(C).
Since�̄ = �, � = �0[	c(�1, . . . ,�n)] for some�0 ∈ T�∪NC(C)(X1), 	 ∈ T�∪NC(F ), and
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�1, . . . ,�n ∈ T�∪NC(C) with �̄i = �i for 0� i�n, and 	̄ = �. Let � = 	B′ and
 =
�0[A�(c)(�1, . . . ,�n)]. Then


̄ = �̄0[A(c)(�̄1, . . . , �̄n)] = �0[A(c)(�1, . . . �n)] = �

and, by the definition ofR2, (45) is in R2 and so


 = �0[A�(c)(�1, . . . ,�n)]⇒C �0[	c[�1, . . . ,�n]] = �.

By (d) we have
(e) for any�, � ∈ T�∪N(C) and� ∈ T�∪NC(C), if �⇒∗A � and�̄ = � then there is a tree


 ∈ T�∪NC(C) such that̄
 = � and
⇒∗C �.
By (e) and (c), we have

(f) for any c ∈ C andt ∈ T�, if Ain(c)⇒∗A t then there is� ∈ Q such thatA�
in(c)⇒∗C t

and� = tB.
By (46) and statements (c) and (f)


(C) = 
(A) ◦ idL. (47)

Let D = (NC ∪ {Ain }, e1,�, Ain, R3), whereR3 is defined as follows. We put all

elements ofR2 in R3. Furthermore, for any� ∈ Qf , and any ruleA�
in → r in R2, we

put the ruleAin → r in R3. We obtain by direct inspection that
(D) = 
(C). By (47),

(D) = 
(A) ◦ idL. �

Lemma 5.2. LetA = (N, e,�, Ain, R1) be an IO(S) transducer andH = ({Hin }, idT� ,

�, Hin, RH) be a tree homomorphism. Then we can effectively construct an IO(S) trans-
ducerB = (NB, e,�, Ain, R2) and a tree homomorphismJ = ({Hin }, idT� ,�, Hin, RJ )

such that
(A) ◦ 
(H) = 
(B) ◦ 
(J ).

Proof. Without loss of generality, we may assume that� ⊆ �. Let � ∈ �0 be arbitrary.
We put all rules ofRH in RJ . Furthermore, for each� ∈ �− �, we put the rule

Hin → if root = � then �

in RJ . By Lemma5.1, we takeIO(S) transducerB = (NB, e,�, Ain, R2) such that
(B) =

(A) ◦ idT� . Hence
(A) ◦ 
(H) = 
(B) ◦ 
(J ). �

Theorem 5.3. For every storage type S, IO(S) ◦H ⊆ IO(S).

Proof. Let S = (C, P, F,m, I, E) be an arbitrary storage type. LetA = (NA, e,�, Ain,

R1) be anIO(S) transducer andH = ({Hin }, idT� ,�, Hin, R) be a tree homomorphism.
By Lemma 5.2, we may assume that� = �. We introduceIO(S) transducerB =
(NB, e,�, Ain, R2) as follows:
• NA ⊆ NB,
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• For each� ∈ �, we introduce the nonterminalA� ∈ NB with the same rank as that of�.
In order to defineR2, for each	 ∈ TNA(F )∪�(X), we define a tree	′ ∈ TNB(F )∪�(X)

as follows. Intuitively, if	 ∈ T�(X), then	′ = H(	), otherwise,	′ is obtained from	 by
replacing every maximal subtreet ∈ T�(X) by H(t) and then replacing every remaining
� ∈ � by A�(f ), wheref is an arbitrary instruction symbol occurring in	.

Formally, let	 = 
[t1, . . . , tm], where
 ∈ TNA(F )∪�(Xm), m�0, 
 has no subtree
t ∈ T�(Xm) − Xm, andt1, . . . , tm ∈ T�(X). Then	′ = 
̄[H(t1), . . . ,H(tm)] where
̄ is
obtained from
 by replacing every� ∈ � by A�(f ), wheref is an arbitrary instruction
symbol occurring in	.

We defineR2 in the following way. For each� ∈ �n, n�0, we put the rule

A�(x1, . . . , xn)→ if true then H(�(x1, . . . , xn)) (48)

in R2. Then for every rule

A(x1, . . . , xn)→ if b then 	

in R1, we put the rule

A(x1, . . . , xn)→ if b then 	′

in R2.
One can show the following result in a straightforward but tedious way by induction on

the length of the derivations⇒∗A and⇒∗B.
(a) For allc ∈ C and
 ∈ TNA(C)∪�, if (i) then there is a� ∈ TNB(C)∪� such that (ii) and

(iii) and (iv), and
(b) for all c ∈ C and� ∈ TNB(C)∪�, if (ii) then there is a
 ∈ TNA(C)∪� such that (i) and

(iii) and (iv).
Here

(i) Ain(c)⇒∗A 
.
(ii) Ain(c)⇒∗B �.
(iii) 
 = 
̄[t1, . . . , tm], where
̄ ∈ TNA(C)∪�(Xm),m�0, 
̄ has no subtreet ∈ T�(Xm)−

Xm, andt1, . . . , tm ∈ T�.
(iv) �̃ = �̄[H(t1), . . . ,H(tm)], where�̄ is obtained from
̄ by replacing every symbol

� ∈ � by A�(c
′) for some configurationc′. Moreover,�̃ ∈ TNB(C)∪� is obtained from�

by a derivation�⇒∗B �̃ where each rule applied byB is of the form (48) for some� ∈ �n,

n�0, and no rule of the form (48) is applicable for̃�.
We now show that
(A) ◦ 
(H) = 
(B). Let (u,w) ∈ 
(A) ◦ 
(H). Then there is a tree

v ∈ T� such that(u, v) ∈ 
(A) and(v,w) ∈ 
(H). ThenAin(e(u))⇒∗A v andH(v) = w.
For c = e(u) and
 = v, Condition (i) holds. By (a), there is a� ∈ TNB(C)∪� such that
Conditions (ii)–(iv) hold. By (iii), we may takē
 = x1, m = 1, andt1 = v. By (iv), �̄ = x1

implying that�̃ = H(v) = w. By (iv), �̃ ∈ TNB(C)∪� is obtained from� by a derivation

�⇒∗B �̃. Hence

Ain(e(u))
∗⇒
B

�
∗⇒
B

�̃ = w.
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Thus(u,w) ∈ 
(B).
Conversely, let(u,w) ∈ 
(B). ThenAin(e(u))⇒∗B w. Let c = e(u) and� = w. By (b),

there is a tree
 ∈ TNA(C)∪� such that Conditions (i), (iii) and (iv) hold. By (iv),̃� = w.
By (iv) and (iii), we may takē� = x1, m = 1,

H(t1) = w,


̄ = x1, and
 = t1. By (i)

Ain(e(u))
∗⇒
A

t1.

Then(u, t1) ∈ 
(A) and(t1, w) ∈ 
(H). �

Now we prove thatIO(S) is closed under positive look-ahead. The proof is a variation of
the one of Lemma4.4.

Theorem 5.4. For every storage type S, IO+(SIO) ⊆ IO(S).

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage type. LetA = (N0, e,�0, Ain,

R0) be anIO+(SIO) transducer. Without loss of generality, we may assume thatA is an
IO1+(SIO) transducer, see Theorem3.7. We construct anIO(S) transducerB. Then we show
that
(A) = 
(B).

We construct theIO(S) transducerB = (N, e,�, Ain, R1) in the following way. Let us
number the rules ofR0 by the numbers 1, . . . , r, for somer�0. Let us assume that theith
rule is of the form

Ai(x1, . . . , xni )→ if bi and 〈Li〉 then 	i (49)

where 1� i�r, ni �0, Ai ∈ N0
ni

, bi ∈ BE(P ), Li = (Ni, e,�i , Ai
in, R

i) is an IO(S)

transducer, and	i ∈ T
N0(F )∪�0(Xni ). By Lemma3.10, we may assume that theIO(S)

transducerLi has only one rule withAi
in appearing in the left-hand side, and that rule has

the form

Ai
in → if true then 	i . (50)

We may assume that the setsN0, N1, . . . , Nr and�0,�1, . . . ,�r are pairwise disjoint. Let
B be a new nonterminal symbol of arity 2.
• Let N =⋃r

i=0 N
i ∪ {B }.

• Let � =⋃r
i=0 �i .

• We put the ruleB(x1, x2)→ if true then x1 in R1.
• For each 1� i�r, let the rule (49) be theith rule ofR0, and let the rule (50) be inRi .

Then we put the rule

Ai(x1, . . . , xni )→ if bi then B(f )(	i , 	
i ) (51)
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in R1, if 	i �∈ T�i andf ∈ F occurs in	i and we put the rule

Ai(x1, . . . , xni )→ if bi then 	i (52)

in R1, if 	i ∈ T�i .
• We put each rule of the set

⋃r
i=1 R

i in R1.
Note that for eachc ∈ C and each 1� i�r, conditionbi and 〈Li〉 in rule (49) is equivalent
to the condition(bi and there is a treew ∈ T�i such that	ic⇒∗Li w) by rule (50), where

conditionbi and tree	i also appear in rule (51). Thus the application of rule (49) of A is
equivalent to the application of rule (52) or is equivalent to the subsequent application of rule
(51), some rules inRi , and ruleB(x1, x2) → if true then x1 of B. Hence
(A) = 
(B).
We now give a formal proof.

Claim 5.5. For all A ∈ N0
n , n�0, c ∈ C, t1, . . . , tn ∈ T�0, ands ∈ T�0, A(c)(t1, . . . , tn)

⇒∗A s if and only ifA(c)(t1, . . . , tn)⇒∗B s.

Proof. (⇒) LetA(c)(t1, . . . , tn)⇒l
A s for somel�1.We show thatA(c)(t1, . . . , tn)⇒∗B s

by induction onl.
Base case: Let l = 1. ThenA = Ai for some 1� i�r and we apply rule (49). Hence

m(〈Li〉)(c) = true. That is,Ai
in(c)⇒Li 	ic⇒∗Li w for somew ∈ T�i . By the definition of

R1, if 	i �∈ T�i , then rule (51) is in R1, and
A(c)(t1, . . . , tn)⇒B B(m(f )(c))((	i[t1, . . . , tn])c, 	ic)⇒∗B
B(m(f )(c))((	i[t1, . . . , tn])c, w)⇒B(	i[t1, . . . , tn])c.
If 	i ∈ T�i , then rule (52) is in R1 andA(c)(t1, . . . , tn)⇒B(	i[t1, . . . , tn])c.
Induction step: Let l > 1. ThenA = Ai for some 1� i�r, n = ni , and we apply rule

(49) in the first step ofA(c)(t1, . . . , tn)⇒l
A s. Hence

m(bi)(c) = true (53)

andm(〈Li〉)(c) = true. That is,Ai
in(c)⇒Li 	ic⇒∗Li w for somew ∈ T�i . Furthermore,

A(c)(t1, . . . , tn)⇒A (	i[t1, . . . , tn])c ⇒l−1
A s. (54)

Then, there are�1, . . . , �� ∈ T�0∪N0(C)
, w1, . . . , w� ∈ T�0, ��1, such that

(a) (	i[t1, . . . , tn])c = �1 andw1 = s,
(b) for eachj = 1, . . . , �, �j⇒∗A wj where
• �j = uj [Aj1(cj1)(��j11

, . . . , ��j1�j1
), . . . , Ajkj (cjkj )(��jkj 1

, . . . , ��jkj �jkj
)] for

someuj ∈ T�0(Xkj
)
, kj �1,Aj1, . . . , Ajkj ∈ N0, cj1, . . . , cjkj ∈ C, and�j11, . . . ,

�j1�j1
, . . . ,�jkj1, . . . ,�jkj�jkj

∈ { j + 1, . . . , � },
• there are�j1, . . . , �jkj

∈ T�0 such that for eachj = 1, . . . , �,

Aj1(cj1)(w�j11
, . . . , w�j1�j1

)⇒lj1

A �j1 ∈ T�0, wherelj1� l − 1,
. . .

Ajkj (cjkj )(w�jkj 1
, . . . , w�jkj �jkj

)⇒ljkj

A �jkj
∈ T�0, whereljkj � l − 1, and
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• wj = uj [�j1, . . . , �jkj
] for j = 1, . . . , �.

By the induction hypothesis, for eachj = 1, . . . , �,
Aj1(cj1)(w�j11

, . . . , w�j1�j1
)⇒∗B �j1,

. . .

Ajkj (cjkj )(w�jkj 1
, . . . , w�jkj �jkj

)⇒∗B �jkj
.

Hence, using an obvious induction on�− j , �j⇒∗B wj for j = 1, . . . , �. By (a)

(	i[t1, . . . , tn])c ∗⇒B s. (55)

By the definition ofR1, we now distinguish two cases.
Case1: 	i �∈ T�i . Then rule (51) is in R1. Thus by (53) and (55) we have
A(c)(t1, . . . , tn)⇒B B(m(f )(c))((	i[t1, . . . , tn])c, 	ic)⇒∗B B(m(f )(c))(s, w)⇒B s.
Case2:	i ∈ T�i . Then rule (52) is inR1 andA(c)(t1, . . . , tn)⇒B(	i[t1, . . . , tn])c⇒∗B s.
(⇐) Let A(c)(t1, . . . , tn)⇒l

B s for somel�1. We show thatA(c)(t1, . . . , tn)⇒∗A s by
induction onl.

Base case: Let l = 1. ThenA = Ai for some 1� i�r, n = ni , andB applies rule (52).
Hencem(bi)(c) = true. By the definition ofR1, 	i ∈ T�i . Thusm(〈Li〉)(c) = true. The
definition ofR1 also implies that rule (49) is inR0. HenceA(c)(t1, . . . , tn)⇒A(	i[t1, . . . ,
tn])c.

Induction step: Let l > 1. ThenA = Ai for some 1� i�r, andn = ni . By the definition
of R1, we distinguish two cases.

Case1: B applies rule (51) in the first step ofA(c)(t1, . . . , tn)⇒l
B s. That is,

A(c)(t1, . . . , tn)⇒B B(m(f )(c))((	i[t1, . . . , tn])c, 	ic)⇒l−1
B s. (56)

Then
(i) rule (49) is in R0,

(ii) m(bi)(c) = true, and
(iii) Ai

in(c)⇒Li 	ic⇒∗Li w for somew ∈ T�i .

(iv) (	i[t1, . . . , tn])c ⇒�
B s for some�� l − 1.

By (iii), m(〈Li〉)(c) = true. Thus, by (i) and (ii),

A(c)(t1, . . . , tn)⇒A (	i[t1, . . . , tn])c. (57)

From (iv) we can conclude by induction, in exactly the same way as in points (a) and (b) in
the(⇒)-part of this proof, that(	i[t1, . . . , tn])c⇒∗A s. By (57) we get that

A(c)(t1, . . . , tn)⇒A (	i[t1, . . . , tn])c ∗⇒A s.

Case2: B applies rule (52) in the first step ofA(c)(t1, . . . , tn)⇒l
B s. This case is similar

to Case 1. �
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From Claim5.5 it follows, takingA = Ain andc = e(u), that
(A) = 
(B). �

We note that the deterministic version of Theorem5.4 is not true forS = T R (see
Corollary 5.20 of[7]). In fact, it is not even true thatDIO+(SIO) = DIO(S) ◦LH because
DIO(S) is closed under composition withLH, for S = T R (see Theorem 7.6(2) of[7]).

From Theorems5.3and5.4(and the obvious facts thatIO(S) ⊆ IO+(SIO) andIO(S) ⊆
IO(S) ◦H ) we immediately obtain the following result.

Corollary 5.6. For every storage type S, IO+(SIO) = IO(S) = IO(S) ◦LH = IO(S) ◦H .

6. OI transducers

We generalize the nondeterministic part of Lemma4.1toOI transducers. That is, we show
that for every storage typeS, OI+(SOI) ⊇ OI(S)◦LH . We also show that for every storage
typeS, OI(S) is closed under positive look-ahead, and hence is closed under composition
with linear tree homomorphisms. That is, for every storage typeS, OI+(SOI) = OI(S) =
OI(S) ◦ LH .

Note that for the trivial storage typeS0, the closure ofOI(S0) under linear tree homo-
morphisms is shown in[17]. However,OI(S0) is not closed under tree homomorphisms
(see Example 6.7 in[6]), in contrast withIO(S0).

First we show that for every storage typeS, OI+(SOI) ⊇ OI(S) ◦ LH . We intuitively
discuss the main difference between theRTandOI cases. We illustrate by an example why
the straightforward generalization of the construction used in the proof of Lemma4.1does
not work forOI.

Example 6.1. Let S0 = ({ c },∅, { id },m, { c }, { id{ c } }) be the trivial storage type. Con-
sider theOI(S0) transducerA = (N, e,�, Ain, R1), with e = id{ c } and
• N = { Ain, A, B,C }, Ain, B, C have rank 0 andA has rank 2,
• � = �1 ∪ �0, �1 = { �1,�2 }, �0 = { b }, and
• R1 consists of the following rules.

Ain → if true then A(id)(�1(B(id)),�2(C(id))),
A(x1, x2)→ if true then x1,
A(x1, x2)→ if true then x2, and
B → if true then b.

The one and only successful derivation ofA is the following:

Ain(c)⇒A A(c)(�1(B(c)),�2(C(c)))⇒
A

�1(B(c))⇒
A

�1(b). (58)

Thus, transducerA induces the transformation
(A) = { (c,�1(b)) }.
Let H = ({Hin }, idT� ,�, Hin, R2) be a linear tree homomorphism, where
• � = �0 = { a1, a2 }, and
• R2 consists of the following rules.

Hin → if root = �1 then a1,
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Hin → if root = �2 then a2, and
Hin → if root = b then a1.

Obviously,
(A) ◦ 
(H) = { (c, a1) }.

In order to constructA ◦ H as in the proof of Lemma4.1, we now define anOI(S)
transducerL. It will appear as a look-ahead transducer in a rule ofA ◦ H. Let L =
(N ∪ {Bin }, e,�, Bin, R

′
1) be anOI(S) transducer, whereBin is a new nonterminal andR′1

consists of the following rules:
Bin → if true then A(id)(�1(B(id)),�2(C(id))),
Ain → if true then A(id)(�1(B(id)),�2(C(id))),
A(x1, x2)→ if true then x1,
A(x1, x2)→ if true then x2, and
B → if true then b.

Observe thatBin(c)⇒L A(c)(�1(B(c)),�2(C(c)))⇒L �1(B(c))⇒L �1(b). Hence

m(〈L〉)(c) = true. (59)

Now the straightforward generalization of the construction used in the proof of Lemma
4.1 gives theOI+(SOI) transducerA ◦H = (N, e,�, Ain, R3), whereR3 consists of the
following rules.

Ain → if true and 〈L〉 then A(id)(a1, a2),
A(x1, x2)→ if true then x1,
A(x1, x2)→ if true then x2, and
B → if true then a1.

By (59), we haveAin(c)⇒A◦H A(c)(a1, a2). Hence we have the following derivations:
Ain(c)⇒A◦H A(c)(a1, a2)⇒A◦H a1,
Ain(c)⇒A◦H A(c)(a1, a2)⇒A◦H a2.

Thus
(A ◦H) = { (c, a1), (c, a2) }. Hence
(A) ◦ 
(H) �= 
(A ◦H). This ends Example
6.1.

Let A = (N, e,�, Ain, R1) be anOI(S) transducer. Lett ∈ TN(C)∪� be a tree, and let

t = u1⇒A u2⇒A · · ·⇒A uk = u, k�1 (60)

for someu1, . . . , uk−1 ∈ TN(C)∪� anduk ∈ T�. TransducerA might delete some subtree
p of t along the derivation (60) such that there is no treeq ∈ T� with p⇒∗A q. An example
of this phenomenon is derivation (58) because the subtree�2(C(c)) is deleted. Assume that
along (60), we derive a terminal tree from the subtree

A(c)(
1, . . . , 
n) (61)

of uj , 1�j �k. Then there is a setV ⊆ Xn of variables such that along (60),
(a) from subtree (61), we derive a trees[
1, . . . , 
n] for somes ∈ T�(V ), and
(b) for eachxi ∈ V , from the subtree
i we derive a treesi ∈ T� (or several such trees).
In the light of this observation, for any setV ⊆ Xn, and nonterminalA ∈ N , we introduce

a new nonterminalAV . Moreover, we modify derivation (60). We substituteAV for A in
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subtree (61) of uj , 1�j �k. ThenAV has the following “meaning”. For any 1�j �k and
subtree

AV (c)(
1, . . . , 
n)

of uj and for any variablexi ∈ V , there is a treesi ∈ T� such that
i⇒∗A si . Furthermore,
there is a trees ∈ T�(V ) such thatA(c)(x1, . . . , xn)⇒∗A s .

Let H be a linear tree homomorphism. In the proof of Theorem6.3 we will define the
OI+(SOI) transducerA◦H by modifying the construction of Lemma4.1.When constructing
the rules ofA◦H, we replace the nonterminalsA of A by nonterminalsAV . The “meaning”
of AV will be forced by the look-ahead tests ofA ◦H.
Example 6.1, continued.
For transducersA andH of Example6.1 we will construct the transducerA ◦ H =

(J, e,�, A∅in, R3), whereJ0 = { A∅in, B∅, C∅ } andJ2 = {A{ x1 }, A{ x2 }, A{ x1,x2} }. In
order to construct the rules ofA ◦ H, we now defineOI(S) transducersL1, L2, L3, L4,
andL5. They will appear as look-ahead transducers in the rules ofA ◦H. Intuitively, L1
corresponds toA{ x1 }(id), whereA(id) appears in the right-hand side of the first rule ofR1.
Similarly, L2 andL3 correspond toA{ x2 }(id) andA{ x1,x2 }(id), respectively, andL4 and
L5 toB∅(id) andC∅(id), respectively. TransducerL1 is defined in such a way that the test
〈L1〉 is true onc if and only if there is a trees ∈ T�({ x1 }) such thatA(c)(x1, x2)⇒∗A s.
Similarly, 〈L2〉 and〈L3〉 test whether there is trees in T�({ x2 }) ands ∈ T�({ x1, x2 }),
respectively, such thatA(c)(x1, x2)⇒∗A s. The meanings of〈L4〉 and〈L5〉 are analogous.

Let � be a new 0-ary terminal symbol. LetL1 = (N ∪ {Din,D1,D2 }, e,�∪ {�},Din,

R′1) be anOI(S) transducer, whereDin,D1,D2 are new nonterminals of rank 0, andR′1
consists of the following rules:

Din → if true then A(id)(D1(id),D2(id)),
A(x1, x2)→ if true then x1,
A(x1, x2)→ if true then x2, and
D1→ if true then �.
Let L2 = (N ∪ {Din,D1,D2 }, e,�∪ {� },Din, R

′
2) be anOI(S) transducer, whereR′2

consists of the following rules:
Din → if true then A(id)(D1(id),D2(id)),
A(x1, x2)→ if true then x1,
A(x1, x2)→ if true then x2, and
D2→ if true then �.
Let L3 = (N ∪ {Din,D1,D2 }, e,�∪ {� },Din, R

′
3) be anOI(S) transducer, whereR′3

consists of the following rules:
Din → if true then A(id)(D1(id),D2(id)),
A(x1, x2)→ if true then x1,
A(x1, x2)→ if true then x2,
D1→ if true then � and
D2→ if true then �.
Let L4 = (N ∪ {Din }, e,�,Din, R

′
4) be anOI(S) transducer, whereR′4 consists of the

following rules:
Din → if true then B(id) and
B → if true then b.
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Let L5 = (N ∪ {Din }, e,�,Din, R
′
5) be anOI(S) transducer, whereR′5 consists of the

only ruleDin → if true then C(id).
Observe thatm(〈L1〉)(c) = m(〈L2〉)(c) = m(〈L3〉)(c) = m(〈L4〉)(c) = true and

m(〈L5〉)(c) = false.
Now a modified generalization of the construction used in the proof of Lemma4.1gives

theOI+(SOI) transducerA ◦H = (J, e,�, A∅in, R3), whereR3 consists of the following
rules:

A∅in → if 〈L1〉 and 〈L4〉 then A{ x1 }(id)(a1, a2),
A∅in → if 〈L2〉 and 〈L5〉 then A{ x2 }(id)(a1, a2),
A∅in → if 〈L3〉 and 〈L4〉 and 〈L5〉 then A{ x1,x2 }(id)(a1, a2),
A{ x1 }(x1, x2)→ if true then x1,
A{ x2 }(x1, x2)→ if true then x2,
A{ x1,x2 }(x1, x2)→ if true then x1, and
A{ x1,x2 }(x1, x2)→ if true then x2.

Since〈L5〉 is false and the other look-ahead tests are true, we have the only⇒A-derivation
resulting in a tree over the terminal alphabet�:

A∅in(c)⇒A◦H A{ x1 }(c)(a1, a2)⇒A◦H a1.
Thus
(A ◦H) = { (c, a1) }. Hence
(A) ◦ 
(H) = 
(A ◦H).
In order to proveOI+(SOI) ⊇ OI(S) ◦ LH , we need the counterpart of Lemma5.2.

Lemma 6.2. Let A = (N, e,�, Ain, R1) be an OI(S) transducer andH = ({Hin}, idT� ,

�, Hin, R2) be a linear tree homomorphism. Then we can effectively construct an OI(S)

transducerB = (N ′, e,�, Ain, RB) such that
(A) ◦ 
(H) = 
(B) ◦ 
(H).

Proof. First, we construct anOI(S) transducerA′ = (N ′, e,�, Ain, R
′
1) equivalent toA

such that for every ruleA(x1, . . . , xn)→ if b then 	 in R′1, there is no terminal symbol
in any subtree of	 with nonterminal root (see the first step of the proof of Lemma 5.3 in
[8]). Let us observe that a terminal symbol occurs in a tree derived byA′ from Ain(e(u))

(whereu is an arbitrary input element) if and only if this terminal symbol occurs in a rule
of R′1 applied along the derivation.

Then, let us remove all the rules fromR′1 in which occurs one of the terminal symbols
in � − � and in this way, we obtain the set of rulesRB. By the previous observation

(A) ◦ 
(H) = 
(B) ◦ 
(H). �

Theorem 6.3. For every storage type S, OI+(SOI) ⊇ OI(S) ◦ LH .

Proof. Let S = (C, P, F,m, I, E) be an arbitrary storage type,A = (N, e,�, Ain, R1)

be anOI(S) transducer andH = ({Hin}, idT� ,�, Hin, R2) be a linear tree homomorphism.
According to Lemma6.2, we may assume� = �. We introduce the ranked alphabetJ,
whereJn = {AV | A ∈ Nn, V ⊆ Xn } for n�0.
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Definition 6.4. Let k�0, � ∈ TJ(F)∪�(Xk), and	 ∈ TJ(C)∪�. We define the treē� from
� by replacing each symbolAV (f ) in J (F ) by the symbolA(f ) in N(F). Similarly, we
define the treē	 from 	 by replacing each symbolAV (c) in J (C) by the symbolA(c) in
N(C).

Before defining theOI+(SOI) transducerA ◦H that induces
(A) ◦ 
(H), we define the
look-ahead tests that are needed in the rules ofA◦H. Letf ∈ F be an arbitrary instruction.
We now introduce the look-ahead test〈Lf 〉 ∈ POI so that for each configurationc ∈ C,
〈Lf 〉 is true onc if and only if f is defined onc. We defineOI(S) transducerLf =
(N ′, e,�′, Bin, R

′
1) as follows.

(i) N ′ = {Bin, B }, whereBin andB are 0-ary nonterminals.
(ii) �′ = {� }, where� is a new 0-ary terminal symbol.

(iii) R′1 consists of the following rules:

Bin → if true then B(f )

and

B → if true then �.

Claim 6.5. For each configurationc ∈ C, mOI(〈Lf 〉)(c) = true if and only if c ∈
dom(m(f )).

Proof. It follows directly from the definition ofLf . �

Let k�0 and� ∈ TJ(F)∪�(Xk). We now introduce the testdF (�) ∈ BE(POI) so that
the following holds. For each configurationc, the testdF (�) is true onc if and only if all
instructionsf occurring in� are defined onc.

Definition 6.6. Let k�0 and� ∈ TJ(F)∪�(Xk). We define the testdF (�) ∈ BE(POI) as

dF (�) =
∧

(〈Lf 〉 | f ∈ F occurs in�).

Definition6.6 implies the following result.

Claim 6.7. Let k�0 and �∈ TJ(F)∪�(Xk). For each configuration c∈C,
mOI(dF (�))(c) = true if and only if�c is defined.

Letn�0,A ∈ Nn, V ⊆ Xn, f ∈ F . We now introduce a look-ahead test so that for each
configurationc ∈ C, the look-ahead test is true on the configurationc if and only if there is
a trees0 ∈ T�(V ) such that

A(m(f )(c))(x1, . . . , xn)
∗⇒
A

s0.

To this end, let theOI(S) transducerLA,V,f = (N ′, e,�′, Bin, R
′
1) be defined as follows:

(i) N ′ = N ∪ {Bin, B1, . . . , Bn }, whereBin, B1, . . . , Bn are new 0-ary nonterminals.
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(ii) �′ = � ∪ {� }, where� is a 0-ary terminal symbol, as before.
(iii) We defineR′1 from R1 by adding the rules

Bin → if true then A(f )(B1(f ), . . . , Bn(f ))

and

Bi → if true then � for eachxi ∈ V.

Claim 6.8. For each configurationc ∈ C, mOI(〈LA,V,f 〉)(c) = true if and only if there is
a trees0 ∈ T�(V ) such thatA(m(f (c)))(x1, . . . , xn)⇒∗A s0.

Proof. It is straightfoward to show that for allt0 ∈ T�′ andc ∈ C,Bin(c)⇒∗LA,V,f
t0 if and

only if t0 = s0[�, . . . ,�] for somes0 ∈ T�(V ) such thatA(m(f )(c))(x1, . . . , xn)⇒∗A s0.
This proves the claim. �

Let k�0, W ⊆ Xk, and� ∈ TJ(F)∪�(Xk). We now introduce the testbF (�,W) ∈
BE(POI) so that intuitively the following holds. For each configurationc, the testbF (�,W)

is true onc if and only if there is a derivation̄�c⇒∗A s ∈ T�(W) in which the “meaning”
of eachAV occurring in� is respected.

Definition 6.9. Let k�0,W ⊆ Xk, and� ∈ TJ(F)∪�(Xk). We define the testbF (�,W) ∈
BE(POI) by tree induction on�.
(i) Assume that� ∈ Xk. If � ∈ W thenbF (�,W) = true elsebF (�,W) = false.

(ii) Assume that� = �(�1, . . . ,�n) for somen�0, � ∈ �n, �1, . . . ,�n ∈ TJ(F)∪�(Xk).
Then

bF (�,W) =
∧

(bF (�i ,W) | 1� i�n).

(iii) Assume that� = AV (f )(�1, . . . ,�n) for somen�0, A ∈ Nn, V ⊆ Xn, f ∈ F , and
�1, . . . ,�n ∈ TJ(F)∪�(Xk). Then

bF (�,W) = 〈LA,V,f 〉 and
∧

(bF (�i ,W) | xi ∈ V ).

Definition6.9 implies the following result.

Claim 6.10. Letk�0,W ⊆ Xk, and� ∈ TJ(F)∪�(Xk). EithermOI(bF (�,W))(c) = false
for all c ∈ C or

mOI(bF (�,W)) = mOI

(∧
(〈LAj ,Vj ,fj 〉 | j = 1, . . . , n)

)

for somen�0, andAj ∈ N , Vj ⊆ X, andfj ∈ F for 1�j �n.

Let k�0, W ⊆ Xk, and � ∈ TJ(C)∪�(Xk). We now introduce the Boolean value
bC(�,W) ∈ { true, false} so that it is true if and only if there is a derivation�̄⇒∗A s ∈
T�(W) in which the “meaning” of eachAV occurring in� is respected.
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Definition 6.11. Let k�0, W ⊆ Xk, and� ∈ TJ(C)∪�(Xk). We define the Boolean value
bC(�,W) by tree induction on�.
(i) Assume that� ∈ Xk. If � ∈ W , thenbC(�,W) = true elsebC(�,W) = false.

(ii) Assume that� = �(�1, . . . ,�n) for somen�0, � ∈ �n, �1, . . . ,�n ∈ TJ(C)∪�(Xk).
Then

bC(�,W) =
∧

(bC(�i ,W) | 1� i�n).

(iii) Assume that� = AV (c)(�1, . . . ,�n) for somen�0, A ∈ Nn, V ⊆ Xn, c ∈ C,
and�1, . . . ,�n ∈ TJ(C)∪�(Xk). ThenbC(�,W) = true if and only if there is a tree
s0 ∈ T�(V ) such thatA(c)(x1, . . . , xn)⇒∗A s0 and

∧
(bC(�i ,W) | xi ∈ V ) = true.

Claim 6.12. Let k�0,W ⊆ Xk, � ∈ TJ(F)∪�(Xk). For each configurationc ∈ C, if �c is
defined, thenmOI(bF (�,W))(c) = bC(�c,W).

Proof. The claim can be shown by tree induction on the tree� applying Claim6.8. �

Claim 6.13. For arbitrary k�0, W ⊆ Xk, and 
 ∈ TN(C)∪�(Xk), the following two
statements are equivalent:
(a) There is a tree� ∈ TJ(C)∪�(Xk) such that�̄ = 
 andbC(�,W) = true.
(b) There is a trees ∈ T�(W) such that
⇒∗A s.

Proof. The claim can be shown by tree induction on the tree
. In the case that
 =
A(c)(
1, . . . , 
n), one can use the fact that
 generates a tree inT�(W) if and only if there
existsV ⊆ Xn such thatA(c)(x1, . . . , xn) generates a tree inT�(V ), and for eachxi ∈ V ,

i generates a tree inT�(W). �

By Claims6.12and6.13, we get the following observation.
For arbitraryk�0,W ⊆ Xk, 
 ∈ TN(F)∪�(Xk), andc ∈ C, the following two statements

are equivalent:
(a) There is a tree� ∈ TJ(F)∪�(Xk) such that̄� = 
 andmOI(bF (�,W))(c) = true.
(b) There is a trees ∈ T�(W) such that
c⇒∗A s.
We will need the following elementary property ofbC .

Claim 6.14. Let k�0, W ⊆ Xk. Let �0 ∈ TJ(C)∪�(Xk+1), wherexk+1 appears exactly
once in�0, and�0 has no subtree p such that p contains the variablexk+1 and the root of
p is inJ (C). Let�1 ∈ TJ(C)∪�(Xk). Then

bC(�0[xk+1← �1],W) = bC(�0,W ∪ { xk+1 }) and bC(�1,W).

Proof. The claim can be shown by tree induction on the tree�0. �
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We now define theOI+(SOI) transducerA ◦H = (J, e,�, A∅in, R3) as follows. We put
the rule

AV (x1, . . . , xn)→ if b and dF (�) and bF (�, V ) thenHJ (F )(�) (62)

in R3 if Conditions〈1〉–〈3〉 hold.
〈1〉 the ruleA(x1, . . . , xn) → if b then 	 is in R1 for somen�0, A ∈ Nn, b ∈ BE(P ),

	 ∈ TN(F)∪�(Xn).
〈2〉 V ⊆ Xn.
〈3〉 � ∈ TJ(F)∪�(Xn) and�̄ = 	.

By Definitions6.6 and6.9, A ◦ H is anOI+(SOI) transducer or it becomes one after
changing thebF (�, V ) tests by logically equivalent ones, as shown in Claim6.10(and, of
course, such a change does not alter the induced transformation). Our aim is to show that

(A ◦H) = 
(A) ◦ 
(H). To this end, we need the following concept.

Definition 6.15. Let k�0, 
 ∈ TN(C)∪�(Xk), andW ⊆ Xk be arbitrary. We define tree
�(
,W) ∈ TJ(C)∪�(Xk) by tree induction on
.
• If 
 ∈ Xk, then�(
,W) = 
,
• if 
 = �(
1, . . . , 
n) with � ∈ �n, n�0, then�(
,W) = �(�(
1,W), . . . ,�(
n,W)),

and
• if 
 = A(c)(
1, . . . , 
n) with A(c) ∈ Nn(C), n�0, then�(
,W) = AV (c)(�(
1,W),

. . . ,�(
n,W)), whereV = { xi | ∃s ∈ T�(W) : 
i⇒∗A s }.

We now show that�(
,W) is one of the�’s that satisfy (a) of Claim6.13, provided (b)
of that claim holds.

Claim 6.16. Letk�0, 
 ∈ TN(C)∪�(Xk), W ⊆ Xk, and� = �(
,W). Then
(i) �̄ = 
, and

(ii) for everys ∈ T�(W), if 
⇒∗A s, thenbC(�,W) = true.

Proof. Obviously �̄ = 
. We now show that (ii) holds. Assume thats ∈ T�(W) and

⇒∗A s. We proceed by tree induction on
.

Base case: Let 
 = xi ∈ Xk. Then
 = � = s. Sinces ∈ T�(W), � ∈ W . Hence
bC(�,W) = true.

Induction step: First, let 
 = �(
1, . . . , 
n), wheren�0, � ∈ �n, 
1, . . . , 
n ∈
TN(C)∪�(Xk). Then� = �(�1, . . . ,�n), where�i = �(
i ,W) for 1� i�n. Derivation

⇒∗A s implies that for every 1� i�n, there is a treesi ∈ T�(W) such that
i⇒∗A si . By
the induction hypothesisbC(�i ,W) = true for 1� i�n. HencebC(�,W) = true.

Second, let
 = A(c)(
1, . . . , 
n) for somen�0, A(c) ∈ N(C)n, and
1, . . . , 
n ∈
TN(C)∪�(Xk). Then� = AV (c)(�1, . . . ,�n), whereV = { xi | ∃p ∈ T�(W) : 
i⇒∗A p }
and�i = �(
i ,W) for 1� i�n. The definition ofV and the derivation
⇒∗A s implies that
there is a trees0 ∈ T�(V ) such thatA(c)(x1, . . . , xn)⇒∗A s0. By the induction hypothesis,
for eachxi ∈ V , bC(�i ,W) = true. HencebC(�,W) = true. �
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Claim 6.17. Let k�0, 
 ∈ TN(C)∪�(Xk), W ⊆ Xk, and � = �(
,W). For everys ∈
T�(W), if 
⇒∗A s, thenHJ (C)(�)⇒∗A◦H H(s).

Proof. Assume thats ∈ T�(W) and
⇒l
A s for somel�0. We proceed by induction on

l.
Base case: Let l = 0. Then
 = s. Thus�̄ = 
 = s. Sinces ∈ T�(W), � = s and

HJ (C)(�) = HJ (C)(s) = H(s).
Induction step: Let l > 0, and let the rule

A(x1, . . . , xn)→ if b then 	 (63)

in R1 be applied in the first step of the derivation. Then
 = 
0[xk+1← A(c)(
1, . . . , 
n)],
where
• 
0 ∈ TN(C)∪�(Xk+1),
• the variablexk+1 appears exactly once in
0,
• 
0 has no subtreep such thatp contains the variablexk+1 and the root ofp is in N(C),

and
• n�0,A(c) ∈ Nn(C), 
1, . . . , 
n ∈ TN(C)∪�(Xk).
Moreover,

m(b)(c) = true and	c is defined. (64)

Let 
 = 
0[xk+1← A(c)(
1, . . . , 
n)]⇒A

0[xk+1← 	c[
1, . . . , 
n]] ⇒l1

A

0[xk+1← s1[
j1, . . . , 
jm ]] ⇒l2

A

0[xk+1← s1[s′1, . . . , s′m]] ⇒l3

A s0[xk+1← s1[s′1, . . . , s′m]].
Here

s0[xk+1← s1[s′1, . . . , s′m]] = s. (65)

Furthermore, Conditions (A)–(E) hold.
(A) l1+ l2+ l3 = l − 1.
(B) s1 ∈ T̄�(Xm), m�0, s′1, . . . , s′m ∈ T�(W), ands0 ∈ T�(W ∪ { xk+1 }).
(C) 	c ⇒l1

A s1[xj1, . . . , xjm ], j1, . . . , jm ∈ { 1, . . . , n }.
(D) 
ji ⇒li2

A s′i for 1� i�m with
∑m

i=1 li2 = l2.

(E) 
0⇒l3
A s0.

By (65),

H(s) = H(s0)[xk+1← H(s1)[H(s′1), . . . ,H(s′m)]], (66)

whereH(s0) ∈ T�(Xk+1), H(s1) ∈ T�(Xm), andH(s′i ) ∈ T�(Xk) for 1� i�m. By the
definition of� (Definition6.15),

� = �0[xk+1← AV (c)(�1, . . . ,�n)] ∈ TJ(C)∪�(Xk), (67)

whereV = { xi | ∃p ∈ T�(W) : 
i⇒∗A p }, �(
0,W) = �0 ∈ TJ(C)∪�(Xk+1), and
�(
i ,W) = �i ∈ TJ(C)∪�(Xk) for 1� i�n. Let � = �(	c, V ). By (D) and the definition
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of V, { j1, . . . , jm } ⊂ V . Hence by (C) and Claim6.16, bC(�, V ) = true. By (A), (C),
and the induction hypothesis,HJ (C)(�)⇒∗A◦H H(s1[xj1, . . . , xjm ]). Obviously, there exists

� ∈ TJ(F)∪�(Xn) such that̄� = 	 and�c = �. Hence

bC(�c, V ) = true (68)

and

HJ (C)(�c)
∗⇒

A◦H
H(s1[xj1, . . . , xjm ]). (69)

Since the rule (63) is in R1, the rule

AV (x1, . . . , xn)→ if b and dF (�) and bF (�, V ) thenHJ (F )(�)

is in R3. By Claim 6.12and Condition (68), mOI(bF (�, V ))(c) = bC(�c, V ) = true. By
(64), m(b)(c) = true and, by Claim6.7, mOI(dF (�))(c) = true. Hence

AV (c)(x1, . . . , xn) ⇒A◦H HJ (C)(�c).

By (69),

AV (c)(x1, . . . , xn) ⇒A◦H HJ (C)(�c)
∗⇒

A◦H
H(s1[xj1, . . . , xjm ]). (70)

By (D) and the induction hypothesis,

HJ (C)(�ji
)
∗⇒

A◦H
H(s′i ) for 1� i�m. (71)

It is easy to see that�0 = �(
0,W ∪ { xk+1 }). By (B), s0 ∈ T�(W ∪ { xk+1 }). By (E) and
the induction hypothesis, for tree�0 ∈ TJ(C)∪�(Xk+1) we have

HJ (C)(�0)
∗⇒

A◦H
H(s0). (72)

Hence

HJ (C)(�) = HJ (C)(�0)[xk+1← AV (c)(HJ (C)(�1), . . . ,HJ (C)(�m))] by (67)
∗⇒

A◦H
HJ (C)(�0)[xk+1← H(s1)[HJ (C)(�j1

), . . . ,HJ (C)(�jm
)]] by (70)

∗⇒
A◦H

HJ (C)(�0)[xk+1← H(s1)[H(s′1), . . . ,H(s′m)]] by (71)

∗⇒
A◦H

H(s0)[xk+1← H(s1)[H(s′1), . . . ,H(s′m)]] by (72)

= H(s) by (66). �

Claim 6.18. For arbitrary k�0,W ⊆ Xk, 
 ∈ TN(C)∪�(Xk), andt ∈ T�(Xk), the follow-
ing two statements are equivalent.
(a) There is a tree� ∈ TJ(C)∪�(Xk) such that�̄ = 
, bC(�,W) = true, andHJ (C)(�)
⇒∗A◦H t .
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(b) There is a trees ∈ T�(W) such that
⇒∗A s andH(s) = t .

Proof. Let k�0, W ⊆ Xk, 
 ∈ TN(C)∪�(Xk), andt ∈ T�(Xk) be arbitrary. By Claims
6.16and6.17, Condition (b) implies Condition (a). We now show that Condition (a) implies
Condition (b). Let us assume that (a) holds and that

HJ (C)(�)⇒l
A◦H t (73)

for somel�0. We show (b) by induction onl.
Base case: Let l = 0. Then

HJ (C)(�) = t. (74)

By Claim 6.13, bC(�,W) = true implies that

there is a trees ∈ T�(W) such that̄�
∗⇒
A

s. (75)

Using (74) and (75), we now show by tree induction on� thatH(s) = t .
Assume that� = xi with 1� i�k. Then�̄ = xi = s. HenceH(s) = H(�) = t .
Assume that� = �(�1, . . . ,�n) for somen�0, � ∈ J (C)n ∪ �n, �1, . . . ,�n ∈

TJ(C)∪�(Xk). As HJ (C)(�) = t ∈ T�(Xk), � = root(�) �∈ J (C). Hence� = root(�) ∈ �.
Thus

� = �(�1, . . . ,�n) for somen�0, � ∈ �n, �1, . . . ,�n ∈ TJ(C)∪�(Xk). (76)

By (74), t = t0[t1, . . . , tn], wheret0 = H(�(x1, . . . , xn)), and

ti = HJ (C)(�i ) for 1� i�n. (77)

By (75) and (76), s = �(s1, . . . , sn) for some treess1, . . . , sn ∈ T�(W) such that

�̄i

∗⇒
A

si for 1� i�n. (78)

Let 1� i�n, and assume thatxi appears in the treet0. Thenti ∈ T�(Xk). Hence by (77),
(78), and the induction hypothesis,H(si) = ti . Thus

H(s) = t0[H(s1), . . . ,H(sn)] = t0[t1, . . . , tn] = t.

Induction step: Let l > 0. In the first step of derivation (73) the rule (62) is applied to
HJ (C)(�). Hence Conditions〈1〉–〈3〉 hold, andHJ (C)(�) is of the following form:

HJ (C)(�) = �0[xk+1← AV (c)(�1, . . . , �n)], (79)

where
• HJ (C)(�), �1, . . . , �n ∈ TJ(C)∪�(Xk), n�0,
• �0 ∈ TJ(C)∪�(Xk+1), the variablexk+1 appears exactly once in�0,
• �0 has no subtreep such thatp contains the variablexk+1 and the root ofp is in J (C),

and
• c ∈ C.
Moreover, by Claim6.7,
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〈4〉 m(b)(c) = true, mOI(bF (�, V ))(c) = true, and�c is defined.
Furthermore, derivation (73) looks as follows:

HJ (C)(�) = �0[xk+1← AV (c)(�1, . . . , �n)]⇒A◦H
�0[xk+1← (HJ (F )(�))c[�1, . . . , �n]] ⇒l−1

A◦H t .
SinceH is linear, there are trees�0 ∈ TJ(C)∪�(Xk+1), �1, . . . ,�n ∈ TJ(C)∪�(Xk) such

that Conditions〈5〉–〈8〉 hold.
〈5〉 � = �0[xk+1← AV (c)(�1, . . . ,�n)],
〈6〉 HJ (C)(�i ) = �i for 0� i�n,
〈7〉 the variablexk+1 appears exactly once in�0.
〈8〉 �0 has no subtreep such thatp contains the variablexk+1 and the root ofp is in J (C).

By 〈6〉 and (79), we have

HJ (C)(�) = HJ (C)(�0)[xk+1← AV (c)(HJ (C)(�1), . . . ,HJ (C)(�n))]. (80)

The first step of (73) is of the form
HJ (C)(�) = HJ (C)(�0)[xk+1← AV (c)(HJ (C)(�1), . . . ,HJ (C)(�n))]⇒A◦H HJ (C)(�0)[xk+1← (HJ (F )(�))c[HJ (C)(�1), . . . ,HJ (C)(�n)]]

Derivation
HJ (C)(�0)[xk+1← (HJ (F )(�))c[HJ (C)(�1), . . . ,HJ (C)(�n)]] ⇒l−1

A◦H t

can be split into three parts:
〈9〉 HJ (C)(�0)[xk+1← (HJ (F )(�))c[HJ (C)(�1), . . . ,HJ (C)(�n)]]
⇒l1

A◦H HJ (C)(�0)[xk+1← t1[HJ (C)(�1), . . . ,HJ (C)(�n)]]
⇒l2

A◦H HJ (C)(�0)[xk+1← t2]
⇒l3

A◦H t0[xk+1← t2] = t ,
wherel1+ l2+ l3 = l − 1, t1 ∈ T�(Xn), t2 ∈ T�(Xk), t0 ∈ T�(Xk+1).

Here
〈10〉 (HJ (F )(�))c ⇒l1

A◦H t1.

〈11〉 t1[HJ (C)(�1), . . . ,HJ (C)(�n)] ⇒l2
A◦H t2.

〈12〉 HJ (C)(�0)⇒l3
A◦H t0.

By (4),�c is defined. By Claim6.12and〈4〉, bC(�c, V ) = true. Furthermore,(HJ (F )(�))c
= HJ (C)(�c) and�̄c = 	c. Hence by〈10〉 and by the induction hypothesis, there is a tree
s1 ∈ T�(V ) such that

	c
∗⇒
A

s1 (81)

and

H(s1) = t1. (82)

Recall that Condition (a) states thatbC(�,W) = true. By 〈5〉 and Claim6.14, we have

bC(�0,W ∪ { xk+1 }) = true (83)
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and

bC(A
V (c)(�1, . . . ,�n),W) = true. (84)

By 〈12〉, (83), and the induction hypothesis, there is a trees0 ∈ T�(W ∪ { xk+1 }) such that

�̄0
∗⇒
A

s0, andH(s0) = t0. (85)

By (84) and Definition6.11, for eachxi ∈ V , bC(�i ,W) = true. Recall thats1 ∈ T�(V ).
Using Definition6.11one can show by tree induction ons1 thatbC(s1[�1, . . . ,�n],W) =
true. Hence by (82), 〈11〉, and the induction hypothesis there is a trees2 ∈ T�(W) such
that

s1[�̄1, . . . , �̄n] ∗⇒A s2 andH(s2) = t2. (86)

Let

s = s0[xk+1← s2]. (87)

Recall that�̄ = 
. By 〈5〉, 
 = �̄0[xk+1 ← A(c)(�̄1, . . . , �̄n)]. By 〈1〉 the ruleA(x1, . . . ,

xn)→ if b then 	 is in R1. By 〈4〉,

 = �̄0[xk+1← A(c)(�̄1, . . . , �̄n)]
⇒A �̄0[xk+1← 	c[�̄1, . . . , �̄n]]
⇒∗A �̄0[xk+1← s1[�̄1, . . . , �̄n]] by (81)
⇒∗A �̄0[xk+1← s2] by (86) (By 〈7〉 and〈8〉 these derivations areOI.)
⇒∗A s0[xk+1← s2] by (85)
= s by (87).
By (85)–(87), and〈9〉, H(s) = H(s0)[xk+1← H(s2)] = t0[xk+1← t2] = t . In this way

we have shown that Condition (a) implies Condition (b).�

We now show that


(A ◦H) = 
(A) ◦ 
(H). (88)

Consider Claim6.18with k = 0, W = ∅, 
 = Ain(e(u)) for someu ∈ I . Condition (a)
is true if and only if(u, t) ∈ 
(A ◦ H) andu ∈ dom(
(A)). Condition (b) is true if and
only if (u, t) ∈ 
(A) ◦ 
(H). Thus, it remains to show that if(u, t) ∈ 
(A ◦ H), then
u ∈ dom(
(A)), or equivalently, ifu �∈ dom(
(A)), then(u, t) �∈ 
(A ◦H).

Assume thatu �∈ dom(
(A)). Any rule ofA ◦H which can be applied toA∅in(e(u)) is of
the form

A∅in → if b and dF (�) and bF (�,∅) thenHJ (F )(�), (89)

where the ruleAin → if b then �̄ is in R1. Sinceu �∈ dom(
(A)), m(b)(e(u)) = false
or �̄e(u) is not defined or̄�e(u) does not generate a terminal tree. In the second case, by
Claim6.7, dF (�)(e(u)) = false. In the third case, by Claim6.13, bC(�e(u),∅) = false, and
hence, by Claim6.12,mOI(bF (�,∅))(e(u)) = false. Hence, in all three cases,A◦H cannot
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apply rule (89) to the configurationA∅in(e(u)). Hence no rule ofA ◦H can be applied to
the configurationA∅in(e(u)). Thus(u, t) �∈ 
(A ◦H).

The theorem simply follows from Eq. (88). �

Theorem 6.19.For every storage type S, OI+(SOI) ⊆ OI(S).

Proof. LetS = (C, P, F,m, I, E)be an arbitrary storage type. By Corollary3.8, it suffices
to prove thatOI+(SCF) ⊆ OI(S). Let A = (N, e,�, Ain, R) be anOI+(SCF) transducer.
By Theorem3.7, we may assume thatA is anOI1+(SCF) transducer. LetLi , 1� i�m,
m�0, be allCF(S) transducers appearing as look-ahead test in the rules ofA. We define
OI(S) transducerB such that
(B) = 
(A). We defineB = (N ′, e,�, Ain, R

′) as follows:
• We put all elements ofN in N ′. Furthermore, we put each nonterminalA of Li , in N ′1 for

1� i�m.
• Let

A(x1, . . . , xn)→ if b and 〈Li〉 then 	 (90)

be a rule inR. Let Li = (Ni, e,�i , Di
in, R

i). We may assume that the terminal alphabet
�i of Li is empty. We may also assume that there is exactly one rule ofLi with Di

in
appearing in the left-hand side, cf. Lemma3.10. Moreover, we may assume that this rule
has the formDi

in → if true then d1 · · · dl with l�0,dk ∈ Ni(F ) for 1�k� l. Then we
put the rule

A(x1, . . . , xn)→ if b then d1(· · · dl(	) · · ·) (91)

in R′.
For each 1� i�m, for each ruleB → if b then d1 · · · dj (j �0, d1, . . . , dj ∈ Ni(F ))

of Li , we put the rule

B(x1)→ if b then d1(· · · dj (x1) · · ·) (92)

in R′.
B mimicsA in the following way. LetA apply rule (90). FirstB applies rule (91). Second

B checks the look-ahead test〈Li〉 by rewriting the subtreed1(· · · dl(
)) to 
 applying rules
(92). A formal proof is left to the reader.

We note that the same construction also works in theIO case but thenB checks the
look-ahead test much later. In this way we get an alternative proof for Theorem5.4. �

From Theorems6.19and6.3(and the obvious facts thatOI(S) ⊆ OI+(SOI) andOI(S) ⊆
OI(S) ◦ LH ) we immediately obtain the following result.

Corollary 6.20. For every storage type S, OI+(SOI) = OI(S) = OI(S) ◦ LH .
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7. Conclusion

We generalized Engelfriet’s decomposition resultT R = T ◦ LH by showing that for
each storage typeS, RT+(SRT) = RT (S) ◦ LH .

We showed that for every storage typeS, IO(S) is closed under positive look-ahead, and
is closed under composition with tree homomorphisms. That is, for every storage typeS,
IO+(SIO) = IO(S) = IO(S)◦LH = IO(S)◦H . We also showed that for every storage type
S, OI(S) is closed under positive look-ahead, and is closed under composition with linear
tree homomorphisms. That is, for every storage typeS, OI+(SOI) = OI(S) = OI(S)◦LH .

Consider the proof of Theorem6.3. In the light of Definition6.15 and Claim6.16,
it is intuitively clear that it is possible to give an alternative definition ofA ◦ H such
that determinism is preserved: ifA is a DOI(S) transducer, thenA ◦ H is a DOI+(SOI)

transducer. Hence we conjecture that the deterministic version of Theorem6.3 holds as
well.

Conjecture 7.1. For every storage type S, DOI+(SOI) ⊇ DOI(S) ◦ LH .

We raise the following problem. For a given storage typeS, what is the inclusion diagram
of the transformation classesK+(SM) andK(SM) forK ∈ {RT, IO,OI,DRT,DIO,DOI }
andM ∈ MOD∪ DMOD?
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