provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

scuencE@DmEcT° Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 329 (2004) 115-158
www.elsevier.com/locate/tcs

Storage-to-tree transducers with look-ahéad
Tamas Hornury Sandor Vagvolgyi *

@Mathematics and Statistics Department, Budapest Business School, Zalaegerszeg, Gasparich utca 18, H-8900
Hungary
bDepartment of Foundations of Computer Science, University of Szeged, Szeged, Arpad tér 2, H-6720 Hungary

Received 2 November 2002; received in revised form 2 July 2004; accepted 19 August 2004
Communicated by G. Rozenberg

Abstract

We generalize Engelfriet's decomposition result stating that the class of transformations induced
by top—down tree transducers with regular look-ahead is equal to the composition of the class of
top—down tree transformations and the class of linear tree homomorphisms. Replacing the input trees
with an arbitrary storage type, the top—down tree transducers are turned into regular storage-to-tree
transducers. We show that the class of transformations induced by regular storage-to-tree transducers
with positive look-ahead is equal to the composition of the class of transformations induced by regular
storage-to-tree transducers with the class of linear tree homomorphisms. We also show that the classes
of transformations induced by bai® andOlI context-free storage-to-tree transducers are closed under
positive look-ahead, and are closed under composition with linear tree homomorphisms.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Tree grammar; Storage type; Transducer; Look-ahead

1. Introduction

The notion of look-ahead is an efficient tool in tree language theory, see
[1,4,5,11-13,19,20]Top—down tree transducers with regular look-ahead are capable of

* This research was supported by the Széchenyi Istvan Scholarship of the Hungarian Ministry of Education and
the grant OTKA T 030084 of the Research Foundation of Hungary.
* Corresponding author. Tel.: +36-62-546-192; fax: +36-62-546-397.
E-mail addresseshornung.tamas@pszfz.bgf.liti Hornung) vagvolgy@inf.u-szeged.hi$. VVagvolgyi).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.08.007


https://core.ac.uk/display/82129086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:hornung.tamas@pszfz.bgf.hu
mailto:vagvolgy@inf.u-szeged.hu

116 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

inspecting subtrees before deleting or translating them. EnggHtishowed the decom-
position result

TR =ToLH, (1)

whereT R, T, andLH denote the classes of transformations induced by top—down tree trans-
ducers with regular look-ahead, top—down tree transducers, and linear tree homomorphisms,
respectively (cf. Corollary 2.13 if#]).

A top—down tree transducer can be considered as a nondeterministic recursive program
that acts on trees and generates trees. If the recursive functions in this program are provided
with parameters, the macro tree transducef7fis obtained. We can describe such a
program as a grammar which operates on a storage type. Thus, we obtain the concepts of
regular,lO context-free an®I context-free storage-to-tree transducers which provide us
with a general and uniform framework to transducers[Se.

In a regular treeRT) grammar the nonterminals have rank 0, ge. Context-free tree
(CFT) grammars are obtained froRTT grammars by allowing nonterminals of rank greater
than 0.CFTgrammars can be considered with unrestricted derivation and with two restricted
modes of derivation: inside—ouli) and outside—in@I). A CFT grammar depending on
the restricted mode of derivation is said to be either an inside4+O)tcontext-free tree
grammar or an outside—i©() context-free tree grammar, sgg.

The concept of a storage type was introducefbjB]. Roughly speaking, a storage type
Sconsists of a set of input elements and a set of configurations. The input elements are
encoded as configurations. The configurations can be tested by predic@&esdfcan
be transformed by instructions &f Let MOD be the se{ RT, 10, Ol, CF } of modifiers,
whereCF denotes the type of context-free (string) grammars. Let modffieange over
MOD. A K Sto-tree transducer, ok (S) transducer for short, is i grammar of which
every rule is provided with a test, and every nonterminal of the right-hand side of the rule
has an instruction. Considering a derivation of #1€S) transducer, each occurrence of a
nonterminalA is associated with a configurationdifferent occurrences may be associated
with different configurations. A rule of th& (S) transducer can be applied to the tuple
A(c) as arule of & grammar can be applied to the nontermiAaprovided that the test
specified by the rule holds fa;, and the instructions also specified by the rule are defined
on c. The new configurations for the nonterminals of the right-hand side of the rule are
obtained by transforming according to the instructions of the respective nonterminals.
The initial nonterminal of the grammar is associated with a configuration that is an encoded
input element. Thus, th& (S) transducer induces a transformation from the input set to the
set of terminal trees or strings. K or Sis not specified, we speak about a storage-to-tree
transducer. Note that tHeT(S) transducer can be viewed as either i®€S) or theOl (S)
transducer in which only rank 0 is allowed for nonterminals.

We also study deterministic transducdpx (S) transducers. In the sequBIMOD stands
for the sef{ DRT, DIO, DOI, DCF } of deterministic modifiers. For modifi&f € MOD U
DMOD, the class of transformations induced Ky.S) transducers is denoted k/(S).

For exampleDIO(S) is the class of tree transformations induced by determiniéxs)
transducers.

For particular storage typ&s CF(S) transducers can be associated with indexed gram-
mars, attribute grammars, generalized syntax directed translation schemes, dt]., see



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 117

Top—down tree transducers &&(S) transducers for a particular storage typd&he tree
storage type, denoted YR is a storage type in which the input elements and the con-
figurations are trees, the root of trees can be tested and the trees can be transformed into
their immediate subtrees. Top—down tree transformations are the saREER) trans-
formations, and deterministic top—down tree transformations are the saDBREIR)
transformations, that is,

T =RT(TR) and DT = DRT(TR), )

see Corollary 3.20 if8].

The concept of a storage tyfavith look-ahead, denoted k8¢, was introduced if6,8]
as a generalization of regular look-ahead. Storage $igpeis obtained fronS by adding
special tests, so-called look-ahead tests, to the set of predic&eBase look-ahead tests
are written in the form{£), whereL is aCF(S) transducer. Look-ahead td4l) is true on a
configuratiorcifand only if theCF(S) transducerL can derive aterminal string frory, (¢),
whereAjn, is the initial nonterminal of.. For each modifieM € MODUDMOD, we define
the storage typ& with M look-ahead, denoted b§j,, from Scr by replacing theCF(S)
transducers in the look-ahead tests wiliS) transducers. Recall that the class of domains
of top—down tree transformations is exactly the class of recognizable tree languages, see
[14]. The class of recognizable tree languages is closed under the Boolean operations. Since
the test of a rule is a Boolean expression of predicates, one can show that

TR = RT(TRz1), 3)

see the firstline of p. 335 ii8]. Hence by 2), Engelfriet's decomposition theorer) takes
the form

RT(TRt) = RT(TR o LH. ()

We show that th&T, 10, Ol, andCF look-ahead tests are all equivalent, and thatxRé4,
DIO, andDCF look-ahead tests are pairwise equivalent as well. On the basis of this result
we show that for each storage typend for every modifiek in MODUDMOD, K (SrT) =
K (Si0) = K(Sor) = K(Scr) andK (Sprt) = K (Spio) = K (Spcr) € K (Spo)-

We show that for each modifi& € { RT, 10, Ol } and storage typ§,

K(Sk) 2 K(S) o LH. (5)

This result is a generalization of the inclusiBi(TRrT) 2 RT(TR) o LH, see §).

The reverse of inclusiorbf does not hold for the notion of look-ahead as defined in the
literature. Hence the generalization of Engelfriet's restjitdoes not hold. We, therefore,
introduce the notion of positive look-ahead. In the literature, the test of a rule can contain
the negation of a look-ahead test. This is nice and convenient for the particular storage
types considered in, e.d5,8], but it is not acceptable for other storage types. In fact, if
one considers the tape of a Turing machine as a storage type, then a look-ahead test can
test membership in an arbitrary recursively enumerable set. Allowing negation, this means
that a regular storage-to-tree transducer with look-ahead on this storage type can induce
functions that are not computable (such as the characteristic function of a recursively enu-
merable set that is not recursive). This is undesirable and also means that the generalization



118 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

of Engelfriet’s result cannot hold for this notion of look-ahead because any composition
of a regular storage-to-tree transducer with a linear tree homomorphism clearly induces
computable functions only. For this reason, we forbid the negation of look-ahead tests and
call it positive look-ahead. Obviously, storage-to-tree transducers with positive look-ahead
induce computable functions only, and so positive look-ahead is, in general, less powerful
than look-ahead. Positive look-ahead is still a very natural notion of look-ahead. In partic-
ular, the two notions of look-ahead are equivalent for top—down tree transducers (because
the recognizable tree languages are closed under complement), and so Engelfriet's result
can as well be viewed as a result on positive look-ahead.

Let K € MOD andM € MOD. Let Sbe a storage type. K Sto-tree transducer with
positive M look-ahead K+ (Sy,) transducer for short), is & (Sy,) transducer, where the
test of each rule is of the form

band (£1) and ---and (L,).

Herebis a Boolean expression over the predicate symbdisiof 0, and for each i <n,
(L;) is alook-ahead test of the storage tyfag. Note that if negation of anyl look-ahead
test does not occur in any test ofkaSy,) transducer, then that is&™(Sy,) transducer,
because it can easily be shown that one can elimioateom tests of rules. Now, it is
immediate from the definition of X that7® € RT+(TRr1). By (3), RT(TRrT) = TR =
RT*(TRrT). By (4), Engelfriet's decomposition theorer) (takes the form

RTT(TRrT) = RT(TR o LH. (6)

We generalized) by showing the following. For every storage ty@®RT+ (Srt) = RT(S)o
LH.

We show that for every storage tyBdO(S) is closed under positive look-ahead, is closed
under composition with linear tree homomorphisms, and is even closed under composition
with tree homomorphisms. That is, for every storage " (Si0) = 10(S) = 10(S) o
LH = 10(S) o H.We also show that for every storage ty©I (S) is closed under positive
look-ahead, and is closed under composition with linear tree homomorphisms. That is, for
every storage typ8, Ol (So)) = OI(S) = OI(S) o LH.

For the tree storage tye= TR(discussed above), th®(S) andOlI (S) transducers are
the same as thk® andOI macro tree transducers ] (see[8]). In [7] the classes dO
andOIl macro tree transformations are denotedb¥io andM T, respectively. Thus

IO(TR) = MTio and OI(TR) = MTo

and similarly for the deterministic case. The above results on positive look-ahead general-
ize the fact thatM T\o and M T, are closed under regular look-ahg&{l For the trivial
storage typeS = So, thelO(Sp) andOlI (Sp) transducers are essentially the same as®he
andOl context-free tree grammars (cf. Lemma 3.9&}). The above results on closure
under composition with (linear) tree homomorphisms generalize the fact thiD thed

Ol context-free tree languages are closed under tree homomorpl@kieasd linear tree
homomorphism§l7], respectively. They are new for macro tree transducers.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 119
2. Preliminaries

Inthis section, we present a review of the notions, notations, and results used in the paper.

2.1. General notations

Let n>0 and for each £i <n, letb; € {true, false}. We define the Boolean value
A1, ..., by) as follows. Fom >2, let A(b1, ..., b,) = b1 and --- and b,. Forn = 1,
let A(b1) = b1. Finally, let A( ) = true. Analogous notation will be used for Boolean
expressions.

For two setsA and B, a binary relationp from A into B is any subset oA x B. The
domaindom(p) of p is the sef u | there is a € B such thaiu, v) € p }. For two binary
relationsp; and p,, the compositionp; o p, of p; andp, is the set{ (u, w) | (u,v) €
pand(v, w) € p, forsomev }. Let A = B. Thenp is a binary relation ovefA. For each
k >1, thekth power ofp is denoted by*. Thereflexive, transitive closurand thetransitive
closureof p are denoted by* andp™, respectively. The domaifvm (C) of a relation class
C, and the compositioty o V of relation classeb andV are defined in the natural way.

A partial function ffrom A into B, denoted byf : A — B, is a subset oA x B such
that for eachu € A andb,c € B, if (a,b) € f and(a,c) € f, thenb = c. For each
a € A, we say that partial functiohis defined oma if a € dom(f) . For(a,b) € f, we
write b = f(a), as usual. Afunction or amapping ffrom A into B is a partial function
f : A — Bsuchthadom(f) = A. For asetA, letids = {(a,a) | a € A} denote the
identity functiononA.

2.2. Strings and trees

Let 2 be a set. As usual™* is the free monoid generated Byunder the operation of
concatenation, with the empty string,as identity. Théengthof a stringw € 2* is denoted
by |w|. For the rest of the paper, I&tbe an infinite set. We consid&ras a symbol base.
An alphabetX is a finite subset oF.

A ranked sef is a (possibly infinite) set in which every symbol has a unicurk (arity)
in the set of nonnegative integers. For ary 0, we denote by, the set of symbols i¥
which have rank. The rank of a symbol is sometimes indicated as a superscript, that is,
@ means that is of rank 2. For the rest of the pap&,denotes an infinite ranked set
such that, for every >0, Q, is infinite. We considef?, too, as a symbol base.ranked
alphabetX is a finite subset of2.

Definition 2.1. Let Z andC be arbitrary sets. TheHA(C) is the sef{ z(¢) | z € Z andc €

C }. Herez(c) is a string of length four over the set containingC, and the left and right
parentheses. We consider an eleméant of Z(C) as a symbol rather than a string of length
four. If Zis a ranked set, then the symh@t) has the same rank ahas.

For a ranked sel and a set of variableéwith Y N 2 = ¢, the set of treegor termg
overX indexed by Ydenoted byI's(Y), is the smallest saf satisfying the following two



120 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

conditions:
(i) Zouy CU,
(i) o(t1,...,t,) € Uwheneven > 0,6 € X, andty, ..., t, € U.

Theset of trees ovek is T (), and we simply writel's for Tx(4). A tree languages any
subset off’s for some ranked alphabg2t

Foratree € Tx(Y),root(¢) and the setub(r) of subtree®ftis defined by tree induction.
(i) If r € 2oUY, thenroot(t) = ¢t andsub(r) = {t}.

@iy If t = a(t1,...,1,) With ¢ € X,,, n > 0, thenroot(r) = o andsub(t) = {t} U
(Ui sub(t)).

We specify a countable s&t = { x1, x2, ...} of variables and seX,, = {x1,...,x,}
for everyn >0. We distinguish a subs@k (X,,) of Tx(X,) as follows: a tree € Tx(X,)
is in Ts(X,) if and only if each variable irX,, appears exactly once in For example,
if X = 2ZgU 2o with X9 = {a} and 2> = {o}, theno(x1, 6(a, x1)) € Tx(X1) but
o(x1, 0(a, x1)) ¢ Ts(X1). On the other hand;(xz, o(a, x1)) € Tx(X>).

The notion oftree substitutions defined as follows. Let >0,r € Tx(X,) andhq, ...,
h, € Tx(X).We denote by[h1, ..., h,]the tree which is obtained frotiy replacing each
occurrence of; in t by h; for every 1<i <n. Furthermore, let £i <n andh € Tx(X)
be arbitrary. We denote byx; < ] the tree which is obtained frotrby replacing each
occurrence ofk; in t by h.

Let > and4 be two ranked alphabets. Then any subs@tof 7, is atree transformation
from Ts to Ty4.

2.3. Deterministic bottom—up tree automata

A deterministic bottom-up tree automatsra tupleA = (Q, X, Qy, 6), where

() Qisthe state set,

(i) 2 is aranked alphabe, N Q =0,
(i) Oy is the set of final states, and
(iv) 6 = (04)gex is a family of transition functions, : 9" — Q, wheres € 2,, and

m=0.
Each treer € Tx(X,), n>0, determines a mappirug4 : Q" — Q as follows. Let
q1, ..., qn € Q be arbitrary.
o If 1 = x;, where 1<i <n, thentA(g1, ..., g,) = .
o Ift =0a(r1,...,tn), Wheres € Z,,,m>0,11, ..., 6, € Tx(X,), thentA (g1, ..., gn) =
So(t{4q1. - qn). - 170G - qw)).

We will need the fact that, fap € Ts(X,,), 11, ..., € Tx andqa, ..., g, € O,

(tO[tl, L} tm])A(‘]lv MR Qn) = t64(t]i4(q17 R} C]n)y L} tnf‘(qlv L} Qn)) (7)
Obviously, for each tree € Ty, t is an element of). Thetree language recognized
by AisL(A) ={r e Ts | t" € 0 }. A tree language isecognizabléf it is recognized
by a deterministic bottom—up tree automaton. The class of recognizable tree languages is
denoted byRECOG
2.4, Grammars

A context-freCF) grammar Gis a tuple(N, 4, Ai,, R), where
(i) Nis the nonterminal alphabet,
(i) 4 isthe terminal alphabedd N N = ¢,



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 121

(iii) Ajq is the initial nonterminal, and
(iv) Risthefinite setofrules. Each rule is of the form— ywith A € N andy € (NUA)*.
The derivation relation o6, denoted by=, is a binary relation odN U A)*, defined
as follows. For all words., f € (N U A4)*, a = fif and only if
(i) thereisaruleA — yin R, and
(i) o= o1Auz, f = a1yop for someus, ap € (N U A)*.
Thelanguage generatebdy Gis L(G) = {w € 4™ | Ap=( w}.
A context-free tre€CFT) grammar Gis a tuple(N, 4, Ain, R), where
(i) Nis the nonterminal ranked alphabet,
(ii) 4 is the terminal ranked alphabet,N N = ¢,
(i) Ajn is the initial nonterminal of rank 0, and
(iv) Ris the finite set of rules. Each rule is of the forfrix1, ..., x,) — 7 with n>0,
A € N,,andy € Tyus(Xy).
If N = Np, thenG s called aregular tree(RT) grammat
We define three binary relations: therestrictedtheinside—ouandoutside—in derivation
relation of G. The unrestricted derivation relation &, denoted by=¢ ¢, is a binary
relation onTyy4(X) defined as follows. For all trees f € Tyus(X), a=¢.v f if and
only if
() thereisaruleA(xy, ..., x,) — yin R, and
(i) o = a1[x; < A@01,...,0)], f = a1[x; < y[d1,..., 1], Whereoy € Tyus(X),
i >1, the variablex; appears exactly once in, andds, ..., , € Tyus(X).
The definition of the inside—out derivation relation@fdenoted by=¢ 10, is the same as
that of= ¢y, except thaby, ..., J, are required to be terminal trees, thadis..., J, €
T,. The definition of outside—in derivation relation@®f denoted by= ¢ o, is the same as
that of= ¢ ¢/, except that variable; does not occur in a subtreemfwith nonterminal root,
i.e.,x; does not occur in a subtree of of the formB(f4, ..., f;), wherek>1, B € N,
andﬁl, ey ﬂk € Tyua(X).
LetM € {U, 10O, Ol }. Thetree language M-generatda G is

E
Ly (G)={teTy| Ain = t}.
m(G) ={ Al mG’M}

For anRT grammar, the above three derivation relations obviously coincide. The class
of tree languages generated Ry grammars is equal tRECOG see[14]. Fischer[10],
Engelfriet and Schmidi6] showed that for anCFT grammarG, Lo (G) = Ly (G) and
Lio(G) C Loi(G). Whenever we want to consideiCET grammarG with Ol-derivation,
we say thaG is anOl (context-free trepgrammarand we denote>; o) by = . Similarly,
when we want to consider @FT grammarG with 10-derivation, we say thas is anlO
(context-free treegrammarand we denotes 10 by =¢.

In the sequel, we shall also consider, f&r € {RT,10,0l}, a generalized K
grammar Gin which both the set of nonterminals and the set of rules can be finite or
infinite. We extend the definitions of the relationss. v, =¢.10, and =01 and of
the definitions of the tree languagés (G), Lio(G), and Lo (G) for this case in the
natural way.

Let MOD be the sef RT, IO, Ol, CF } of modifiers.



122 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158
2.5. Storage types

We adopt the concept of a storage type fii{@r8]. A storage type & atuple(C, P, F, m,
I, E) whereC is the nonempty set of configuratioi3js the set of predicate symbols,
is the set of instruction symbol®2 N F = ¢, | is a set called the input set & and
E is a set of partial functions : I — C, everye € E is called an input encoding of
S Furthermorem is the meaning function that associates with everg P a mapping
m(p) : C — {true, false}, and with everyf € F a partial functionm(f) : C — C.
BE(P) denotes the set of all Boolean expressions &vevith the usual Boolean operators
and, or, not, true, andfalse Forb € BE(P), m(b) : C — {true, false} is defined in the
obvious way. The elements BE(P) are also calletests We say thabq, b, € BE(P) are
equivalent ifm(b1) = m(by).

We also assume that, P, F, I are subsets df introduced as a base set in the prelimi-
naries.

Thetrivial storage typeSo = (C, P, F,m, I, E) is defined byC = { ¢}, wherecis an
arbitrary objectP =@, F = {id }, andm(id) = id¢c, I = {c}, andE = {idc }.

2.6. Transducers

LetS = (C, P, F,m, I, E) be a storage type. Bontext-free S transduceor CF(S)
transducer, is atupld = (N, e, 4, Ain, R), where
(i) Nis the nonterminal alphabet,
(ii) e € E isthe encoding,
(iif) A4 is the terminal alphabet (disjoint witk),
(iv) Ain € N is the initial nonterminal, and
(v) Ris the finite set of rules. Every rule is of the form

A — if btheny

with A € N, b € BE(P), andy € (N(F) U A)*. Here we callA the left-hand side of
the rule andb the test of the rule.
Recall that, according to Definitiah 1,

N(F)={A(f)|Ae Nandf € F}
and
N(C)={A() | Ae Nandce C}.

In what follows, we shall consider an elementfF) U N(C) as a symbol rather than a
string of length four.

The derivation relation ofl, denoted by= 4, is a binary relation on the sev (C) U A)*,
defined as follows. Foralh € N, c € C,and&q, & € (N(C)U A)*,if A — if btheny
is in R, m(b)(c) = true, andm(f)(c) is defined for allf € F occurring iny, then
E1A(c)ér = 4 E1Y &> wherey' is obtained fromy by substitutingB(m (f)(c)) € N(C) for
every occurrence aB(f) € N(F)forall Be Nandf € F.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 123

Thetransformation inducedly A is t(A) = { (u, v) € I x A™ | Ain(e(u)) =% v}. Note
thatt(A) € dom(e) x A*. As usual, twoCF(S) transducersd and B are equivalentif
7(A) = 1(B).

Let K range over the set of modifie{dO, OI, RT}. A K(S) transducerA is a tuple
(N, e, 4, Ain, R), where

() Nisthe nonterminal ranked alphabetkif= RT, then each element dfis of rank 0,
(i) e € E isthe encoding,
(iii) 4 is the terminal ranked alphabet (disjoint wikf,
(iv) Ain € N is the initial nonterminal of rank 0, and
(v) Risthe finite set of rules. Every rule is of the form

A(x1,...,x,) — if btheny

withn>0,A € N,, b € BE(P), andy € Ty us(X,). Again, we callAthe left-hand
side of the rule and the test of the rule.
Recall that in Definitior2.1we introduced the sef$(F) andN (C). For anyA € N and
f € Fandc € C, the symbolsA(f) andA(c) have the same rank &shas.
To define the derivation relation of, we introduce the following notation.

Definition 2.2. Lety € Ty (ryua(X), andc € C be arbitrary. If for every instructioff € F
occurring iny, ¢ € dom(m(f)), then we defing_. from y by substitutingB(m(f)(c)) €
N(C) for every occurrence aB(f) € N(F) forall B € N andf € F. Otherwisey, is
undefined.

The derivation relation ofl, denoted by= 4, is a binary relation offy ¢y 4 (X), defined
as follows. We associate with a generalize® grammaiG (A) = (N(C), 4, Ain(co), R¢),
wherecg is any element o€, i.e.,cq is irrelevant. We define the sgt as follows. For each
¢ € C, we put the rule

A(C) (X1, -y Xn) = Y
in R¢ ifthereis arule
A(x1,...,x,) — if btheny

in Rsuch that

(i) m(b)(c) = true, and

(i) for every instructionf € F occurring iny, ¢ € dom(m(f)).

The derivation relation of4, denoted by=> 4 is defined to be= ¢ 4). Thetransformation
inducedby Aist(A) = {(u, v) € I x Ty | Ain(e(u)) =7 v}. Note thatr(A) € dom(e) x
Ty.

We call anlO(S) transducer ahO context-freeSto-tree transducer. We call @i (S)
transducer a®l context-freeSto-tree transducer. We call &iT(S) transducer a regular
Sto-tree transducer.

As usual, twoK (S) transducersd and5 areequivalentf 7(A) = ©(B).

Definition 2.3. Let K € MOD, and letS be an arbitrary storage type. K(S) trans-
ducerA is deterministidf, for every configuratior: € C of Sand any two different rules



124 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

A(x1,...,x,) — if bythenyandA(xy, ..., x,) — if by then d of A, m(b1)(c) = false
orm(by)(c) = false A deterministick (S) transducer is referred to ageK (S) transducer.

LetDMOD be the sef DRT, DIO, DOI, DCF } of modifiers. Le range over the set of
modifiersMODUDMOD, and letSbe an arbitrary storage type. The class of transformations
induced byK (S) transducers is denoted I&/(S). We note that Engelfriet and Vogl§8]
denoted the clagsl(S) by CFT1(S).

Note that for every storage ty® RT(S) C 10(S) andRT(S) C OI(S). In fact, each
RT(S) transducer is also d®(S) transducer and a@l (S) transducer, inducing the same
transformation.

Thetree storage typ€TRfor short) is(C, P, F,m, I, E), where

C =Tqy,

P={root=0]0e Q},

F={se}|i>1},

for everyc = w(t1, ..., 1) € To, With w € Q, k>0, andtq, ..., t € To, m(root =
0)(c) =true ifand only if 6 = w, andm(sel)(c) = 1; if 1 <i <k, otherwisen(sel)(c)
is undefined,

I =Tgp, and

e E ={idr, | 2is aranked alphabét

Note that, for a ranked alphabgt idr, is a partial functionl — C, becauses C Q.
The purpose of the encodirigr, of a K(TR) transducetd (K € MOD U DMOD) is to
specify the ranked input alphahEtof A.

Let K € MODUDMOD and letA = (N, idry, 4, Ain, R) be aK (TR) transducer. We
say thatA is in normal formif each rule ofA has the form

A(x1,...,x,) — if (root = o) theny,

wheres € 2y, k>0, and for any instructiosel occurring iny, i <k holds. Engelfriet
and Vogler showed the following. For ead(TR) transducerA, there is an equivalent
K (TR transducei3 in normal form, see Lemma 3.18 {8]. Engelfriet and Vogler also
showed that top—down tree transformations are the sarf¥ @&R) transformations and
that deterministic top—down tree transformations are the saDB&6T R) transformations,
see Corollary 3.20 if8]. It is easy to see that tH@l (TR) andIO(TR) transducers are the
Ol andIO macro tree transducers ff], respectively, see also Theorem 3.198jf this
also holds for the deterministic transducers.

We now recall the notion of tree homomorphism fr{itv], applying the terminology of
RT(TR) transducers. ART(TR) transducef{ = (N, idry, 4, Hin, R) is atree homomor-
phismif
e H isin normal form,

e N=No={Hn}
e everyg € X appears in exactly one rule, and the test of this ruteas = o.

For every treex € Tx(X,,), n >0, H (o) denotes the unique trgee T,4(X,) for which
there is a tree € T4 (Xy), k>0, such that
e Hin(a) =3, Y[ Hin(xip), - - -, Hin(xi)], 1<ia, ..., ig <n, and
° ﬁ = y[x,-l, ey xik].



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 125

Clearly,
T(H) = { (o, H()) | ¢ € Tx }.

We observe that the mappifig : Tx(X) — T4(X) is completely determined by the trees
H(o(x1, ..., xn)), foreverye € X,,,n>0. In fact,

H(o(a, ..., o) = H(o(xa, ..., xp))[H(21), ..., H(ow)]
More generally# distributes over substitution, i.e., fore Tx(X,,),
H(tloa, ..., 0,]) = H@O[H(aa), ..., Hio)].

These facts will often be used in proofs.

We say that{ is linear if for any integeri > 1, sel occurs at most once in any rule. The
class of tree transformations induced by tree homomorphisms is dendteébgthermore,
the class of tree transformations induced by linear tree homomorphisms is denatdd by

LetH = ({ Hin }, idrs, A, Hin, R) be a tree homomorphism aiibe a ranked alphabet
which is disjoint fromX U 4. Theextensiorof H for © is theRT(TR) transducef{gy =
({ Hn}, idrs,9. 4U O, Hin, Rg) where

Ro = RU{ Hi, — if root = 0 then O(Hin(seh), ..., Hin(sel)) | n>0,0 € 0, }.

ObviouslyH g is a tree homomorphism. Note tHdi (0(x1, ..., x,)) = 0(x1, ..., x,) for
alld e 0,.

Definition 2.4. Let K € MOD U DMOD. Let S = (C, P, F,m, I, E) be a storage type.
The storage typ& with K look-aheaddenoted bySk, is the tuple(C, Pk, F,mg, I, E),
where
e Py =PU{(L)]| LisanK(S) transduce},
e my restricted toP U F is equal tom, and
o for every configurationr € C, mg ((£))(c) = true if and only if Condition (i) or (ii)
holds:
(i) K € {CF,DCF} and there is a string € 4* such thatj,(c) =7 w, whereAj, is
the initial nonterminal ofZ, and4 is the terminal alphabet af,
(i) Ke{RT,IO,Ol,DRT, DIO, DOI } and there is atreee T4 such thatAin(c) =7 1,
where Aj, is the initial nonterminal of, and 4 is the terminal ranked alphabet
of L.
Predicate symbol.) is called aK look-ahead test on.3.et K1, K» € MOD U DMOD
and letZ; be akK;(S) transducer for Xi <2. We say that£,) and(L») are equivalent if
mg,((£1)) = mg,((L2)).

3. Results on look-ahead tests

Consider an arbitrary storage typaVe now show that thRT, 10, Ol, andCF look-ahead
tests are all equivalent. Furthermore, we also show thddRiE DIO, andDCF look-ahead
tests are pairwise equivalent as well. Observe Bfat is missing from the above list of
deterministic look-ahead tests.



126 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Let 2 be a ranked alphabet,be a set of variables, amtl C X~ U Y. The 4-projection
pra(t) € A* of atreer € Tx(Y) is defined as follows.
(i) Letr € XoUY.Ift € A, thenpr,(t) =t elsepr (1) = /.
(i) Lett = o(t1,...,1,), Wwhereg € X,,,n > 0,andty, ..., t, € Tx(Y). If ¢ € 4, then
pra(t) = apra(t1) - - - pra(ty), otherwisepr(t) = pra(t1) - - pra(ty).

Lemma 3.1. Let S be an arbitrary storage type. For any CF look-ahead test,dhe3e
is an equivalent RT look-ahead test on S. Determinism is presehadds, for any DCF
look-ahead test on,$here is an equivalent DRT look-ahead teston S

Proof. It is well known that the context-free languages are equal to the yield languages
of recognizable tree languages. In the light of this result the lemma is quite obvious. Let
A= (N, e, 4, Aijn, R) be aCF(S) transducer. We define the ranked alphabes follows.

For eachm > 1, let

I'y={(A—if btheny)| A — if bthenyisaruleinR and|y| =n}.
Moreover, let
I'o=4U{{(A—if btheni) | A — if bthenlisaruleinR}.

We construct théRT(S) transduce3 = (N, e, I', Ain, R'), where for anyay, ...,a, €
N(F)U 4,n>0, the rule

A — if bthen (A — if bthenay---a,)(as,...,a,)iSin R’
if and only if
A — if bthenay---a,isinR.

Obviously, determinism is preserved.

It is straightforward to show, by induction on the length of the derivations, that for every
A(c) € N(C) and every stringv € 4%, A(c) =% w if and only if there is a tree € T
such thatA(c) =5t andprs(t) = w. [

Lemma 3.2. Let S be an arbitrary storage type. For every 10 look-ahead test on S there is
an equivalent CF look-ahead test on S. Determinism is preserved.

Proof. LetA = (N, e, 4, Ain, R) be anlO(S) transducer. We define ti&=(S) transducer
B = (N, e, ¥, Ain, R as follows. For each rule

A(x1,...,x,) — if btheny
in R, we put the rule

A — if bthen pryr)(y)
in R'.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 127

Obviously, determinism is preserved.
We show that for any trep € Ty cyus and integed >0 the following two statements
are equivalent:
(i) p=', 1 forsomer € Ty,

(i) pracey(p) = .
((i)= (ii)) Let us assume that Condition (i) holds. We show (ii) by inductiori.on
Base casg = 0. Thenp =t € T4. Henceprycy(p) = /.
Induction step! > 0. Thenp = polA(c)(t1. ..., ta)]1 =4 poly lra, ..., ta]] =/ 1 1,
wheren >0, A(c) € N,y(C), 11, ...ty € Ty, po € Tncyua(X1),

A(x1,...,x,) = if btheny € R,
m(b)(c) = true and for every instructiorf € F occurring iny, ¢ € dom(m(f)). Hence
A — if bthen prN(F)(y) erR. (8)
By the induction hypothesis,
prve) (polvelin, - .. ta1l) =554 2. 9)
Let prycyux,(po) = uxyv for some strings, v € N(C)*. Then
prae)(polyelts, - .-, tall) = u(prac)(ye))v. (10)
Hencepryc)(p) = uA(c)v =5 u(pryc)(y.)v by (8)
= prycy(poly.lts, ..., t,11) by (10)
=1 by (9).
((i)= (i)) Let us assume that Condition (ii) holds. We now show (i) by inductioh on

Base caseg = 0. Thenpryc)(p) = 4. Hencep € T4. Letr = p. Then (i) holds true.
Induction stepl > 0. Condition (ii) implies that

Prve)(p) =A@ 2 u(prve (7)) =5 4 (1)
whereu € N(C)*, A(c) € N,(C) for somen >0,

A — if bthen pryr () € R,
m(b)(c) = true and for every instructiorf € F occurring iny, ¢ € dom(m(f)). Hence

A(x1,...,x,) — if btheny e R. (12)
Then it follows frompry cy(p) = uA(c) that

p = polA(c)(t1, ..., t)] (13)

for somepg € TN(C)UA(Xl), t1, ..., tq € T4. Furthermoreprycyux, (po) = ux1.
We observe thapry c)(poly.lt1, - - ., t211) = u(pryc)(y.)). Hence by 11),



128 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

praey(polyelte, - ... ty1D) =>’B‘l /. By the induction hypothesis, there is a tree T,
such that

polyeltn, ... tal1 =/ 1 (14)

Thusp = polA(o)(ta, ..., t,)] by (13

=4 polyclts, ... 611 by (12

=1t by (14).

Now that we have shown that Conditions (i) and (ii) are equivalent, we finish the proof
of the lemma by taking = Ain(c). Observe thapryc)(Ain(c)) = Ain(c), and that the
rules of R’ do not include any terminal symbol. Hence for eack C, mio({A))(c) =
mcr((B))(c). U

The following result is essentially shown in the proof of Lemma 8.@Btfbut we repeat
the proof for completeness sake.

Lemma 3.3. Let S be an arbitrary storage type. For every Ol look-ahead test on S there is
an equivalent CF look-ahead test on S

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage type. As in the proof of Lemma
8.8 of[8], we define the storage type = (C, P, F,m, C, {idc }).

To everyOlI(S) transducerd = (N, e, 4, Ain, R) we assign th©I(S”) transducerd’ =
(N,idc, 4, Ain, R). We obtain by direct inspection that for each configuraiior C,
moy ({(A))(c) = true if and only if c € dom(t(A")).

Now let A = (N, e, 4, Ajn, R) be an arbitraryOI(S) transducer. By Definition 5.22
of [8] and Lemma 6.11 of8], dom(OI(S")) € dom(CF(S’)). Hence there is &€F(S’)
transduceC = (N1, idc, 4, Cin, R1) such thaidom (t(C)) = dom(t(A’)). Consider the
CF(S) transduceBB = (N1, e, 4, Cin, R1). ThenB’ = C. Hence for each configuratienc
C,mo1({B))(c) = true ifand only ifc € dom(t(C)). Thusforevery € C,mo;({A))(c) =
mcr((B)(c). U

We now show that the deterministic version of Lem&adoes not hold. We adopt the
notion of a deterministi©l macro tree transducer frofii]. We denote the class of all tree
transformations induced by determinisid macro tree transducers IBMT . It is well
known thatdom(DMT ;) = RECOG see Theorem 6.18 ¢7]. By Theorem 3.19 i8],
DOI(TR) = DMTg,. Hence

dom(DOI(TR)) = RECOG (15)

By Lemma3.1, the domain of anpCF(TR) transformation is the domain ofRRT(TR)
transformation. Theorem 3.1 pf] states that the domains of 8IRT(TR) transformations

are the tree languages recognized by deterministic top—down tree automata. It is well known
that there exist recognizable tree languages that cannot be recognized by a deterministic
top—down tree automaton. Hence there B@I(TR) transducet4 such that look-ahead
test(A) on Sis not equivalent with anipCF look-ahead test.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 129

Theorem 3.4. Let S be an arbitrary storage type.
(i) The RTIO, Ol, and CF look-ahead tests on S are pairwise equivalent.
(i) The DRTDIO, and DCF look-ahead tests on S are pairwise equivalent.

Proof. Observe that evefiR Tlook-ahead test 08is also anO and anOl look-ahead test
on S Similarly, everyDRT look-ahead test 08is also aDIO look-ahead test 08. Hence
our result follows from Lemma3.1-3.3. [

We now give a storage tyfgsuch that there is nDOI look-ahead test o8 equivalent
to someOl look-ahead tests 08. Let S = (C,%,{ f1, fo}, m, C,{idc}), whereC =
{ c1,co,c3} andm(f;) = idy. ) fori = 1,2. It is not hard to see thdtci,c2 } €
dom(OI(S)) and{ c1, c2 } & dom(DOI(S)).

From Theoren8.4and the fact that eve®®RTlook-ahead test 08is also aDOI look-
ahead test 0§, we obtain the next corollary.

Corollary 3.5. Let S be an arbitrary storage typand letK € MOD U DMOD. Then
K(Spr1) = K(Spio) = K(Spcr) € K(Spoi) € K(Srr) = K(Si0) = K(So1) =
K (Scr).

Definition 3.6. LetK, M € MODUDMOD. LetS = (C, P, F,m, I, E) be a storage type.
Let A be aK (Sy,) transducer.

(i) A haspositive look-ahead on @ a K ™ (Sy,) transducer for short) if the test of each
rule of A is of the form

band (£1) and---and (L,), (16)

whereb € BE(P), n >0, and for each & i <n, (£;) is anM look-ahead test 08.
(i) A has1-positive look-ahead on @ a K1t (S),) transducer for short) if the test of
each rule of4 is of the form (L6) with n = 1.

The class of transformations induced Ky (Sy,) transducers is denoted &/ (Sy,). The
class of transformations induced &yt (S),) transducers is denoted B (Sy).

We now show that these two classes are the same, because look-ahead &ats on
closed undeand.

Theorem 3.7. Let S be an arbitrary storage type. LEt M € MODUDMOD be arbitrary.
ThenK+(Sy) = K (Sy).

Proof. By Definition3.6, K (Sy) 2 KX (Sy).

We now show thak t(Sy;) € K1t (Sy). First we consider the case thit ¢ { CF,
DCF 1.

LetA = (N, e, 4, Ain, R1) be ak T (S),) transducer. We construckalt (S,,) transducer
B = (N, e, 4, Ain, R2) equivalent toA. We define the rule seR, of B as follows. By



130 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Definition 3.6, each test appearing iRy is of the form (L6). For each rule
A(x1,...,x,) — if band (£1) and --- and (£,) theny

in Ry, we put the rule
A(x1,...,x,) — if band (L) theny

in R,. Here theM (S) transducell = (N9, e, A%, Ain, R) is defined as follows:
If n =0, thenletl = ({Ain}, e, {w @}, Ain, { Ain — if truethen w}).
If n =1, thenletl = L1.
If n>2, then assume thal; = (N', ¢/, 4, Al , R") for 1<i<n, and that the set&y’
are pairwise disjoint. Then let
(i) N°='_; N'U{Ajn}, wheredi, ¢ |J/_; N'.
(iy 4°=J/_; 4" U{w™ }, wheren is a new terminal symbol.
We put the rule

Ain — if by and---and b, then w(yq,...,y,)

in R, where for each £i <n, Afn — if b; theny; € R'. Moreover, we put all elements of
the set J/_; R’ in R It should be clear that transdudgiis equivalent tA.

The construction foM € { CF, DCF } is exactly the same, except that we take- -y,
instead ofw(yq, ..., 7,). O

The next corollary is obtained in the same way as Corolkaby

Corollary 3.8. Let S be an arbitrary storage typand let K € MOD U DMOD. Then
K*(Sprt) = K*(Spio) = KT (SocFp) € K*(Spo1) € K*(Sr1) = KT (Si0) =
K*(Sor) = K*(Scp).

Theorem 3.9. DRTH(TRprT) C DRTT(TRy0)).

Proof. By Corollary 3.8, DRTT(TRort) € DRTT(TRpo1). We are going to show that
DRTH(TRorT) # DRTT(TRp0). Flltp and Vagvolgyjl11] introduced the deterministic
top—down tree transducer with deterministic top—down check denot&/ RC. We ob-

tain by direct inspection that the deterministic top—down tree transducer with deterministic
top—down check is the same as DRT (TRprT) transducer. Hence

DTPTRC = DRT* (TRoRrY). (17)
Fulép and Vagvolgyi[12] have shown that there is a recognizable tree language
Ko not in dom(DRTT(TRorT)). By (15, Ko € dom(DOI(TR)). Hence Ko €
dom(DRTH(TRpoy)). O

We now give an additional normal form for transducers with positive look-ahead.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 131

Lemma 3.10. Let S be an arbitrary storage type. LEte MOD andM € MODUDMOD
be arbitrary. LetA = (N, e, 4, Ain, R4) be a K1t (Sy) transducer. Then there is an
equivalentk 1t (Sy,) transducerB = (N, e, 4, Ain, Rg) such that the following condition
holds. LetA(x1,...,x,) — if b and (C) then y be an arbitrary rule ofRi. Then the
M(S) transduce€ = (N¢, ec, 4A¢, Cin, Rc) has exactly one rule witll, appearing in the
left-hand sideand that rule has the forr@ij, — if true then 6.

Proof. LetA = (N, e, 4, Ain, R4) be aK1*(Sy,) transducer. We defing 1+ (Sy,) trans-
ducerB = (N, e, 4, Ain, Rp) as follows. LetA(x1, ..., x,) — if b and (C) then y be an
arbitrary rule ofR 4. LetC = (Ng, ec, A¢c, Cin, R¢). Letk >0 and letCj, — if b; then §;,
1<i <k, be all rules ofC with left-hand sideCj,. For each Ki <k, we defineC; =
(Ne U{CL }, ec, Ac. CL, R;) as follows.Ci is a new nonterminal with rank 0. We put the
rule C{n — if true then ¢; in R;. We put each rule of in R;. For each Xi <k, we put
the ruleA(xs, ..., x,) — if b and b; and (C;) then yin Rp.
Itis left to the reader to show thatA) = t(B). 0O

4. RT transducers

By the decomposition theorerB)(of Engelfriet, RTT (TRrt) = RT(TR) o L H. We now
generalize this composition result for an arbitrary storage §/pe

Lemma 4.1. For every storage type, RTT(Srt) 2 RT(S) o LH and DRT"(Sprt) 2
DRT(S) o LH.

Proof. LetS = (C,P,F,m,I,E). Let A= (N,e, 2, Ain, R1) be anRT(S) transducer
and let” = ({ Hin }, idr,, 4, Hin, R2) be a linear tree homomorphism. Without loss of
generality we may assume that= 1.

We define theRT* (Srt) transducetd o H = (N, e, 4, Ain, R3) as follows. We put the
rule

A — if band (L) then Hyr)(y) (18)
in R3, where Conditions (A) and (B) hold.
(A) The rule
A — if btheny (19)
isin R;.

(B) L = (N U{Bin}, e, X, Bin, Ry is anRT(S) transducer, whersj, is a new nonter-
minal with rank 0 andR] = Ry U { Bijn — if true then 7 }.
We say that ruleX8) is theimageof rule (19).

If Ais deterministic, thetd o H is anDRT™ (SprT) transducer.



132 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Claim 4.2. Let £ be as in Conditior(B). For each configuration: € C, mr7({£))(c) =
true if and only if for every instructiory € F occurring iny, ¢ € dom(m(f)), and there
is atreew € Ty such thaty. =% w. (For the definition ofy., see Definitior2.2)

Proof. By the construction of the transducér [J

Intuitively, Claim4.2states that the look-ahead t€ss true on an arbitrary configuratian
ifand only ify, is defined and the transducéican derive aterminal tree from € Ty cyua.
It is sufficient to show that

T(AoH) =1(A) o t(H). (20)

To this end we show the following result.

Claim 4.3. For eacha € Ty (cyus andr e T4, Conditions(l) and(ll) are equivalent.
(1) o=7 pforsomep € Ty andHy(c)(®) =% 4 1
(I oc=>j‘4s andH(s) = for somes € Ts.

Proof. Firstwe show that Condition (I) implies Condition (Il). Let Ty cyux andr € Ty
be arbitrary. Let: =" p for somep € Tz and

Hie) (@) =t (21)

for somel > 0. We show by induction ohthat (I1) holds.
Base case of the proof @fl): If / = 0 then

Hyey(@) =1. (22)
We show by tree induction onthat
H(p) =t. (23)

Base case of the proof ¢23): o € N(C) U 2. In this case byZ2) andt € T4, « € 2p.
By (l) p = o, hence by 22) H(p) = H(x) =t.

Induction step of the proof of23): Ast € T4, by (22) Hy(c)(x) € T4. Thusroot(a) &
N(C). Hencex = o(u1,...,a,) for somen>1,0 € X, anday, ..., o, € Tycyus-
By (22),

t=1lt1, ... 1], (24)
wherer = H(o(x1, ..., xp)) € T4(X,) and

ti = Hn) () € Tycyua for1<i<n. (25)
Let

APP = {i | 1<i<n andx; appears in}.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 133

By (I), foreachi =1, ..., n,o; =% p; forsomep; € Ty, andp = a(pa, ..., pn). Since
t € Ty, foreachi € APP,t;, € T4. By the induction hypothesis, for eache AP P,
H(p;) = t;. ThenH(p) = t[H(p1), ..., H(pn)] = t[t1, ..., t,] = t, by (24). Hence the
proof of (23) is complete.

Lets = p. Then by £3), Condition (ll) trivially holds. The base of the proof of (ll) is
complete.

Induction step of the proof dfil): Let / > 0. The first step of derivatior2() is the result
of applying rule {8). From that it follows that Conditions (A) and (B) hold. Reordering
some of its steps, we can rewrite derivati@i)(in the following way:

(@) Huie) (@) = BLA)] = aow BIO] =4, Bla] =%y, t for somep € Ty(cyua(X),
A(c) e N(C),andé € Tn(cyua, g € Ta, j,k=0with j +k =1 —1.

Furthermore, Conditions (b)—(d) hold:

(b) mgr7(b and (L))(c) = true.

©) Hyr e =90

(d) o :>f40H q.

Moreover, adH is linear, the following two conditions hold:

(e) o= a[A(c)], for somex € Ty cyus(X1).

(M Hney(@ = B.

Now, the derivationx =" p can be written as follows:

(9) o= a[A(c)] :>f4 alp'] :>:"4 plp'l = p forsomep’ € Ts andp € Tx(X1).

(h) a=7% p.

By (b) and Claim4.2, there is atrea € T such that,. =>j‘4 w. Observe that yc)(7,)
= Hn ) ())e. By (c) and (d), we havéiy ) (y.) = :>f407{ q. By the induction hypoth-
esis, there is a tre€ € T such that

y S 26
Ve (26)

and
H(s') =q. 27)

Then by (f), €7), (a), and the fact that the tree homomorphii ¢, distributes over
substitutionH y ¢y (@ls']) = Hn o) @[H(s)] = Plg] :>’j40H t.By (h),als']=" pls'] €
Tx. By the induction hypothesis, there is a tsee T such thab(s'] :>j4 sandH(s) =t.
Hence by (e), (A), (b), Clain#.2 and @6), o = a[A(c)]= 4 aly.]1=" als] =% s and
H(s) =t.

Second we show that Condition (II) implies Condition (I). ket Tyc)ux and: € Ty.
Assume that

a=lys (28)

andH(s) = ¢ forsome >0 ands € Tx. We show by induction ohthat y ¢y (o) =>f40H t.



134 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Base caselLet! = 0. Theno = s and H(x) = . Then Hy)(x) = t, hence
Hyc) (o) :félo'H t.

Induction stepLet/ > 0. Then the first step of derivatio2§) is the result of applying
rule

A — if btheny (29)
in Ry. Let
o= a[A(c)], (30)

wherea € TN(C)UZ(Xl) andc € C. Furthermore, there is a treec T such that
* = AA©)]= o] =7 s =% s, (31)

with j +k=/—1and
(i) 7e =) s
Let
(i) ¢ =H(s") € Ty,
(iiiy p=Hni)(@ € Tncyua(X1), and
(iv) 0 =HnwE ). )
Note that since tree homomorphishy ¢ is linear, f contains in fact at most one
occurrence of the variabbg but we will not make use of this fact. B
By (30), (iii) and the distribution ofH ) over substitutionH (@) = PlA(c)].
Recall that rule 29) is in R1. By the definition ofA o #, and (iv), the rule

A — if band (L) then ¢ (32)
is in R3, whereL is as in Condition (B). Recall that € T. Sincey,. is defined, by (i) and

Claim4.2 mr7({£))(c) = true. Hence we can apply rul&g) in the following derivation
as many times ag; occurs ing:

Hye) (@) = PLA(C)] A=:>H Blo.1. (33)

By (iv), Hnc)(y.) = d.. By (i), (ii), and the induction hypothesi${y)(y.) = J¢
="y t'- Hence

Blo.1 = Blr. 34
Bloc] AOHﬂ[t] (34)
By the last part of 1), the fact that(s) = ¢, and the induction hypothesis,
Hye)@ls') = t. 35
No)(@ls ])AOHI (35)
By (iii) and (ii),
Moy @) = Ble'1.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 135

Hence by 85),
Bl = t. 36
pit =, (36)
By (33), (34), and 36), we obtain that
H = Bro.] = Bie'] = .
N(C)(“)AOHﬁ[ ]AoHﬁ[ ]AoH
Hence Condition (1) holds in this case, tod.]

We now continue with the proof of EqRQ). Letu < I be arbitrary. We now distinguish
two cases.
Casel:u € dom(z(A)). In this case by Claird.3for everyr € Ty,

Ain(e(u)) = HN(C)(Ain(E(M)))A:E{t
if and only if
Ain(e(u)) %:l}s andH(s) =t forsomes e Ts.

Case2:u ¢ dom(t(A)). In this case by Claird.2for every rule
Ain — if band (L) then Hyc)(y)

in R3, mrt(b and (L)) (e(u)) = false Thusu ¢ dom(t(A o H)).

These two cases prove EQQj. [

To generalize Engelfriet's decomposition res@lt for an arbitrary storage typg we
have to show the following.

Lemma 4.4. For every storage type, RT+(Sgt) € RT(S) o LH.

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage type. Lit= (N9, e, A%, Ain,
R®) be anRT*(Sgt) transducer. Without loss of generality, we may assume/fhatan
RTM (Sg) transducer, see Theoreiv. We construct aRT(S) transducerd and a linear
tree homomorphisri. Then for theRT(S) transducerd and the linear tree homomorphism
H, we construct th&T+ (Srt) transducetd o H as in the proof of Lemma4.1 Then we
show thatr(B) = 7(A o H). By the proof of Lemma.1, t(A) o 1(H) = (A o H). Hence
7(B) = 1(A) o T(H).

We construct th&®T(S) transducetd = (N, e, 2, Ain, R1) in the following way. Let us
number the rules oR® by the numbers.1 .., r, for somer >0. Let us assume that tlii
rule is of the form

A; — if by and (L) then y, (37)
where 1<i <r, A; € N°, b; € BE(P), L' = (N, e, A", AL_, R") is anRT(S) transducer,

in’ .
Vi € Tyogryua0- BY Lemma3.10 we may assume that th&T(S) transducet’’ has only



136 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

one rule withA{n appearing in the left-hand side. That rule is of the form
Al — if true then ' (38)

We may assume that the s&t§, N1, ..., N” and4° 4%, ..., A" are pairwise disjoint.
Let w be a new terminal symbol of arity 2, and let
e N=Ji_oN'and
o X=_ogA U{o®@}.
e For each Ki<r, we put the rule

A; — if b; then w(y;, 7)), (39)

in Ry, where rule 87) is theith rule of R?, and the rule38) is in R'.
We put each rule of the seff;_; R in Ry.

Claim 4.5. ForanyA(c) € N°(C) andw € T j0,if A(c) =% w, thenA(c) =>j‘4s for some
seTs.

Proof. LetA(c) :>lB w for somel > 1. We can proceed by induction én [J

LetH = ({ Hin }, id7y, A%, Hi,, R») and the rule seR, consists of the following rules:
e Hin — if root = w then Hi,(seh)
e Hijn — if root = o then a(Hin(seh), ..., Hn(sel,)), wheren>0,0 € 2, — {w}.
FortheRT(S) transducerd and the linear tree homomorphig we construct th®T(SrT)
transducetd o H as in the proof of Lemmd.1 Observe that, broadly speaking, the non-
terminals in the setJi_, R are not reachable from the initial nonterminal.éf 7. Let
us define the transduc®rfrom A o H by dropping the images of the rulesliff_, k. By
our observation

(D) = t(AoH). (40)
For each Ki <r, the image of rule39) of R1 is a rule of A o H, and is of the form

A; — if b; and (C;) then y;, (42)
where

Ci=(NU{Cin} e, 2, Cin, RLU{Cin — if true then w(y;,7)})

andCi is a new nonterminal symbol. Fori <r, rules @1) are the rules of transducer
D. For each Ki <r, conditionb; and (C;) in rule (41) implies the conditiorb; and (£')

in rule (37). Hencer(D) < ©(B). On the other hand, let € C be arbitrary. Assume that
there is a derivation; (c) =5(y;). =5 w for somew € T ,0, where we apply rule3?) in
the first step. Then by Claid.5, the conditiorb; and (C;) in rule (41) is true forc. Hence
we can apply rule4l) for A;(c). Hencet(B) C ©(D). By (40), ©(B) = 7(A o H). By the
proof of Lemmad.1, 1(A) o t1(H) = t(A o H). Hencet(B) = 1(A) o t(H). O



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 137

Theorem 4.6. For every storage type, RT(Srt) = RT(S) o LH.

Proof. By Lemmast.1and4.4we are done. [J
By Lemma4.1,
DRTT(TRorT) 2 DRT(TR) 0 LH. (42)
Inclusion diagram of Fig. 1 ifil1], and Theorem 5 ifiL3] imply the proper inclusion
DTP™RC S DT o DT 2 DT o LH, (43)

whereDTPTRC has been introduced in the proof of Theor8r@ andDT denotes the class
of tree transformations induced by all deterministic top—down tree transducers. Hence by

(2) and @7),
DRT*(TRorT) D DRT(TR) 0 LH. (44)

This shows that the deterministic version of Theoregidoes not hold.

In Theoremd4.6we have generalized Engelfriet’s decomposition resultSfes T R. We
wish to observe here that Theoreht also generalizes the well-known fact that the class
RECOGof recognizable tree languages is closed under linear tree homomorphisms (see,
e.g., Theorem 11.4.16 dfL4]). In fact, this is Theorerd.6 for § = Sp, the trivial storage
type. To see this, note that it is easy to show R&(Sp) is closed under look-ahead, i.e.,
that, forS = So, RT"(SrT) = RT(S) (see, e.g., Lemma 2.6 {#]). And it is easy to see
(cf. Lemma 3.9 of8]) thatRT(Sp) is essentially the class of tree languages generated by
regular tree grammars, i. RECOG

5. 10 transducers

We show that for every storage tyelO(S) is closed under positive look-ahead and
is closed under composition with tree homomorphisms. That is, for every storag§ type
10T (Si0) = 10(S) = 10(S) o LH = 10(S) o H.

In order to prove thatO(S) is closed under composition with tree homomorphisms,
we need the special case that the tree homomorphism is the identify amere 4 is
a subalphabet of the terminal alphabet of tB&S) transducer. The proof of this result
is nontrivial and of the same complexity as that of the next, more general |@&() is
closed under composition with the identity on a recognizable tree language. The proof is
standard. It generalizes, for = Sp, the fact that thdO context-free tree languages are
closed under tree homomorphisms (see Corollary 6[@]dfLet I Drecogdenote the class
of all mappingsd;, with L € RECOG

Lemma 5.1. For every storage type, 80(S) o I Drecoc C 10(S).



138 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Proof. Let A= (N, e1, X, Ain, R1) be anlO(S) transducer. LeB = (Q, X, Qr, ) be a
deterministic bottom—up tree automaton witti3) = L. We construct afO(S) transducer
D such thatt(D) = t(A) o idy .

To this end we generalize the notion of l@(S) transducer. We now construct ED(S)
transducecC with finitely many initial states. Lef = (N¢, e1, 2, {Ai‘i’1 | ¢ € Or}, R2),
whereNe = {A? | A € N,,n>0, and¢$ : 0" — Q} and everyA? e N¢ has the same
rank asA.

In order to defineRy, first, we extend the deterministic bottom—up tree automatéor
the set of symbol&’ = X U N¢(C U F). Let B’ = (Q, 2, Oy, d') be the deterministic
bottom-up tree automaton whefg = J, for o € X, 5’A¢(C) = ¢ for A%(c) € Ne(C)
andd'y, ,, = ¢ for A?(f) € Ne(F). Note that, for each e Tx, /% = 1. Furthermore,
for eacha € Ty (X,), n>0, we definex € Tsuycur)(X,) from o by replacing every
A% € No by A € N. Note that, for € Ty, 7 = 1.

Now, R, consists of all the rules

A% (x1, ..., xy) — if btheny, (45)

whereA(x, ..., x,) — if bthen7isin Ry and¢ = 5.
We define=¢ in the same way as for d@(S) transducer. Th&ansformation induced
byCis

1C) = {,v) el x Ts | Ai(ﬁ(e(u))%vfor someg € O }. (46)

The following statement holds:

(a) For any, f§ € Tsuna(c), if 2 =>¢ fthena = 4 f andoB = &

Indeed, ifo = ag[A®(c) (a1, ..., o)) =c ool loa. . ... o, 1] = f for rule @5) in Ry,
with ag € Tsun,(c)(X1) anday, ..., o, € Tsun, (), then, by the definition ok,

and, by ) and¢ = yB' = y?l,

o =B, .. dBY) =SB B =
By (a) we have

(b) for anya, B € Tsune(c), if 2=>5 f thenz =% panda® = p".
Thus

(c)forany¢ € Q,c € C andr € Ty, if Aff](c) =0t thenAin(c) =% t and¢g = tB.
Conversely, we show the following statement. )

(d) For any¢, { € Tsun(c) andp € Tsune (o), if = 4 landf = (, thenthere is a tree
o € Tyune(c) such thatt = &, andoa=>¢ f.

To prove (d), assume thgt= o[A(c)(&y, ... E)T1= 4 Soln.(Eq, ... E)] = { for the
ruleA(xy, ..., x,) — if bthenyinRy,c € C, &y € Tsunc)(X1),E1, -+, &y € Tsun(o)-

Sincep = {, B = Bolye(Ba. - .., B,)] for somep, e Tsunec)(X1), 7 € Tsune(r), and



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 139

Brs- -y By € Tsunec) With f; = & for 0<i<n, andj = 1. Let ¢ = 7B ando =
BolA?(c)(By. ..., B,)]. Then

5= BolA)(By. ... B)] = EolAO)(Ep. ... &) = &
and, by the definition oR2, (45) is in R2 and so

%= BolA%()(Bys .- ., Bp)] = BolyelBu - B 11 = B.

By (d) we have B

(e) foranyc, { € Tsun(c) andp € Tsune(c), if E=% {andf = ( then there is a tree
o € Txune(c) such that = ¢ anda =7 f.
By (e) and (c), we have

(f) foranyc € C andr € Ty, if Ain(c) =77 then there ish € Q such thatAidr’](c) =5t
and¢ = 5.
By (46) and statements (c) and (f)

7(C) = 1(A) o idy. (47)

Let D = (N¢ U { Ain}, e1, 2, Ain, R3), where R3 is defined as follows. We put all

elements ofR; in Rs. Furthermore, for anyp € Qr, and any ruIeAi(f1 — rin Ry, we
put the ruleAj, — r in R3. We obtain by direct inspection thatD) = t(C). By (47),
(D) =1(A)oidy. O

Lemma 5.2. Let A = (N, e, 2, Ain, R1) be an IQS) transducer and{ = ({ Hin }, idr;,
A, Hin, Ryy) be a tree homomorphism. Then we can effectively construct &$) i€ans-
ducerB = (Np, e, 2, Ain, R2) and a tree homomorphisth = ({ Hin }, idry. 4, Hin, R7)
such thatt(A) o t(H) = ©(B) o 1(J).

Proof. Without loss of generality, we may assume that 2. Letw € 4g be arbitrary.
We put all rules ofRy, in R 7. Furthermore, for each € 2~ — I', we put the rule

Hin — if root = o then w

in R 7. By Lemmab.1, we takeO(S) transduceB = (N, ¢, 2, Ain, R2) suchthat(B) =
7(A) o idr.. Hencer(A) o t(H) = t(B) o t(J). O

Theorem 5.3. For every storage type, 80(S) o H € 10(S).

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage type. Ldt= (N4, e, 2, Ain,
R1) be anlO(S) transducer an®{ = ({ Hin }, idr, 4, Hin, R) be a tree homomorphism.
By Lemma5.2, we may assume that = X. We introducelO(S) transducer3 =
(Ng, e, 4, Ain, R2) as follows:

e Ng < Np,



140 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

e Foreachsr € 2, we introduce the nontermindl, € Ni with the same rank as that of

In order to defineRy, for eachy € Ty ,(ryux(X), we define a treg’ € T, (ryua(X)
as follows. Intuitively, ify € Tx(X), theny’ = H(y), otherwise;’ is obtained frony by
replacing every maximal subtrees Tx(X) by #(¢) and then replacing every remaining
o € X by As(f), wheref is an arbitrary instruction symbol occurringqn

Formally, lety = afr1, ..., t,], wherea € Ty, (rus(Xm), m=>0, « has no subtree
t € Ts(X) — X, andzy, ..., 4, € Tx(X). Theny = a[H(11), ..., H(t,)] wherea is
obtained fromu by replacing everyr € X by A (f), wheref is an arbitrary instruction
symbol occurring iny.

We defineR; in the following way. For each € X, n >0, we put the rule

Ag(x1, ..., x,) — if true then H(o(x1, ..., x,)) (48)
in R2. Then for every rule

A(x1,...,x,) — if btheny
in Ry, we put the rule

A(x1, ..., x,) — if btheny

in Ry.

One can show the following result in a straightforward but tedious way by induction on
the length of the derivations*; and=7.

(@) Forallc € C andu € Ty 4 (c)uz, if (i) then there is & € Ty, (c)uxs such that (i) and
(iii) and (iv), and

(b) forallc € C andp e Ty, (c)uz, if (i) then there is ax € Ty , (c)ux such that (i) and
(i) and (iv).
Here

(i) Ain(c) =7 o

(i) Ain(c) =5 .

(i) o = aft1, ..., ], wherex € Ty , cyus (X)), m >0, has no subtreee Tx(X,,) —
X, andry, ..., ty € Ts. B

(iv) p = BIH(t1), ..., H(tn)], wheref is obtained fromix by replacing every symbol
o € 2 by As(c") for some configuratior’. Moreover,[f € Tyyz(cyua is Obtained fromp
by a derivation =7 B where each rule applied lyis of the form @8) for somes € X,,,
n >0, and no rule of the form4@) is applicable forfi.

We now show that(A) o 1(H) = ©(B). Let (u, w) € 1(A) o 1(H). Then there is a tree
v € Ty such thatu, v) € ©(A) and(v, w) € ©(H). ThenAin(e(u)) =% v andH (v) = w.
Forc = e(u) ando = v, Condition (i) holds. By (a), there is & € Ty, c)us such that
Conditions (ii)—(iv) hold. By (iii), we may tak& = x1, m = 1, andry = v. By (iv), f = x1
implying that§ = #(v) = w. By (), f € Tnu(cyua is obtained fromp by a derivation
B=% B. Hence

Ain(e(u)) %ﬁ%iﬂ = w.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 141

Thus(u, w) € ©(B).

Conversely, letu, w) € t(B). ThenAin(e(u)) =5 w. Letc = e(u) and = w. By (b),
there is a treec € Ty ,(c)ux such that Conditions (i), (i) and (iv) hold. By (ivfi = w.
By (iv) and (iii), we may take = x1, m = 1,

H(t) = w,

o = x1, ando = t1. By (i)
Ain(e(u)) j .
Then(u, r1) € t(A) and(ty, w) € t(H). O

Now we prove thatO(S) is closed under positive look-ahead. The proof is a variation of
the one of Lemmd.4.

Theorem 5.4. For every storage type, 807 (Si0) € 10(S).

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage type. Ldt= (N9, e, A%, Ain,
R%) be anlO™(S)p) transducer. Without loss of generality, we may assume.thiat an
|0 (S10) transducer, see Theoré¥. We construct atO(S) transduceB. Then we show
thatt(A) = ©(B).

We construct théO(S) transducel3 = (N, e, X, Ain, R1) in the following way. Let us
number the rules oR° by the numbers,1.., r, for somer > 0. Let us assume that tlin
rule is of the form

Ai(x1, ..., xp,) — if b; and (L") then y, (49)

where 1<i<r, n; >0, A; € N2, bj € BE(P), L' = (N',e, 4", Al , R") is an1O(S)

n’
transducer, angl; € TNO(F)UAO(XHI.). By Lemma3.10 we may assume that tH®(S)

transducer’ has only one rule withqfn appearing in the left-hand side, and that rule has
the form

Al — if true then »". (50)

We may assume thatthe s&t8, N1, ..., N" and4°, 4%, ..., A" are pairwise disjoint. Let

B be a new nonterminal symbol of arity 2.

o LetN=J_oN' U{B}.

o LetX =J_y4".

e We put the ruleB(x1, xp) — if true then xp in Ry.

e For each Ki<r, let the rule 49) be theith rule of R?, and let the rule50) be in R'.
Then we put the rule

Ai(x1, ..., xp,) — if b; then B(f)(y;,7") (51)



142 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

in Ry, if " ¢ T, and f € F occurs iy’ and we put the rule
Ai(x1, ..., x,) — if b; theny, (52)

iNn Ry, ify € Ty.
e We put each rule of the seff_; R in Ry.
Note that for each € C and each Xi <r, conditionb; and (£) in rule (49) is equivalent
to the condition(b; and there is atreav € T, such that’. :2,. w) by rule 60), where
conditionb; and treey’ also appear in rules(l). Thus the application of rulet@) of A is
equivalent to the application of rulB2) or is equivalent to the subsequent application of rule
(51), some rules iR, and ruleB(x1, xo) — if true then x1 of B. Hencer(A) = ©(B).
We now give a formal proof.

Claim 5.5. Forall A € N2,n>0,c € C,t1,...,t, € Tj0,ands € T o, A(c)(t1, ..., 1)

:>f4s if and only ifA(c) (71, ..., 1) =55 's.

Proof. (=)LetA(c)(t1,...,1t) :>’A s forsomd > 1. We showthat (c) (11, . . ., tn) =5 s
by induction onl.

Base caselet! = 1. ThenA = A; for some I<i <r and we apply rule49). Hence
m({L))(c) = true. Thatis, Al (c) = i 7% =7, w for somew € 7. By the definition of
Ry, if y* € T, then rule §1) is in Ry, and

AR) (1, - s tn) =B Bm () ((;lt1, - - - tal)es 76) =5

Bm(f)(eN((ilte, .., taDe, w) =Bl ... taDe.

If y* € T, thenrule §2) isin Ry andA(c)(t1, ..., t) =p(;lt, .. ., tal)e.

Induction stepLet/ > 1. ThenA = A; for some Ki<r,n = n;, and we apply rule
(49) in the first step ofA(c) (11, . . ., 1a) = 5. Hence

m(b;)(c) = true (53)

andm((L'))(c) = true. Thatis,Al (c) =i 7' =7, w for somew e T ;. Furthermore,
A©, - 1) Z il e =t (54)

Then, there aréy, ..., 0, € T o n0(cy W1, -+ - wy € T go, v>1, such that
(@ (;lr, ... taDe = 01 @andwy =,
(b) foreachj =1,...,v,d;="% w; where
° 5j = uj[Ajl(le)((slujll, e, 5#j1;<-1)’ e Ajk/. (cjkj)(éﬂjki’ e, 5,11.]”{, )] for
J J J*jkj

0
SOmeu ; € TA kj}l,Aj]_,...,Ajkj eN 1 Cjls o5 Cjik; € C,and,ujll,...,

(X))
'ujlkjl’ ’lu]kjl’ ""’ujijjkj € {j +1, ...,V},
e there are) g, ..., Ny, € T o suchthatforeach =1,...,v,

Lj1
Ajilcj) Wy, - wﬂjhjl) =4 M1 € Ty, wherelj; <1 — 1,

.
. . J . —_—
Ajk; (cjkj)(wujkjl, e wﬂ_/.kjk_jkj) =4 Njx; € Tyo, wherel;;,; </ —1,and



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 143

o w; =u.,-[17j1,...,17jk_/_]forj =1 ...,
By the induction hypothesis, for eagh=1, ..., v,
Aj1(€D) Wy o Wy ) =B M1
Ajk; (Cjkj)(w.“_jkjl’ T w#jkj;\-jk,, ) =5 Njk;-
Hence, using an obvious induction or- j, o0j=>pw;forj=1.. v.By(@a)

i1 - taDe :;> 5. (55)

By the definition ofR1, we now distinguish two cases.

Casel: )’ ¢ T,i. Then rule §1) is in R1. Thus by 63) and 65) we have

A(R)(t1, - s tn) =B Bm(f)()((;lt1, - - - tn])e, 70) =5 Bm(f) () (s, w) =ps.

Case2:)' e T,i.Thenrule62)isin Ry andA(c)(t1, ..., 1) =>p0;lt, .- e =>*B S.

(&) Let A(c)(f1. .. . . ta) = 5 for somel > 1. We show that (c) (11, . . ., tn) =% s by
induction onl.

Base caselet/ = 1. ThenA = A; for some Ki<r,n = n;, andB applies rule $2).
Hencem(b;)(c) = true. By the definition ofR1, y' € T,i. Thusm((L'))(c) = true. The
definition of R1 also implies that rule49) is in RY. HenceA(c)(t1, . .., ty) =AMl ...,
tn]e-

Induction stepLet/ > 1. ThenA = A; for some i <r, andn = n;. By the definition
of Ry, we distinguish two cases.

Casel: B applies rule $1) in the first step ofA(¢) (11, . . ., tn) :>’B s. That s,

A@, - 1) = BN (@il e, iy = ts. (56)

Then

(i) rule (49)isin R°,

(iiy m(b;)(c) = true, and
(iii) A}, (c) =i 7. =%, w for somew € T ;.
(V) (ilt1. ... . ta])e =5 s for someu<l — 1.
By (iii), m((£'})(c) = true. Thus, by (i) and (ii),

A(c)(tl,...,t,,)j(yi[tl,...,tn])c. (57)

From (iv) we can conclude by induction, in exactly the same way as in points (a) and (b) in
the (=)-part of this proof, thaty;[z1, ..., 1) :>f4 s. By (57) we get that

A1, - .., 1) j(yi [t1, - - ., ta])e 7*‘>s.

Case2: B applies rule$2) in the first step ofA (¢) (11, . . ., ty) =>’B s. This case is similar
to Case 1. UJ



144 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

From Claim5.5it follows, takingA = Aj, andc = e(u), thatt(A) = =(B). O

We note that the deterministic version of Theorém is not true forS = TR (see
Corollary 5.20 of/7]). In fact, it is not even true thd10™ (S,0) = DIO(S) o L H because
DIO(S) is closed under composition wittH, for S = T R (see Theorem 7.6(2) ¢7]).

From Theorem$.3and5.4 (and the obvious facts theD(S) € 10 (S10) andlO(S) €
I0(S) o H) we immediately obtain the following result.

Corollary 5.6. For every storage type, 807 (Si0) = 10(S) = 10(S) o LH = 10(S) o H.

6. Ol transducers

We generalize the nondeterministic part of Len#ieto Ol transducers. Thatis, we show
that for every storage ty® Ol (So;) 2 OI(S) o L H. We also show that for every storage
type S OI(S) is closed under positive look-ahead, and hence is closed under composition
with linear tree homomorphisms. That is, for every storage §l*(So1) = OI(S) =
OlI(S)o LH.

Note that for the trivial storage typ&, the closure oDI(Sp) under linear tree homo-
morphisms is shown ifil7]. However,OI (Sp) is not closed under tree homomorphisms
(see Example 6.7 if6]), in contrast withO(Sp).

First we show that for every storage tyBeOl ™ (So;) 2 OI(S) o LH. We intuitively
discuss the main difference between RieandOl cases. We illustrate by an example why
the straightforward generalization of the construction used in the proof of Lefrihdaes
not work forOl.

Example 6.1. Let So = ({c}, 9, {id },m,{c}, { id;}}) be the trivial storage type. Con-
sider theOl (Sp) transducerd = (N, e, 2, Ain, R1), with e = id{ .y and
e N =1{Ain, A, B, C}, Ain, B, C have rank 0 ané has rank 2,
e X=21U2021={01,02},20={b},and
e Rj consists of the following rules.
Ain — if true then A(id)(c1(B(id)), 02(C(id))),
A(x1, x2) — if true then x1,
A(x1, xp) — if true then x», and
B — if true then b.
The one and only successful derivationfs the following:

Ain(c) e A(c)(a1(B(0)), a2(C(0))) e a1(B(0)) e a1(b). (58)

Thus, transduced induces the transformatiariA) = { (¢, 01(b)) }.

LetH = ({ Hin }, id7s. A, Hin, R2) be alinear tree homomorphism, where
o A=4dg=1{a1,a2}, and
e Ry consists of the following rules.

Hin — if root = g1 then az,



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 145

Hin — if root = g7 then ap, and
Hin — if root = b then as.
Obviously,t(A) o t(H) = {(c, a1) }.

In order to construcid o H as in the proof of Lemmd.1, we now define arDI(S)
transducerL. It will appear as a look-ahead transducer in a ruledod H. Let £L =
(NU{Bin}, e, X2, Bin, R}) be anOI(S) transducer, whers, is a new nonterminal angl}
consists of the following rules:

Bin — if true then A(id)(c1(B(id)), 62(C(id))),

Ain — if true then A(id)(o1(B(id)), 62(C(id))),

A(x1, x2) — if true then xq,

A(x1, xp) — if true then x», and

B — if true then b.

Observe thaBjn(¢) = 2 A(c)(01(B(c)), 02(C(c))) =, 01(B(c)) = a1(b). Hence

m((L))(c) = true. (59)

Now the straightforward generalization of the construction used in the proof of Lemma
4.1 gives theOl ™+ (So) transducetd o H = (N, e, 4, Ain, R3), whereR3 consists of the
following rules.

Ain — if true and (L) then A(id)(ay, a2),

A(x1, xp) — if true then xq,

A(x1, xp) — if true then x», and

B — if true then aj.
By (59), we haveAi,(c) = 4.1 A(c)(a1, az). Hence we have the following derivations:

Ain(c) = Ao A(c)(a1, a2) = Ao a1,

Ain(c) = Aon A(c) (a1, a2) = Aoy a2
Thust(A o H) = {(c, a1), (c, a2) }. Hencet(A) o 1(H) # 1(A o H). This ends Example
6.1

Let A= (N, e, 2, Ain, Ry) be anOI(S) transducer. Let € Ty)ux be atree, and let

t=u1=ur=> ---=u,=u, k=1 60
L= U2 == (60)

for someuy, ..., ui—1 € Tncyus anduy € Tx. Transducerd might delete some subtree
p of t along the derivationG0) such that there is no treee T with p =% g. An example
of this phenomenon is derivatioB) because the subtree(C(c)) is deleted. Assume that
along 60), we derive a terminal tree from the subtree

Ac)(o, ..., 0) (61)

of u;, 1< j<k.Thenthereis asét C X, of variables such that along(),
(a) from subtreeql), we derive a tree[aoy, ..., «,] for somes € Tx(V), and
(b) for eachx; € V, from the subtree; we derive a tree; € T (or several such trees).
In the light of this observation, for any sétC X,,, and nonterminall € N, we introduce
a new nonterminal”. Moreover, we modify derivations0). We substituted? for A in



146 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

subtree §1) of u;, 1< j <k. ThenA" has the following “meaning”. For any< j <k and
subtree

AV () (o, ..., o)

of u; and for any variable; € V, there is atreg; € Tx such thaty; :>j‘4 s;. Furthermore,
thereisatree € Tx(V) such thatd(c)(x1, ..., x,) :>:“4s .

Let H be a linear tree homomorphism. In the proof of Theo&Bwe will define the
Ol ™ (So)) transduceroH by modifying the construction of Lemn#al When constructing
the rules of4 o , we replace the nonterminaisof .4 by nonterminalst ¥ . The “meaning”
of A will be forced by the look-ahead tests.dfo 7.

Example 6.1, continued.

For transducersA andH of Example6.1 we will construct the transduced o H =
(J,e, 4, A R3), whereJo = { Al BY,C? yandJ, = {Al¥), alx2) alxxa) ) n
order to construct the rules of o #, we now defineDl (S) transducer<Ls, Lo, L3, La,
and Ls. They will appear as look-ahead transducers in the rule$ ofH. Intuitively, £1
corresponds ta{*1}(id), whereA (id) appears in the right-hand side of the first ruleRaf
Similarly, £, and £3 correspond taa{*2}(id) and A1*1-%2} (id), respectively, and’4 and
Lsto B? (id) andC?(id), respectively. Transducéh is defined in such a way that the test
(L1) is true onc if and only if there is a tree € Tx({ x1}) such thatA(c)(x1, x2) =% s.
Similarly, (£2) and (L3) test whether there is treein Tx({x2}) ands € Tx({x1, x2}),
respectively, such that(c)(x1, x2) :>j‘4 s. The meanings ofL4) and(Ls) are analogous.

Let w be a new 0-ary terminal symbol. L84 = (N U { Di, D1, D2}, e, X U{ w}, Din,
R)) be anOI(S) transducer, wher®j,, D1, D> are new nonterminals of rank 0, aij
consists of the following rules:

Din — if true then A(id)(D1(id), D2(id)),

A(x1, x2) — if true then x1,

A(x1, xp) — if true then x,, and

D1 — if true then w.

Let Lo = (N U{ Din, D1, D2}, e, XU {®}, Din, R}) be anOI(S) transducer, wherg,
consists of the following rules:

Din — if true then A(id)(D1(id), D2(id)),

A(x1, x2) — if true then x1,

A(x1, xp) — if true then x», and

D> — if true then w.

Let L3 = (N U{ Din, D1, D2}, e, XU {®}, Din, R3) be anOI(S) transducer, wher&;
consists of the following rules:

Din — if true then A(id)(D1(id), D2(id)),

A(x1, x2) — if true then xq,

A(x1, x2) — if true then x»,

D1 — if true then w and

Dy — if true then w.

Let L4 = (N U{Din}, e, X, Din, Ry) be anOI(S) transducer, wher&, consists of the
following rules:

Din — if true then B(id) and

B — if true then b.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 147

Let Ls = (N U {Din}, e, X, Din, R5) be anOI(S) transducer, wher&; consists of the
only rule Dj, — if true then C(id).

Observe thain((L1))(c) = m({(L2)(c) = m((L3))(c) = m((L4))(c) = true and
m({Ls))(c) = false

Now a modified generalization of the construction used in the proof of Letfrgives
the Ol T (So)) transducetd o H = (J, e, 4, Aﬁ], R3), whereR3 consists of the following
rules:

A? — if (£1) and (L4) then AL (id) (a1, ap),

AP s if (Lo) and (Ls) then A2} (id) (a1, az),

Al — i (L3) and (L4) and (Ls) then AL132)(id) (a1, a),
A‘nxl}(xl,xz) — if true then x1,

ALx2) (xq1, xp) — if true then xo,

Al¥1x2} (1 x5) — if true then xq, and

AtL22)(xq, x) — if true then x».

Since(Ls) is false and the other look-ahead tests are true, we have thesgglerivation
resulting in a tree over the terminal alphabet

Al (€)= Aoy AP (0) (a1, az) = Aoy a1

Thust(AoH) = {(c, a1) }. Hencet(A) o 1(H) = 1(A o H).

In order to proveDl*(So;) 2 OI(S) o LH, we need the counterpart of Lemraz.

Lemma 6.2. Let A = (N, e, 2, Ain, R1) be an OKS) transducer and{ = ({Hin}, id7;,
A, Hin, R2) be a linear tree homomorphism. Then we can effectively construct és$) Ol
transducer3 = (N’, e, I', Ain, Rp) such thatr(A) o ©(H) = ©(B) o ©(H).

Proof. First, we construct a®@I(S) transducetd’ = (N', e, X, Ain, R}) equivalent tad
such that for every ruld (x1, ..., x,) — if b then yin R/, there is no terminal symbol
in any subtree of with nonterminal root (see the first step of the proof of Lemma 5.3 in
[8]). Let us observe that a terminal symbol occurs in a tree derived’ fsom Ajn (e(u))
(whereu is an arbitrary input element) if and only if this terminal symbol occurs in a rule
of Ry applied along the derivation.

Then, let us remove all the rules froR{ in which occurs one of the terminal symbols
in X — I' and in this way, we obtain the set of rul&s. By the previous observation
T(A)ot(H) =1(B)ot(H). O

Theorem 6.3. For every storage type, ®17(So;) 2 OI(S) o LH.

Proof. LetS = (C, P, F,m, I, E) be an arbitrary storage typd, = (N, e, 2, Ain, R1)
be anOI (S) transducer an@# = ({Hin}, idr,, 4, Hin, R2) be alinear tree homomorphism.
According to Lemmé&6.2, we may assume = I'. We introduce the ranked alphahkt
whereJ, = {AY |Ae N,,V C X, } forn>0.



148 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Definition 6.4. Letk>0, p € Tyryus(Xk), andy € T;cyus. We define the treé from
B by replacing each symbatY (f) in J(F) by the symbolA(f) in N(F). Similarly, we
define the tre@ from y by replacing each symbatV (c) in J(C) by the symbolA(c) in
N(C).

Before defining th®l T (So)) transducerd o H that induces (A) o t(H), we define the
look-ahead tests that are needed in the ruleéot. Let f € F be an arbitrary instruction.
We now introduce the look-ahead t&#l;) € Pos so that for each configuratiane C,
(Ly) is true onc if and only if f is defined onc. We defineOI(S) transducerl; =
(N, e, 2, Bin, R)) as follows.

() N’ ={Bin, B}, whereBj, andB are 0-ary nonterminals.
(i) 2" ={w}, wherew is a new O-ary terminal symbol.
(iii) R} consists of the following rules:

Bin — if true then B(f)
and

B — if true then w.

Claim 6.5. For each configuratiorc € C, moi({Lf))(c) = true if and only ifc €
dom(m(f)).

Proof. It follows directly from the definition oL ;. [

Letk>0 andf € T;rus(Xk). We now introduce the tegtr () € BE(Po)) so that
the following holds. For each configuratienthe testg (f) is true onc if and only if all
instructionsf occurring inf are defined ofc.

Definition 6.6. Letk >0 andf € T;rus(Xi). We define the testr () € BE(Po)) as
dr(p) = /\((L‘f) | f € F occurs inf).
Definition 6.6 implies the following result.

Claim6.7. Let k>0 and peT;ruz(Xr). For each configuration ceC,
mol(dr(f))(c) = true if and only if 5. is defined.

Letn>0,A € N,,V C X,, f € F.We now introduce a look-ahead test so that for each
configuratiorc € C, the look-ahead test is true on the configuratigiand only if there is
atreesg € Tx(V) such that

Am(f) () (x1, ..., xn) %}so.

To this end, let th®I(S) transducelC 4,y s = (N, e, X', Bin, R}) be defined as follows:
(i) NN =NU{Bin, B1....,B,}, whereBi,, B1, ..., B, are new 0-ary nonterminals.



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 149

(i) 2" =2 U{w}, wherew is a 0-ary terminal symbol, as before.
(iii) We defineR} from Ry by adding the rules

Bin — if true then A(f)(B1(f), ..., B.(f))
and

B; — if true then «w foreachx; € V.

Claim 6.8. For each configuratior € C, mo({(L4,v, r))(c) = true if and only if there is
atreesg € Tx(V) such thatA(m(f(c)))(x1, ..., Xn) :>j‘4 50.

Proof. Itis straightfoward to show that for alj € 7y andc € C, Bin(c) :>*£A vy to ifand

only if 1o = solw, . .., w] for somesg € T (V) such thatA(m(f)(c))(x1, ..., x,) :>f4 50-
This proves the claim. [

Let k>0, W C Xi, andp € Tyryus(Xk). We now introduce the testz (S, W) €
BE(Po)) so that intuitively the following holds. For each configuratnihe tesbr (5, W)
is true onc if and only if there is a derivatiofi. =% s € Tx(W) in which the “meaning”

of eachA" occurring inf is respected.

Definition 6.9. Letk >0, W C X;, andf € T ryus(Xk). We define the tedtr (f, W) €
BE(Poy) by tree induction orp.
(i) Assume thaff € Xi. If f € W thenbp (5, W) = true elsebr(f, W) = false
(i) Assume thatf = o(Bq,..., B,) forsomen=>0,0 € 2, By, ..., B, € Trrus(Xp).
Then

br(B, W) = N\®rB;, W) | 1<i<n).

(iii) Assume thatp = AV (f)(By, ..., B,) for somen>0,A € N,, V € X, f € F, and
ﬁl’ R ﬁn € Tyruz(Xg). Then

br(B, W) =(Lav.p)and \GrB, W) | xi € V).
Definition 6.9implies the following result.

Claim 6.10. Letk >0, W < X, andf € T;ryus (Xi). Eithermo (br (B, W))(c) = false
forall c € C or

moi(br (B, W) =mor (\(La,vy) 17 =1...m)
forsomen>0,andA; e N, V; C X,and f; € F for 1< j <n.
Let k>0, W € X, andf € T;cyjus(Xk). We now introduce the Boolean value

bc(p, W) € {true, false} so that it is true if and only if there is a derivati@rwi‘s 1S
Ts (W) in which the “meaning” of eacid” occurring inf is respected.



150 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Definition 6.11. Letk >0, W C Xi, andf € Tjc)uz(Xx). We define the Boolean value
bc (B, W) by tree induction orp.
(i) Assume thaf} € Xi. If p € W, thenbc(f, W) = true elseb¢ (f, W) = false
(i) Assume thatf = o(B4, ..., B,) forsomen=>0,0 € 2, f1,.... B, € Trccyus(Xi).
Then

be(B, W) = \(be (B, W) | 1<i<n).

(iii) Assume thatp = AY(¢)(By,...,pB,) for somen>0,A € N,,V € X,, c € C,
andpy, ..., B, € Trccyus(Xk). Thenbc (B, W) = true if and only if there is a tree
so € Tx(V) such thatA(c)(x1, . . ., Xn) =7 50 and A (bc(f;, W) | x; € V) = true.

Claim 6.12. Letk >0, W C Xy, € Ty(rux(Xx). For each configuratiors € C, if f.. is
definedthenmoi (br (B, W))(c) = b (B., W).

Proof. The claim can be shown by tree induction on the ffegplying Claim6.8. [

Claim 6.13. For arbitrary k>0, W € Xi, and o € Tycyus(Xx), the following two
statements are equivalent )

(a) There is atregs € T;cyux(Xx) such thatf = « andbc (B, W) = true.

(b) There is atree € Tx(W) such thatx =>:"4s.

Proof. The claim can be shown by tree induction on the treén the case that =
A(c)(aa, ..., %), ONne can use the fact thagenerates a tree ifis (W) if and only if there
existsV C X, such thatA(c)(x1, ..., x,) generates a tree ifis(V), and for each; € V,
o; generates atree ifiy(W). 0O

By Claims6.12and6.13 we get the following observation.
For arbitraryk >0, W C Xy, o € Tyruxz(Xi), ande € C, the following two statements
are equivalent: )
(a) Thereis atre@ € T;ryus(Xk) such thafp = o andmoi (br(f, W))(c) = true.
(b) Thereis atree € Tx(W) such that,, =% s.
We will need the following elementary property iaf.

Claim 6.14. Letk>0, W C X. Let By € Tycyux(Xi+1), Wherex, 1 appears exactly
once infy, and iy has no subtree p such that p contains the varialle; and the root of
pisinJ(C).Letf; € Tycyuz(Xx). Then

be (Bolxk+1 < B1l, W) = be(Bo, W U {xx41}) and be (B, W).

Proof. The claim can be shown by tree induction on the fige O



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 151

We now define th®©I1(Sg)) transducetd o H = (J, e, 4, Aﬁ], R3) as follows. We put
the rule

AV (x1,...,x,) — if band dp () and br(d, V) then H (x(J) (62)

in R3 if Conditions(1)—(3) hold.

(1) the ruleA(x1, ..., x,) — if b then yisin Ry for somen>0, A € N,, b € BE(P),
Y € Tnryuz(Xan)-

(2) V S X, ]

() 0 € Typux(Xy) ands = y.

By Definitions6.6 and6.9, A o H is anOl*(So)) transducer or it becomes one after
changing the £ (9, V) tests by logically equivalent ones, as shown in Cléit0(and, of
course, such a change does not alter the induced transformation). Our aim is to show that
(Ao H) = 1(A) o T(H). To this end, we need the following concept.

Definition 6.15. Let k>0, o € Tn(cyuz(Xk), andW C X, be arbitrary. We define tree

d(a, W) € Tycyus (Xy) by tree induction on.

o If o € Xy, theng (o, W) =,

o ifa=o0(ug,..., o) withe € 2,,,n>0, thenp(a, W) = a(p(a1, W), ..., p(o,, W)),
and

o if o= A(c)(ag, ..., 0,) With A(c) € N,(C), n >0, thenp(a, W) = AV (¢)(¢p(o, W),
o P, W), whereV = {x; | 3s € Tx(W) : o =% s }.

We now show that)(a, W) is one of thef’s that satisfy (a) of Clain6.13 provided (b)
of that claim holds.

Claim 6.16. Letk >0, o € Tycyuz(Xx), W € X, andff = ¢(o, W). Then
(i) p=ua,and
(iiy for everys € Tx(W), if oc:>j‘4 s, thenbc (B, W) = true.

Proof. Obviouslyf = o. We now show that (i) holds. Assume thate 7s(W) and
a=" s. We proceed by tree induction on

Base caselLet o = x; € X;. Thenoa = f§ = s. Sinces € Ts(W), f € W. Hence
be(f, W) = true.

Induction step First, leta = a(a1,...,0,), wheren>0,0 € X,, a1,...,0, €
Tncyus(Xk). Thenf = a(Bq, ..., B,), wheref;, = ¢(o;, W) for 1<i <n. Derivation
oc:>f4 s implies that for every Xi <n, there is a tree; € Tx(W) such thaty; :>j‘4 s;. By
the induction hypothesisc (;, W) = true for 1<i <n. Hencebc (i, W) = true.

Second, letr = A(c)(a1, ..., a,) for somen>0, A(c) € N(C),, anday, ..., o, €
Tycuz(Xp). Thenf = AV (c)(By. ... B,), whereV = {x; | 3p € Ts(W) : a; =% p}
andp; = ¢(x;, W) for 1<i <n. The definition oV and the derivation =7 s implies that
thereisatreeg € Tx(V) such thatA(c) (x1, ..., x,) :>j‘4 so- By the induction hypothesis,
for eachy; € V, be(f;, W) = true. Hencebe (f, W) = true. O



152 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

Claim 6.17. Letk >0, o € Tycyus(Xk), W C Xy, and f = ¢(a, W). For everys e
Tx(W),if O€:>j<4 S, thenHJ(c) p) if‘lo?—l H(s).

Proof. Assume that € Tx(W) anda :>1A s for somel > 0. We proceed by induction on
l.

Base caseLet/ = 0. Thena = s. ThusB = o = s. Sinces € Tx(W), f = s and
Hio)(B) = Hic)(s) = H(s).

Induction stepLet/ > 0, and let the rule

A(x1,...,x,) — if btheny (63)

in R1 be applied in the first step of the derivation. Thea ag[xir1 < A(c) (o1, ..., )],

where

o o0 € T(cyus (Xk+1),

o the variablex,, 1 appears exactly once i,

e 0p has no subtrep such thap contains the variable;, 1 and the root opis in N(C),
and

e n>0,A(c) € Ny(C), 001, ...,0, € Ty cyuz(Xi).

Moreover,
m(b)(c) = true andy, is defined. (64)
Leto = aplxi+1 < A(c)(oa, .. ' )= A
aolxk+1 < Yeloas ..oy o]l =4
oo[xpy1 < salojy, ..oy o, 11 =>lj
oolxktr < salsy, ..., 8,11 =>f§’\ solxky1 < salsy, ..., 8,101
Here
solxk+1 < s1lsy, ..., 55,11 = s. (65)

Furthermore, Conditions (A)—(E) hold.
A) h+l+l3=1-1
(B) s1€ Ts(Xp), m=0,sq,....s, € Ts(W), andsp € Ts(W U {xx41}).

©) ye =4 s1lxje e X ] 1o jm € (Lo n )
(D) oy, =7 5/ for 1<i <m with 371 Iz = I,

(E) o0 =" so.

By (65),

H(s) = H(so)xxr1 < HEDIH(D, ... Hisp)1l, (66)
wheret{(so) € T4(Xi+1), H(s1) € T4(Xy), andH(s)) € T4(Xy) for 1<i<m. By the
definition of § (Definition 6.15),

B = Polxiss < AV @By ... B € Tropus(Xp), (67)

whereV = {x; | 3p € Ts(W) : ;=% p}, ¢(o0, W) = By € Tscyux(Xe+1), and
O, W) = f; € Trcyus(Xp) for 1<i<n. Letn = ¢(y., V). By (D) and the definition



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 153

of V, {j1,...,jm} C V. Hence by (C) and Clair8.16 b¢ (1, V) = true. By (A), (C),
and the induction hypothesig,; ¢ (1) =>j‘40H H(silxjy, ..., x;, 1. Obviously, there exists

d € Tyryux(X,) such thad = y andd, = ;. Hence

bc (0., V) = true (68)
and
Hic) () Azj;{%(sl[xh, XD (69)

Since the rule@3) is in Ry, the rule
AV (x1, ..., x,) — if banddr () and br (3, V) then H () (J)

is in R3. By Claim6.12and Condition §8), mo (br (9, V))(c) = bc(d., V) = true. By
(64), m(b)(c) = true and, by Claimb.7, mo, (dr(9))(c) = true. Hence

AY X)) = Haor(Be).
(c)(x1 X )AoH J(C)(0¢)
By (69),
AV(C)(xla--~7xn)A:O>HHJ(C)(5c) A?HH(Sl[le’ oy X, D (70)
By (D) and the induction hypothesis,
HJ(C)(ﬁj,)A%HH(s;) for 1<i <m. (71)

Itis easy to see thaily = ¢ (00, W U {x441}). By (B), s0 € Ts(W U {xx+11}). By (E) and
the induction hypothesis, for tréfy € T, (c)us (Xi+1) We have

Hio (bo) = Hiso). (72)

Hence

Hio)(B) = Hic)(Bo)lxks1 < AV (@) Hic)(Bo)s - - Hic)(Bn))] by (67)
A:j;-t Hio)Po)xk+1 < HisDIHi)(Bjp)s - - Haoy)(B;,)]11 by (70)

A=j>H Hio)(Po)xks1 < HSDIH(Y), - .., Hisl)11 by (72)

A=:>Hﬂ<so> [k 41 < H(sDIH(), ... His,)I by (72)
=H(s) by (66). O

Claim 6.18. For arbitrary k >0, W C X, o € Tn(cyuz(Xk), andt € T4(Xy), the follow-
ing two statements are equivalent B
(a) There is a treef € T;(cyus(Xk) such thatf = «, be(B, W) = true, and H ) (p)

*
:>A0"Ht'



154 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

(b) There is atree € Tx(W) such thatr=" s andH(s) = t.

Proof. Letk>0, W C Xi, a € Tycyus(Xx), andr € T4(Xy) be arbitrary. By Claims
6.16and6.17, Condition (b) implies Condition (a). We now show that Condition (a) implies
Condition (b). Let us assume that (a) holds and that

Hio)(B) =gy 1 (73)
for somel > 0. We show (b) by induction oh
Base caselet/ = 0. Then
Hio)(P) =t (74)
By Claim6.13 b¢(ff, W) = true implies that

there is a tree € Tx(W) such thats %:\} 5. (75)

Using (74) and (75), we now show by tree induction ghthat# (s) = ¢.
Assume thaff = x; with 1<i <k. Thenf = x; = s. HenceH(s) = H(f) =t.
Assume thatp = o(fy,...,p,) for somen>=0,0 € J(C), UZ,, B1,....5, €
Trcyus(Xp). AsH jcy(f) =t € T4(Xx), o = root(f) ¢ J(C). Hences = root(f) € 2.
Thus

p=0a(Bq. ..., B, forsomen=0, o €2, Bq.....P, € Tycyus(Xp). (76)
By (74),t = to[r1, . . ., 1], Whererg = H(o(x1, ..., x,)), and

i =Hyc) (B forl<i<n. (77)
By (75 and (76), s = a(s1, ..., s,) for some treesy, ..., s, € Tx(W) such that

B; ::lm,» for 1<i <n. (78)
Let 1<i <n, and assume that appears in the treg. Theny; € T4(Xy). Hence by 77),
(78), and the induction hypothesi#,(s;) = t;. Thus

H(s) = to[H(s1), ..., H(sp)] = tolt1, ..., t,] =t.

Induction stepLet! > 0. In the first step of derivatiorVg) the rule €2) is applied to
Hc)(P). Hence Conditiongl)—(3) hold, andH ;) (f) is of the following form:

Hio)(B) = nolxisr < AV (© (g, ... m)] (79)
where
e Hyo)(B)in1s -y, € Trcyua(Xi), n 20,
e 1o € Trcyusa(Xi+1), the variablex, 1 appears exactly once if,
e 1o has no subtrep such thafp contains the variable,1 and the root op is in J(C),
and
e ceC(.
Moreover, by Clains.7,



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 155

(4) m(b)(c) = true, mo(br (0, V))(c) = true, andd. is defined.
Furthermore, derivatior/@) looks as follows:
Hic)(B) = nolxxs1 < AV (), ..., 1)1 = Aon
nolxess < (HayryOelng. ... n, 1 =%, 1.
SinceH is linear, there are tregk) € Ty cyus(Xi+1), B, -+, B, € Tycyux(Xk) such
that Conditiong5)—(8) hold.
(5) B =Polxis1 < AV (O)(By. ... Bl
(6) Hyc)(B;) =n; for 0<i<n,
(7) the variabler,11 appears exactly once fy,.
(8) By has no subtrep such thap contains the variable;_ 1 and the root opis in J(C).
By (6) and (79), we have

Hic)(B) = Hio)(Po)lxkrr < AV () Hic)(Br)s - - » Hao)(B)]. (80)

The first step of 3) is of the form
Hio)(B) = Hio)Po)lxirr < AV (©Hye) (B, - Hio)(Bu)]
= aon Hio)(Bo)xk+1 < (Hiry (O e[ Hicy (B - Hiwo) (B
Derivation

M) (Bo)xisr < (Hary O eHio) (B - Haey BN =35, t
can be split into three parts:

(9 Hio)(Po)lxirr < (Hyr) (0N Hio) (o). - - Hyey (B
=>ljlo9{ Hio)(Po)xk+1 < talHic)(Br), - -+ Huo) (B
=" 2 M) (Bo)lxa1 < 12
=>ljo;{ folxpr1 < 2l =1,
wherely + o +l3=1—1,11 € Tg(Xy), t2 € T\(X), t0 € Tg(Xj+1).
Here
(10) (Hu(r)(0))e =4 g 11
(1) alHsc) B - Hio)(By)] =>ij,{ 1.

(12 Hic)(Bo) =>ljoH 1.

By (4), 0. is defint_ed. By Clain6.12and(4), bc (6., V) = true. Furthermore(H ;) (6))

= Hjc)(0.) andd. = y.. Hence by(10) and by the induction hypothesis, there is a tree
s1 € Tx(V) such that

v (81)
and

H(sy) = 11. (82)
Recall that Condition (a) states that(f, W) = true. By (5) and Claim6.14 we have

be(Bo. WU {xk41}) = true (83)



156 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158

and

be(AY () (By. ... By). W) = true. (84)

By (12), (83), and the induction hypothesis, there is a tige Tx(W U { xx+1}) such that
Bo =;>so, and#(so) = fo. (85)

By (84) and Definition6.11, for eachx; € V, bc(f;, W) = true. Recall thats; € Tx(V).
Using Definition6.11one can show by tree induction enthatbc (s1[fy, - .., f,1, W) =
true. Hence by 82), (11), and the induction hypothesis there is a tsges Tx(W) such
that

salBy, ... Bl %}Sz and#(sz) = 12. (86)

Let
s = solxg+1 < s2]. (87)

Recall thatf = «. By (5), o = fglxir1 < A)(By. ..., B,)1. By (1) the ruleA(x1, . ..,
x,) — if bthenyisin Ry. By (4),

o= Polxitr < APy, ..., B,)]

= A Bolxk+1 < velBr. - - -, Bl

=>f4 Polxk+1 < s1lfr, .- -, B,11 by (@81

=% Bolxi+1 < s21 by (86) (By (7) and(8) these derivations a@!.)

=% solxk41 < s2] by (89)

= s by (87).

By (85)—(87), and(9), H(s) = H(so)[xrr1 < H(s2)] = to[xr+1 < t2] = t. In this way
we have shown that Condition (a) implies Condition (bl

We now show that
T(AoH) =1(A) o t1(H). (88)

Consider Clain.18with k = 0, W = @, a = Ajn(e(u)) for someu € I. Condition (a)
is true if and only if(u, ) € ©(A o H) andu € dom(t(A)). Condition (b) is true if and
only if (u,t) € ©(A) o t(H). Thus, it remains to show that {i, ) € (A o H), then
u € dom(t(A)), or equivalently, ifu ¢ dom(t(A)), then(u, 1) € t(A o H).

Assume that: ¢ dom(t(A)). Any rule of A o H which can be applied tﬂﬁ](e(u)) is of
the form

Al — if band dr () and br (3, ¥) then H yr)(9), (89)

where the ruleAiy — if b then § is in Ry. Sinceu ¢ dom(t(A)), m(b)(e(n)) = false
or d.() is not defined ow,(,, does not generate a terminal tree. In the second case, by
Claim6.7, dr (6)(e(u)) = false. In the third case, by Clait®.13 b¢ (6., ¥) = false, and
hence, by Clain.12 mo; (br (0, ¥))(e(u)) = false Hence, in all three cased, o H cannot



T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158 157

apply rule 89) to the configuratiom%](e(u)). Hence no rule of4 o H can be applied to
the configuratiom? (e(u)). Thus(u, 1) & 1(Ao H).
The theorem simply follows from Eg88). [

Theorem 6.19. For every storage type, ®17(So;) € OI(S).

Proof. LetS = (C, P, F,m, I, E)beanarbitrary storage type. By Coroll&3, it suffices
to prove thaOl*(Scr) € OI(S). Let A = (N, e, 4, Ajn, R) be anOI ™ (Scg) transducer.
By Theorem3.7, we may assume thad is anOI't(Scr) transducer. Let;, 1<i <m,
m >0, be allCF(S) transducers appearing as look-ahead test in the rulds \bfe define
OI(S) transducelB such that(B) = t(A). We define3 = (N, e, 4, Ain, R’) as follows:
e We put all elements dfl in N'. Furthermore, we put each nontermiAaif £;, in N7 for
1<i<m.
o Let

A(x1,...,x,) — if band (L;) theny (90)

be aruleinR LetL; = (N, e, A', D{n, R"). We may assume that the terminal alphabet
A" of £; is empty. We may also assume that there is exactly one rul® efith Di"n
appearing in the left-hand side, cf. Lem@idaQ Moreover, we may assume that this rule
has the forrTD{n — if true then dy - - - d; with [ >0, d; € N'(F) for 1<k <[. Then we

put the rule
A(x1,...,x,) — if bthendy(---di(y)---) (92)

in R’
For each Ki<m, for each ruleB — if bthendy---d; (j>0,d1,...,d; € N'(F))
of £;, we put the rule

B(xy) — if bthendy(---d;(x1)--) (92)

in R’

B mimics.A in the following way. Let4 apply rule @0). FirstB applies rule 91). Second
B checks the look-ahead tg4l;) by rewriting the subtreé (- - - d;(«)) to o applying rules
(92). A formal proof is left to the reader.

We note that the same construction also works inlease but ther8 checks the
look-ahead test much later. In this way we get an alternative proof for Themrem[]

From Theorem8§.19and6.3(and the obvious facts th@ (S) < Ol (So) andOI(S) <
OI(S) o LH) we immediately obtain the following result.

Corollary 6.20. For every storage type, ®I7(So;) = OI(S) = OI(S) o LH.



158 T. Hornung, S. Vagvolgyi / Theoretical Computer Science 329 (2004) 115-158
7. Conclusion

We generalized Engelfriet's decomposition restift = 7 o LH by showing that for
each storage typ§ RTT(Sgt) = RT(S) o LH.

We showed that for every storage typdO(S) is closed under positive look-ahead, and
is closed under composition with tree homomorphisms. That is, for every storag8, type
10T (Si10) = 10(S) = 10(S)o LH = 10(S) 0 H. We also showed that for every storage type
S OI(S) is closed under positive look-ahead, and is closed under composition with linear
tree homomorphisms. That s, for every storage Sl ™ (So;) = OI(S) = OI(S)o LH.

Consider the proof of Theorem®.3. In the light of Definition6.15 and Claim6.16
it is intuitively clear that it is possible to give an alternative definition.4b #H such
that determinism is preserved:.f is aDOI(S) transducer, the o H is aDOI*(Sg))
transducer. Hence we conjecture that the deterministic version of ThedBholds as
well.

Conijecture 7.1. For every storage type, ®OI1(So1) 2 DOI(S) o LH.

We raise the following problem. For a given storage tgpehat is the inclusion diagram
of the transformation class&s"™ (Sy,) andk (Sy) for K € {RT, 10, OI, DRT, DIO, DOI }
andM € MOD U DMOD?

References

[1] R. Bloem, J. Engelfriet, A comparison of tree transductions defined by monadic second order logic and by
attribute grammars, J. Comput. System Sci. 61 (2000) 1-50.
[4] J. Engelfriet, Top—down tree transducers with regular look-ahead, Math. Systems Theory 10 (1977)
289-303.
[5] J. Engelfriet, Context-free grammars with storage, Techn. Rep. Nr 86-11, Department of Computer Science,
University of Leiden, July 1986.
[6] J. Engelfriet, E.M. Schmidt, IO and Ol, J. Comput. System Sci. 15 (1977) 328-353; J. Comput. System Sci.
16 (1978) 67-99.
[7] J. Engelfriet, H. Vogler, Macro tree transducers, J. Comput. System Sci. 31 (1985) 71-146.
[8] J. Engelfriet, H. Vogler, Pushdown machines for the macro tree transducer, Theoret. Comput. Sci. 42 (1986)
251-368.
[9] J. Engelfriet, H. Vogler, Look-ahead on pushdowns, Inform. and Comput. 3 (1987) 245-279.
[10] M.J. Fischer, Grammars with macro-like productions, Ph.D. Thesis, Harvard University, USA, 1968.
[11] Z. Ful6p, S. Vagvolgyi, Variants of top—down tree transducers with look-ahead, Math. Systems Theory 21
(1989) 125-145.
[12] Z. Fulop, S. Vagvolgyi, Iterated deterministic top—down look-ahead, Fundamentals of Computation Theory,
FCT '89, Lecture Notes in Computer Science, Vol. 380, Springer, Berlin, 1989, pp. 175-184.
[13] Z. Filop, S. Vagvolgyi, Top—down tree transducers with deterministic top—down look-ahead, Inform. Process.
Lett. 33 (1989/90) 3-5.
[14] F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiado, Budapest, 1984.
[17] W.C. Rounds, Tree-oriented proofs of some theorems on context-free and indexed languages, Second Ann.
Symp. on Theory of Computing, 1970, pp. 109-116.
[19] G. Slutzki, S. Vagvolgyi, Deterministic top—down tree transducers with iterated look-ahead, Theoret. Comput.
Sci. 143 (1995) 285—-308.
[20] S. Vagvolgyi, Top—down tree transducers with two-way tree walking look-ahead, Theoret. Comput. Sci. 93
(1992) 43-74.



	Storage-to-tree transducers with look-ahead62626262
	Introduction
	Preliminaries
	General notations
	Strings and trees
	Deterministic bottom--up tree automata
	Grammars
	Storage types
	Transducers

	Results on look-ahead tests
	RTRTRTRT transducers
	IOIOIOIO transducers
	OIOIOIOI transducers
	Conclusion
	References


