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Abstract

Themitotic kinesinmotor protein KIF14 is essential for
Kritica Arora, Lama Talje, John S. Allingham and
cytokinesis during cell division and has been impli-
cated in cerebral development and a variety of human
cancers. Here we show that the mouse KIF14 motor
domain binds tightly to microtubules and does not
display typical nucleotide-dependent changes in this
affinity. It also has robust ATPase activity but very
slow motility. A crystal structure of the ADP-bound
formof the KIF14motor domain reveals a dramatically
opened ATP-binding pocket, as if ready to exchange
its bound ADP for Mg·ATP. In this state, the central
β-sheet is twisted ~10° beyond the maximal amount
observed in other kinesins. This configuration has only
been seen in the nucleotide-free states of myosins—
known as the “rigor-like” state. Fitting of this atomic
model to electron density maps from cryo-electron
microscopy indicates a distinct binding configuration
of the motor domain to microtubules. We postulate
that these properties of KIF14 are well suited for
stabilizing midbody microtubules during cytokinesis.
© 2014 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
Legend: Biochemical and structural characterization of the
kinesin-3 motor KIF14 reveal an atypical tight binding to
microtubules and a novel kinesin conformation with
hyper-twisted central β-sheet (in green). This configura-
tion, known as the rigor-like state, has only been previously
observed in myosin (colored in magenta binding to F-actin
and shown in the background).
Introduction

Themitotic kinesin KIF14 has essential roles during
cell division and has been implicated in normal
development and in cancer [1–5]. Knockdown studies
Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
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have revealed KIF14's role in the late stages of
cytokinesis, with depletion of KIF14 that leads to the
formation of binucleated cells resulting from failure in
cytokinesis [6–8]. Homozygous mutation of human
KIF14 has been shown to result in lethality [5]. On the
other hand, KIF14 overexpression has been associ-
ated with multiple cancers and correlates with poor
prognosis in cancer patients [4,9,10]. For this reason,
KIF14 has been referred to as an oncogenic kinesin
[1,3,11]. Despite its importance, our knowledge of
KIF14 as a mitotic motor protein is rather limited.
During cell division, KIF14 localizes to the mitotic

spindle in metaphase, to the spindle midzone in
anaphase, and to the midbody during cytokinesis
[7,8]. Since KIF14 depletion has resulted in cytoki-
nesis failure, its midbody localization has drawn the
most attention. Within the midbody, KIF14 has been
shown to be associated with the centralspindlin
complex via interaction with PRC1 and citron kinase
[8]. However, the precise functions of KIF14 in
the complex remain unclear. Similar to the mitotic
spindle, the midbody is also composed of parallel
and antiparallel microtubule bundles [12]. One major
difference between them is that midbody microtu-
bules are in general more stable than the bulk of the
spindle microtubules [13,14]. In the spindle, the
kinesin-5 motor Eg5 crosslinks adjacent microtu-
bules by bundling parallel microtubules together and
sliding antiparallel ones apart [15,16]. KIF14 may
function in a similar manner to bind, bundle, and
stabilize midbody microtubules. However, none of
these aspects have been formally characterized.
KIF14 belongs to the kinesin-3 family of microtu-

bule motors. This family also includes the well-
characterized KIF1A kinesin, which functions as an
anterograde motor protein that transports membra-
nous organelles along axonal microtubules [17].
KIF1A can exist as monomers or homodimers, either
of which can move processively along microtubules
by coupling of ATPase activity in its N-terminally
positioned motor domain to directed movement [18–
22]. Crystal structures and cryo-electron microscopy
(EM) images of this domain with its nucleotide-binding
pocket occupied by ATP analogs or ADP have shown
areas of the motor domain that are sensitive to the
nucleotide- and tubulin-binding state [23–25]. This
has helped generate a detailed map of the commu-
nication links between the nucleotide pocket, the
microtubule, and the force producing neck linker,
which compose the major elements for mechano-
chemical coupling in kinesins [23–25]. Very recent
computational studies involving single motor domains
of KIF1A have also shown that the β-sheet core
undergoes a twist during phosphate release and ATP
binding in molecular dynamics simulations [26],
similar to myosin [27,28]. Together, with kinetic
measurements of KIF1A homologs [29] and EPR
spectroscopy and Förster resonance energy transfer
(FRET) analysis of other N-terminal kinesin motors
[21,30,31], interpretation of KIF1A's physiological
roles and its performance following mutation [32] or
inhibition with small molecules is increasingly plausi-
ble. Absent, however, is a comparable understanding
of KIF14.
Here we examine the biochemical and structural

properties of the KIF14 motor domain (KIF14MD)
and assess its interaction with microtubules. We
found that KIF14 as a motor exhibited a number of
unusual properties that include very high affinity for
microtubules and an ability to stabilize them against
low-temperature-stimulated depolymerization. Ac-
cording to cryo-EM studies, its motor domain
assumes a slightly skewed orientation on microtu-
bules in the presence of AMPPNP (mimicking an
ATP state) compared to other kinesins. Intriguingly,
the crystal structure of the KIF14 motor domain
shows a wide-open nucleotide pocket and a dis-
torted central β-sheet that is similar to the state
captured for the nucleotide-free forms of myosin V
and myosin II [27,28]. By analogy to actin-induced Pi
and ADP release by myosin, this state has been
predicted to occur during ADP release and rigor
binding of the kinesin motor domain to the microtu-
bule [33] but has not been observed in kinesin crystal
structures or by cryo-EM until now. KIF14's inclina-
tion to crystallize in this “rigor-like” state could
explain another of our observations; which is that
the affinity of this motor for microtubules is largely
insensitive to the nucleotide state of its active site.
Results

MouseKIF14 is 1674 amino acids long and itsmotor
domain resides between E390 and N743 (Fig. 1a).
There is a high degree of primary structure homology
with the motor domains of other kinesin-3 family
members, such as KIF1A, but sequence conservation
breaks down significantly at areas that form loops L8a,
L10, L11, and L12 (also identified as the K-loop in the
kinesin-3 family) [23], as well as β7 (Fig. 1b). In
addition, KIF14 has a conserved insertion in loop L8a,
which is part of the microtubule-binding region. The
region prior to the motor domain, toward the N-termi-
nus, is much longer than other kinesins (residues 1–
389) and appears to possess a globular structure
(Fig. 1a). To understand the relationship between
these divergent elements of KIF14 and its motor
activity, we first purified several recombinant KIF14
motor constructs. These includemouse KIF14_N391-
D772 [denoted as KIF14MD-D772: glutathione
S-transferase (GST) -tagged and untagged], mouse
KIF14_N391-L735 (denoted asKIF14MD-L735), and a
maltose-binding protein (MBP) fusion of mouse
KIF14_E390-N738 (denoted as MBP-KIF14MD-
N738). We chose to focus on the mouse constructs
over the human ones because of the relative ease
to produce them in larger quantity and higher purity
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Fig. 1. Primary structure ofMusmusculus KIF14 and sequence alignment of the motor domain of kinesin-3 family motors.
(a)Regions forming theN-terminal extension, themotor domain, coiled coils (CC), and the forkhead-associated domain (FHA)
are shown. (b) Both the sequence alignment and the assignment of the secondary structure for the motor domain were
performedusingESPript [92] according to theMBP-KIF14MD-N738crystal structure (PDB ID: 4OZQ). Thenucleotide-binding
pocket and microtubule-binding regions are shown. Significant breakdown in sequence conservation between KIF14 and
other kinesin-3 motor proteins, which include loops L8a, L10, L11, and L12, as well as β7, is indicated in purple.
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(Fig. S1). All KIF14MD constructs have robust and
comparable ATP turnover rates (Figs. S1 and S2).

KIF14 has a robust ATPase activity

To characterize KIF14MD's enzymatic activity, we
analyzed the GST-KIF14MD-D772 construct, which
contains both the motor and the neck linker. We first
measured its basal ATPase activity, tubulin dimer-
stimulated ATPase activity, and microtubule-stimu-
lated ATPase activity using a malachite green-
based assay to detect phosphate release over
time. We calibrated this detection method to ensure
that the signal increase by absorbance at 620 nm
followed a linear relation of phosphate increase within
the range we were measuring (Fig. S1a). Using this
method, we found that GST-KIF14MD-D772 has an
unusually high basal ATPase rate (at 0.88 s−1;
Fig. 2a) compared to other kinesins (kinesin-1:
~0.01 s−1 [34,35]; kinesin-5: 0.02 s−1 [36]) but similar
to KIF1A (~0.5 s−1 [25]). Like other kinesins,
GST-KIF14MD-D772 ATPase activity can be stimu-
lated by the presence of microtubules. Addition of
microtubules increased the ATPase rate by approx-
imately 3-fold and saturated at ~0.3 μM tubulin
(Fig. 2b). This is distinct from kinesin-1 whose rate
increases by ~5000-fold to 50 s−1 upon microtubule
stimulation [34,37]. From the microtubule titration
curve, we determined the kcat to be ~2.65 s−1 and
the K1/2, MT to be about 0.02 μM. To calculate the
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Fig. 2. ATPase activity of KIF14 motor domain. (a) Basal activity of GST-KIF14MD-D772. A plot of phosphate release in
10 min againstGST-KIF14MD-D772 concentrations is shown. (b)Microtubule-stimulatedATPaseactivity. ATP turnover rates
were plotted against microtubule concentration (calculated based on tubulin dimer concentration). K1/2, MT and kcat values are
determined by a parabolic fit to the Michaelis–Menten equation using KaleidaGraph. (c) Tubulin dimer-stimulated ATPase
activity. ATPase rates were plotted against tubulin dimer concentrations. (d) An ATP concentration titration of
GST-KIF14MD-D772's basal turnover rate and the microtubule-stimulated rate (blue). (e) ATP turnover rates of GST-Eg3MD
and GST-KIF14MD-D772 were plotted against KCl concentrations used in the ATPase reactions. For all ATPase
experiments, datapointswere collectedasduplicatesor triplicates andare shownas averages fromat least three independent
sets. Error bars represent standard deviations.
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microtubule-stimulated ATPase rate at each concen-
tration, we had to normalize it to the high basal rate,
which is not negligible especially at low microtubule
concentrations. Therefore, the determined kcat value
2.65 s−1 is an underestimate of the true value, which
is approximately 3.5 s−1 based on the low saturating
concentration of ~0.3 μM tubulin dimers. This turn-
over rate is comparable to other mitotic kinesins such
as Eg5 (0.1–10 s−1 [36,38,39]) but is much lower than
the kinesin-3 motor KIF1A (110 s−1 [18]). However,
GST-KIF14MD-D772's K1/2,MT value of ~20 nM is at
least an order of magnitude lower than most kinesins
(kinesin-1: 1.1 μM [35]; kinesin-5: 0.3–6.78 μM [36,40])
but is in the same range as KIF1A (16 ± 8 nM [18]),
implying that KIF14 associates tightly with microtu-
bules. Interestingly, tubulin dimers also stimulated the
ATPase rate of GST-KIF14MD-D772 to a similar level
as microtubules did, albeit that the K1/2, MT value was
higher (0.33 μM; Fig. 2c). We verified that this ATPase
activity was indeed coming from the stimulation of
tubulin dimers, and not microtubules, by both sedimen-
tation of the reaction mixtures showing the absence of
polymers and comparison with data obtained from
GST-Eg5MD and MCAK-MD (both have very low
tubulin dimer-stimulated activity but relatively high
microtubule-stimulated activity; Fig. S3). Because of
KIF14's high basal ATPase activity, we next carried
out an ATP titration under both non-stimulated and
microtubule-activated conditions. From this we deter-
mined the basal Km,ATP of GST-KIF14MD-D772 to be
62 μM and that of the stimulated Km,ATP to be 33 μM
(Fig. 2d). This slight decrease in Km,ATP value in the
presenceofmicrotubulesmay reflect the enhancement
in ATP turnover via microtubule binding. Taken
together, these data show that the KIF14motor domain
has a robust ATPase activity with unusually high basal
and tubulin dimer-stimulated activities.

KIF14 motor domain has high affinity
to microtubules

It should be noted that the ionic strength we used
in our ATPase assays (40 mM Pipes + 75 mM KCl)
is higher than the buffer conditions traditionally used
for kinesin-1 or kinesin-5 (from 12 mM Pipes to
80 mM Pipes with 0–20 mM KCl [35,37–39]). Nor-
mally, this would increase the saturating microtubule
concentration required for Km,ATP determination, but
the high microtubule affinity of GST-KIF14MD-D772
appears to make it less sensitive to ionic strength
changes that perturb electrostatic interactions be-
tween other kinesins and microtubules [41,42]. To
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substantiate this further, we measured ATPase
turnover rate of GST-KIF14MD-D772 in comparison
to a GST fusion construct of the Eg5 motor domain
(GST-Eg5MD) at KCl concentrations ranging from
0 to 200 mM (Fig. 2e). We observed that
GST-KIF14MD-D772 was more resistant to high
ionic strength, showing robust ATPase turnover
even at 125 mM KCl (2.70 s−1, N85% of its maximal
rate). In contrast, the ATPase rate of GST-Eg5MD
dropped below 25% at 75 mM and to virtually 0 at
KCl concentrations above 100 mM.
The lowK1/2,MT of GST-KIF14-MD-D772 suggests

that KIF14 has an unusually high affinity
to microtubules among kinesins, and we were
curious about how this affinity changes during the
ATP hydrolysis cycle. The ADP-bound state is
the weaker binding state for most motile kinesins
[43–45]. This allows the motor head to release from
microtubules and couple microtubule binding–
unbinding steps with ATP turnover. To explicitly
evaluate the nucleotide-dependent microtubule
binding affinity of KIF14MD, we performed co-
sedimentation assays in the presence of ADP or
AMPPNP (a non-hydrolyzable ATP analog) with
KIF14MD-D772. This construct was used in order to
eliminate the complication of artificial dimerization
by GST. We found that KIF14MD-D772 co-pelleted
completely with microtubules under both conditions
(Fig. 3a) and that the binding affinity in the presence
of ADP or AMPPNP was indistinguishable. This is in
direct contrast to prototypical kinesins such as Eg5
(using non-GST-tagged Eg5MD), which dissociate
from microtubules upon conversion to the ADP-
bound state (Fig. 3b). To get a better estimate on the
dissociation constant of KIF14MD-D772-binding to
microtubules, we titrated the microtubule concen-
trations down to 62.5 nM in the presence of ADP.
Even at this very low level, we found that nearly all of
the KIF14MD-D772 protein co-pelleted with micro-
tubules, indicating that the Kd is lower than 62.5 nM
(Fig. 3c). These data demonstrate that the microtu-
bule binding affinity of KIF14 is less sensitive to
nucleotide exchange than most kinesins. This
property can also be observed for the two shorter
constructs used in this paper (KIF14MD-L735 and
KIF14MD-N738; Fig. S2b and c), suggesting that it
is inherent to the motor domain. However, compar-
ison of the amount of pelleted kinesin at the 0.06 μM
tubulin concentration for each construct (Fig. 3c
and Fig. S2c) indicates that the neck linker also
contributes to this high binding affinity. It should also
be noted that KIF14MD's high affinity to microtubules
is molecularly distinct from KIF1A since KIF14 does
not possess the consecutive series of positively
charged lysine residues on the K-loop found in
KIF1A and, to a lesser extent, in other forms of
kinesin-3 (Fig. 1b). This region has been proposed to
help KIF1A maintain microtubule contact during the
weak binding state via interaction with the C-terminal
glutamate-rich E-hook of tubulin [18].
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KIF14 is a slow plus-end-directed motor

KIF14 is a kinesin-3 motor that has a unique
extension N-terminal of the motor domain, which
places the motor domain in the middle of the protein
(Fig. 1a). Despite this extension, KIF14 is classified
as an N-terminal kinesin (or Kin-N) and not an
internal motor domain kinesin (or Kin-I such as
kinesin-13 proteins) because it has a neck linker
motif C-terminal to its motor domain. On this basis, it
is expected to move toward the microtubule plus
end, but this has not been confirmed. Given the
robustness of GST-KIF14MD-D772 in hydrolyzing
ATP, we next determined its motile activity in a
microscopy-based microtubule-gliding assay using
polarity-marked microtubules with surface-absorbed
motors (Fig. 4a). We observed that nearly all of the
microtubules moved with their minus ends leading
(173 out of 180 microtubules with unambiguously
distinguishable ends) (Fig. 4b). Therefore, we
conclude that KIF14 is indeed a plus-end-directed
motor, as predicted by the location of the neck linker
relative to the motor domain. However, we found that
GST-KIF14MD-D772 has an average gliding veloc-
ity of 4.8 nm/s (Fig. 4c), which is approximately three
times slower than Eg5 and more than 200 times
slower than the kinesin-3 motor KIF1A [17,38]. We
also repeated the microtubule-gliding assay using
GST antibodies as surface anchors and obtained an
average velocity of 6.9 nm/s (Fig. S4), suggesting
that the slow motility of KIF14MD was inherent to the
motor and independent of the attachment methods.
While these data indicate that KIF14 is a slow
plus-end-directed motor, it must be cautioned that
the GST-KIF14MD-D772 protein is still a truncated
construct and therefore it is possible that our velocity
measurements deviate from the actual speed of the
full-length motor in cells.

Structure of the KIF14 motor domain

To complement our characterization of the bio-
chemical and microtubule-binding properties of
mouse KIF14, we determined the X-ray crystal



Table 1. Data collection and refinement statistics

MBP-KIF14MD-N738

Data collection statistics
Space group P1
Cell dimensions

a, b, c (Å) 65.7, 73.6, 96.5
α, β, γ (°) 74.4, 87.4, 89.9

Resolution (Å)a 30–2.8 (2.9–2.8)
Total reflections 123,026
No. of unique reflections 40,225
Rmerge

a 13.3 (57.8)
I/Ia 10.72 (2.55)
Completeness (%)a 94.6 (93.9)
Redundancya 3.1 (2.9)

Refinement statistics
Rwork/Rfree

b (%) 26.38/30.75
No. of atoms

Protein (chain A) 5070
Protein (chain B) 5096
Water 36

Average B-factors (Å2)
Protein (chain A) 49.87
Protein (chain B) 48.24
Nucleotide (A) 17.72
Nucleotide (B) 18.45
Water 18.75

RMS deviations
Bond lengths (Å) 0.011
Bond angles (°) 1.47

Ramachandran plot (%)
Favored 89.6
Allowed 10.0
Generously allowed 0.4
Disallowed 0.0

a Data in parentheses represent the highest-resolution shell.
b Rfactor = ∑|Fo − Fc|/∑|Fo|, where Rwork refers to the Rfactor for

the data utilized in the refinement and Rfree refers to the Rfactor for
5% of the data that were excluded from the refinement.
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structure of its motor domain (KIF14MD-N738) by
fusing MBP to its N-terminus via a short polyalanine
linker (Fig. 5a). This strategy readily gave crystals of
suitable quality for diffraction data collection. The
structure of MBP-KIF14MD-N738 was solved by
molecular replacement using the coordinates for
periplasmic MBP (PDB ID: 2R6G) [46] and the motor
domain for KIF13B (PDB ID: 3GBJ) and was refined
to 2.7 Å. Data collection and refinement statistics
are summarized in Table 1. The asymmetric unit
contained two MBP-KIF14MD-N738 molecules in
which the MBP and KIF14MD-N738 components
exist as distinct domains and form few intramolecular
contacts (Fig. 5b). The main region of interaction
between MBP and the motor domain involves part
of loop L12 at the C-terminal end of helix α4.
Interactions between symmetry-related molecules
in the crystal lattice are minimal as well and do
not appear to impact the overall configuration of
KIF14MD-N738. These involve the top of the β1
lobe, the C-terminal end of helix α2, and part of the
microtubule-binding surface (β5a, loop L8, and β5b)
of KIF14. The final electron density map allowed for
the building of residues Glu390–Arg734 in both
molecules A and B, with small sections of some
surface loops missing from the final model due to
missing or ambiguous electron density. This in-
cludes loops L8a, L10, L11, and L12, which, along
with part of β7, is where KIF14 sequence differs most
dramatically from other kinesin-3 family members
(Fig. 1b). ADP, but not Mg2+, is found in the
nucleotide pocket of both KIF14 molecules and the
final refined structure shows that KIF14MD-N738
adopts the canonical α/β kinesin motor domain fold
involving an eight-stranded β-sheet core sand-
wiched by three exposed α-helices on either side
[42,47].

The nucleotide pocket

Secondary structure matching analysis by PDBe-
Fold [48] shows that KIF14MD-N738 shares highest
overall similarity with the Mg·ADP-bound structures
of the KIF1A (PDB ID: 2ZFI) [25] and Eg5 (PDB ID:
1II6) [49] motor domain. Their RMS deviations for
253 and 229 structurally equivalent α-carbons are
1.018 Å and 1.041 Å, respectively. The greatest
structural deviation exhibited by KIF14MD-N738
resides within the nucleotide-binding pocket. A
profound picture of these differences emerges from
superimposing their P-loop elements (residues
482–489 in KIF14: “GPQTxxGKS/T”) and highlight-
ing their central β-sheet strands (Fig. 6a and b).
While their nucleotide atoms and β1, β2, β3, and β8
strands (those on the P loop–switch II side) show
appreciable overlap, the remainder of KIF14's
central β-sheet (β4–β7, on the switch I side) is
twisted an additional 8–11° beyond the maximal
amount observed in KIF1A (Fig. 6a) and Eg5
(Fig. 6b). Along with this twist, helix α3 and switch I
are shifted away from the nucleotide-binding pocket
to a distance of 8.7 Å as determined by measuring
from Ser603 of the switch I “NxxSSR” motif to the
β-phosphate of ADP (Table 2 and Fig. 6d). The result
of this is near total loss of protein contacts for waters
that mediate interactions with the nucleotide. Like-
wise, the conserved P-loop residue Lys488
(GPQTxxGKS/T) is further away from the β-phos-
phate of ADP in KIF14MD-N738 in comparison to
KIF1A (PDB IDs: 2ZFM and 2ZFI) and Eg5 (PDB ID:
1II6) (Table 2).

A new intermediate state of the kinesin
motor domain

Although open conformations of the nucleotide-
binding pocket have been reported for other kinesin
structures determined by X-ray crystallography [50]
and high-resolution cryo-EM [24], the degree of
central β-sheet distortion in KIF14MD-N738 has only
been observed in nucleotide-free myosins V and II
(Fig. 6c) [27,28]. This conformation hasbeendescribed
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in myosin as the “rigor-like” state of the motor, which
resembles the strong actin-binding state that occurs at
the end of a power stroke [51,52]. In kinesin, transition
to this state has been presumed to result from stable
microtubule lattice binding and is thought to trigger a
fully opened conformation of switch II that completely
releases Mg2+ and ADP [33]. Indeed, twisting of the
central sheet of KIF14 appears to disrupt the “Mg2+-
stabilizer” complex previously described in KIF1A
structure [25]. Its purpose is presumed to hold the
“Mg2+-water cap” in place to keep ADP in the
nucleotide-binding pocket [20]. In KIF14, this complex
is composed of residues Glu531L7, Arg591swI, and
Asp638swII, based on homology to KIF1A. While
Asp638swII and Arg591swI maintain a hydrogen bond,
Arg591swI shifts away from Glu531L7 (Fig. 6d). Similar
interactions are seen in KIF1A ADP-bound structure
(PDB ID: 2ZFM) [25], in which the hydrogen bond is
broken between Glu148L7 and Arg203swI. As a
consequence, KIF14MD-N738 contains no Mg2+,
and only three water molecules in proximity of the
phosphate groups of ADP, one of which connects
switch II to β-phosphate by forming a weak hydrogen
bond with Asp638swII. Although the resolution of our
structure approaches the limit for accurate modeling of
water molecules and could therefore explain limited
water occupancy, the B-factors for these atoms are
roughly equivalent to the other waters (~19 Å2).
Another unique feature of the KIF14MD-N738

structure is that the side-chain orientation of
the conserved serine of the P-loop (Ser489P-loop,
GPQTxxGKS/T) does not allow for Mg2+ coordination
nor can it form a hydrogen bond with the β-phosphate
of ADP (Fig. 6d). In all KIF1A crystal structures,
the homologous serine (Ser104P-loop) exhibits an
orientation that allows it to either coordinate the
Mg2+ in the Mg·AMPPCP (PDB ID: 1I6I) [53],
Mg·AMPPNP (PDB ID: 1VFV) [23], and Mg·ADP
complexes (PDB ID: 2ZFI) [25] or interact with
β-phosphate of the ADP complex (PDB ID: 2ZFM)
[25]. This is also the case for the corresponding
Thr112P-loop residue in Eg5 (PDB IDs: 3HQDand 1II6)
[49,54].
The KIF14MD-N738 structure also differs from

some nucleotide-specific conformations of KIF1A in
terms of the orientation of helix α4 of the switch II
cluster. In ADP-bound KIF14MD-N738, helix α4 is in
the “ADP-like” or “down” conformation [23,53,55],
which prohibits docking of the neck linker onto the
catalytic core. Nitta et al. observed this orientation of
helix α4 in the KIF1A-Mg·ADP complex (PDB ID:
2FZI) (Fig. 6e) and proposed it to represent a
predecessor to the Mg2+-release state [25]. In this
state, the motor domain would be presumed to
exhibit weak microtubule binding, which contradicts
the microtubule affinity expected for the rigor-like
conformation of KIF14's central sheet. Rather, in the
model proposed by Nitta et al. to explain microtubule
activation of Mg·ADP release from kinesin, rotation
of helix α4 to an “up” conformation, as seen in its
ADP-bound KIF1A structure (PDB ID: 2ZFM)
(Fig. 6e) [25], as well as the Mg·AMPPNP and
Mg·AMPPCP-bound structures (PDB IDs: 1VFV
and 1I6I) [23,53], was correlated with strong micro-
tubule affinity [25]. The conformation of helix α4 in
ADP-bound KIF14 is clearly different from these
latter KIF1A structures.
Furthermore, the network of interactions described

previously in KIF1A as the “tri-residue complex”
(Tyr150L7, Glu267L11, and Arg216swI) [25] is most
similar in the KIF1A-Mg·ADP and the KIF14MD-
N738-ADP complexes. Nitta et al. noted that these
residues form hydrogen bonds that act as a “latch” to
allow helix α4 to maintain a post-hydrolysis position
(Fig. 6f). Upon Mg2+ release, a slight downward
movement of loop L7 was seen in the ADP-bound
model (PDB ID: 2ZFM) that appeared to break the
latch, causing helix α4 to rotate toward the “up”
conformation [20]. Cryo-EM studies with KIF1A, as
well as KIF5 and Kar3, suggest that this movement
of loop L7 does indeed occur on microtubules
[24,56,57]. In comparison to KIF1A and Eg5, loop
L7 of KIF14MD is rotated downwards significantly,
and yet the corresponding three residues—
Tyr533L7, Arg604swI, and Glu657L11—maintain the
latch with Tyr533L7 forming a strong hydrogen bond
with Glu657L11. Presumably, this helps hold helix α4
in the “down” position and could be the result of the
additional twist in the central β-sheet as it affects all
the elements participating in latch formation: loop L7,
switch I, and loop L11.
While these relationships between the helix α4

conformation and nucleotide state of KIF1A make
the KIF14 conformation seem paradoxical, other
kinesin crystal structures show a range of helix α4
positions that bear little to no correlation to nucleo-
tide identity. For example, crystal structures of
KIF2C (PDB IDs: 1V8J and 1V8K) show the
“down” helix α4 conformation in the presence of
both ADP and AMPPNP in the nucleotide-binding
pocket [58]. This most assuredly stems from the
necessary absence of their microtubule substrate
during crystallization [59]. By virtue of their microtu-
bule association, EM studies seem to provide a more
reliable depiction of nucleotide-dependent states of
helix α4. In high-resolution 3D (3-dimensional)
helical reconstructions of microtubule-bound kine-
sin-1 and kinesin-5, helix α4 of the switch II cluster is
in the “down” conformation in rigor states (ADP and
nucleotide-free) of these motors, similar to KIF14
[56,60]. Alternatively, the “up” conformation of helix
α4 is attained in the presence of AMPPNP, and the
neck linker is docked to the motor core [60]. Based
on this, the conformation of KIF14 observed in the
crystal structure may resemble its true microtubule-
bound rigor-like state in which the neck linker is
prevented from docking onto the core of the motor
domain.
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Also worth noting is that loop L7 has been
identified as the pivot for both the “latch” and
“Mg2+-stabilizer” complexes due to its role as the
microtubule sensor. Two charged residues, located
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Table 2. Distances between nucleotide-binding motif elements in KIF14, Eg5, and KIF1A

Kinesin PDB code Nucleotide state Salt bridge Distance (Å)
(β-phosphate–SswI)

a
Distance (Å)
(Gp–GswII)

b
Distance (Å)

(β-phosphate–KP-loop)
c

KIF14 4OZQ ADP No 8.71 (S603) 6.02 (G482–G641) 3.6
Eg5 3HQD AMPPNP Yes 6.41 (S233) 5.37 (G105–G268) 3.8
Eg5 1II6 ADP Imperfect 7.13 (S233) 5.97 (G105–G268) 2.8
KIF1A 2ZFM ADP R216 side chain missing 7.66 (S215) 5.91 (G97–G251) 2.9
KIF1A 2ZFI ADP No 6.98 (S215) 5.81 (G97–G251) 2.7
KIF1A 1VFV AMPPNP Imperfect 7.74 (S215) 5.52 (G91–G251) 3.4
KIF1A 1I6I AMPPCP No 8.02 (S215) 5.89 (G91–G251) 4.0

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr 2004;60:2126–32.
a Distance between β-phosphate and the second serine in the switch I motif NxxSSR (SswI).
b Distance between the first glycine in the P-loop motif GPQTxxGKS/T (Gp) and the conserved glycine in the switch II motif DxxGxE

(GswII).
c Distance between β-phosphate and the lysine in the P-loop motif GPQTxxGKS/T (KP-loop). Distances were measured from the

α-carbons of the indicated residues using the program Coot [82]. Each of these distances were used as a measure of the closure of the
nucleotide-binding pocket.
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central β-sheet of KIF14, loop L7 and other parts of
the microtubule-binding region (helix α4, β5a/b, and
loop L8) are pulled closer toward the microtubule
surface than is seen in other kinesins. This includes
the recent crystal structure of kinesin-1 in complex
with an α/β tubulin dimer [61]. There, the tubulin
dimer was curved ~9° with respect to a linear
microtubule. This suggests that the KIF14 crystal
structure exhibits a conformation with steric comple-
mentarity to a straight microtubule protofilament. Its
ability to achieve this conformation in the absence of
tubulin might explain KIF14's strong microtubule-
binding affinity in the ADP-bound state.

KIF14 can stabilize microtubules against
cold-induced depolymerization in vitro

We hypothesized that KIF14MD's rigor-like micro-
tubule-binding characteristic would be well suited for
stabilizing microtubules at the spindle midzone or
midbody. To demonstrate its ability to protect
microtubules from depolymerization and further
distinguish KIF14 from other mitotic kinesins such
as Eg5, we developed an in vitro reconstitution
assay that assesses inhibition of cold-induced
microtubule disassembly. In this assay, taxol-
stabilized microtubules were diluted into a low taxol
Fig. 6. The conformational changes in KIF14MD. (a and b) S
a twist of the central β-sheet in MBP-KIF14MD-N738 when c
respectively. (c) Distortion of the central β-sheet of MBP-KIF
transitioning from an ATP-bound state to a nucleotide-free state
KIF14 in comparison to the Mg·ADP-bound and ADP-bound s
interactions. The blue broken line shows a measurement o
determined by measuring from the second conserved serine o
Also shown are the interactions between residues that compo
composed of residues Glu531, Arg591, and Asp638, based o
MBP-KIF14MD-N738 helix α4 on the KIF1A structure just prior
conformation of α4 [25]. Right panel shows MBP-KIF14MD-N
conformation following the release of Mg2+ (PDB ID: 2ZFM) [2
Arg604, and Glu657).
and low tubulin concentration regime in the presence
or absence of KIF14MD-D772 and Eg5MD and were
subjected to low temperature (2 °C) to induce
depolymerization. A saturating concentration of
ATP was used in the reaction to mimic the high
ATP concentration in cells. After normalizing the
level of cold-induced depolymerization to the control
samp le w i thou t k ines in , we found tha t
KIF14MD-D772, but not Eg5MD, effectively pro-
tected microtubules from cold-induced depolymeri-
zation (Fig. 7). We attribute KIF14MD-D772's
microtubule stabilizing effect, at least in part, to its
high binding affinity to microtubules and to the limited
effect of nucleotide exchange on this affinity.

EM of KIF14–microtubule complexes

To gain insight into how KIF14 motor interacts with
microtubules, we analyzed the structure of
KIF14MD–microtubule complexes using cryo-EM
(Fig. 8). We chose to use the untagged
KIF14MD-L735 construct for this experiment be-
cause of its similar length to MBP-KIF14MD-N738,
but without the complication of a tag. We incubated
microtubules wi th saturat ing amounts of
KIF14MD-L735 in the presence of the non-hydrolyz-
able ATP analog AMPPNP. Under these conditions,
uperposition of the α-carbon atoms of the P-loop indicates
ompared to selected crystal structures of KIF1A and Eg5,
14MD-N738 is similar to that observed in myosin V upon
[27]. (d) The open state of the nucleotide-binding pocket of
tates of KIF1A. Black broken lines show hydrogen bonding
f the distance between the nucleotide and switch I as
f the switch I “NxxSSR” motif to the β-phosphate of ADP.
se the “Mg2+-stabilizer” complex. In KIF14, this complex is
n homology to KIF1A. (e) Left panel shows an overlay of
to Mg2+ release (PDB ID: 2ZFI), which exhibits the “down”
738 and the structure of KIF1A with helix α4 in the “up”
5]. (f) Illustration of residues that form the “latch” (Tyr533,
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Fig. 7. KIF14 motor domain protects microtubules from
cold-induced depolymerization. Microtubules mixed with
buffer alone (−) or with the indicted kinesin motors (Eg5MD
or KIF14MD-D772) were subjected to the indicated
temperatures for 30 min, followed by sedimentation via
ultracentrifugation to monitor the state of microtubule
polymers. (a) Supernatant (S) and pellet (P) fractions of
each sample were resolved by SDS-PAGE and the gel
was stained by Coomassie blue. (b) Percentage of
cold-induced depolymerization, normalized to control
sample at room temperature (as 0%) and at 2 °C (as
100%), is shown (averaged from four experiments). Error
bars represent standard deviations.
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the KIF14MD-L735 binds to each tubulin heterodi-
mer resulting in fully “decorated” microtubule com-
plexes (Fig. 8a). We calculated a 1.6-nm-resolution
3D map of the complex (Fig. 8b and Fig. S5) and
fitted the KIF14MD-N738 and tubulin atomic struc-
tures into the map (Fig. 8c and d). The 3D map and
fitted atomic model reveals an overall binding
configuration similar to other kinesins [62].
KIF14MD-L735 binds at the tubulin intradimer
interface, at the crest of the protofilament, and
orients slightly toward the next protofilament result-
ing in the typical clockwise slew when the complex is
viewed from the microtubule plus end. Comparing
the KIF14MD-L735-microtubule model with other
kinesin–microtubule models [24] revealed a small
difference in the position/orientation of the KIF14MD
relative to tubulin (Fig. 8d). This distinct binding
configuration may be a direct consequence of a
different KIF14MD structure.
Nucleotide-dependent changes in the orientation

and position of kinesin elements involved in micro-
tubule binding, such as helix α4, are associated with
changes in the position of the bulk of the motor
domain in kinesin–microtubule complexes
[24,63,64]. KIF14 helix α4 may adopt a configuration
in the microtubule-bound ATP state (as mimicked by
AMPPNP) that is different from other kinesins,
resulting in the distinct position/orientation we see
in the microtubule complex 3D map. A higher
resolution 3D map would be needed to confirm this
by showing rearrangements of specific secondary
structure elements. However, the cryo-EM and
crystallography data together strongly indicate that,
compared to other kinesins, KIF14MD exhibits
unique conformations associated to each ATPase
cycle step. This appears to result in a tight
microtubule interaction through the whole cycle.
We also propose that the distinct binding configura-
tion of the KIF14MD relative to the microtubule may
be associated with the observed microtubule stabi-
lizing effect.
Discussion

Here we presented a biochemical and structural
characterization of the mitotic motor KIF14. As a
kinesin-3 family member, it is perhaps not surprising
that KIF14 shows some similarities to KIF1A,
including its high affinity to microtubules. However,
there are also several striking differences that are
highlighted by our biochemical and structural stud-
ies. For example, KIF14 is an extremely slow and
inefficient walking motor compared to KIF1A, which
runs at more than 200 times faster (1200 nm/s) than
KIF14 (5 nm/s) [17]. With an ATPase rate of
~110 s−1, KIF1A hydrolyzes about 1 ATP per
8 nm step similar to the conventional kinesin,
kinesin-1 [37,65]. By our calculation, KIF14 makes
one step every 2 s but hydrolyzes about 7 ATP
molecules during this period of time. This implies that
futile hydrolysis occurs in the mechanochemical
cycles of KIF14. Although it remains to be deter-
mined whether this is a consequence of KIF14's high
basal ATPase activity or loss of coordination
between KIF14 heads as a consequence of using
truncated motors, we propose that the former
explanation is more likely. This is due to the proclivity
of KIF14MD to adopt a wide-open nucleotide-binding
pocket and high microtubule affinity conformation in
the absence of microtubules, as demonstrated in the
crystal structure. Such ability should accelerate the
process of ADP release and ATP entry. The limited
activation of ATP turnover in the presence of
microtubules suggests that closing of the switch
elements around ATP occurs readily without micro-
tubules as well. Furthermore, the miscorrelation
between the nucleotide states and the conformation
of the motor core and microtubule binding elements
in KIF14 and KIF1A crystal structures may also
explain some of the differences in the rate and
equilibrium constants of their mechanochemical
cycles and microtubule interactions. These distinc-
tions provide a logical explanation for the divergent



(b)(a) (c) (d)

Fig. 8. KIF14 motor domain microtubule complex cryo-EM 3D reconstruction. (a) Cryo-EM image of a 15-protofilament
microtubule decorated with KIF14MD-L735. (b) Surface representation of the 3D reconstruction density map colored
according to radial position and protein identity. Yellow: tubulin; blue: KIF14MD. The 3D reconstruction Fourier shell
correlation (FSC) curve is shown in Fig. S5. (c) Atomic structure of the KIF14 motor domain (blue ribbon) and tubulin
(yellow: α-tubulin; ochre: β-tubulin; PDB ID: 1JFF) fitted into the cryo-EM density map (black mesh). (d) Fitted model
viewed from the microtubule surface. The tubulin structure is clipped away and only the KIF14MD (blue ribbon) is shown.
For comparison with other kinesin–microtubule complexes, the tubulin part of the KIF14–microtubule complex was
superimposed with the tubulin part of two KIF1A microtubule complexes [light pink, KIF1A-MT in AMPPNP (PDB ID:
2HXF); dark pink, KIF1A-MT in ADP (PDB ID: 2HXH)] [24]. When aligned this way, the KIF14 motor domain is slightly
displaced relative to the motor domains of the KIF1A–microtubule complex models, as indicated by the colored arrow. The
scale bar in (a) represents 25 nm; in (b–d), the microtubule is oriented with the plus end toward the top of the page.
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physiological roles of these two kinesin-3 motors:
KIF1A in organelle transport in neurons and KIF14 in
conveying midbody functions during cell division.
The unexpected yet highly important outcome of

this study is that the KIF14MD structure provides a
missing link involved in understanding the mecha-
nism of force generation in kinesins. Until now,
twisting of the central β-sheet has only been
observed in the nucleotide-free form of evolutionarily
related motor myosin [27,28]. This rearrangement
causes the actin-binding cleft in myosin to close,
leading to a marked increase in actin affinity, as well
as Pi and ADP release. Conversion of the motor to
the strong actin-binding state is viewed to be the
major contributor to the loss of free energy needed to
perform the power stroke [33,66]. In this way,
distortion of the central β-sheet provides the struc-
tural basis for communication between the actin-
binding, nucleotide-binding, and force-producing
subdomains [27]. In kinesin, translocation is pro-
duced upon binding to ATP and docking of the neck
linker against the motor core when the motor is
attached to the microtubule [53]. The recent crystal
structure of kinesin-1 in complex with α/β tubulin
illustrated this relationship and showed a twist of the
β-sheet that was only marginally more pronounced
than that of free kinesin in complex with ADP [61].
Gigant et al. suggested this to mean that they had
captured the remnant of an event involving a much
larger twist [61], that being kinesin's rigor state. We
propose that this state, or an event immediately
preceding this state, is observed in the KIF14
structure. Proceeding from this state, ATP binding
presumably untwists the central β-sheet, leading to
re-orientation of the bulk of the motor domain relative
to the microtubule on the stationary helix α4, as
depicted in the “seesaw”model [59,64,67]. Concom-
itant widening of the gap between helix α4 and the
N-terminus of the motor domain would expose the
neck linker docking position on the motor core,
directing the C-terminal neck toward the microtubule
plus end. Given that ADP remains bound to our
KIF14 structure, perhaps the structure of nucleoti-
de-free KIF14 will be required to establish if a more
pronounced distortion of the central β-sheet accom-
panies nucleotide release. However, it is relevant to
note that soaking rigor-like myosin V crystals with
Mg·ADP produced an ADP-bound state with mini-
mal alterations compared to the nucleotide-free
structure [27].
Unfortunately, it is not obvious from inspection of

the structure, or from consideration of the sequence
of amino acids that comprise it, why KIF14 displays a
more distorted central β-sheet than other kinesins.
As previously noted, L8a, L10, L11, L12, and part of
β7 show some particularly unique regions of amino
acid sequence compared to other kinesin-3 motors,
and indeed, there are differences between KIF14
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and KIF1A in the configuration of these regions
where accurate atomic modeling was feasible.
However, it is difficult to assert with confidence that
these discrepancies form deformable linkages or
favor unique interactions with subdomains of the
motor that readily enable β-sheet distortion. In areas
where the primary structure was more conserved,
such as loops L3 and L5 and helices α2b and α3, we
also see some 3D structure divergence, but again,
their connection to the twisted conformation of the
KIF14 motor core cannot be clearly delineated
without targeted mutagenic studies. A likely, albeit
imprecise, prediction is that many regions through-
out the motor domain of KIF14 contribute to its ability
to populate the rigor-like state in the absence of
microtubules. What is clear is that KIF14 is not
dissimilar from some isoforms of myosin, whose
propensity for central β-sheet distortion and actin-
binding cleft closure in the absence of actin is greater
than other myosins [68]. Whether, like myosins [51],
kinesins with different kinetic and functional proper-
ties access similar rigor-like conformations in the
absence of microtubules remains to be shown.
Considering the presumed functions of KIF14 at

the midbody during cytokinesis [7,8], its slow motility
and limited sensitivity to changing nucleotides with
respect to microtubule association may be important
if its primary role is to organize and bundle adjacent
midbody microtubules. This parallels Eg5's function
in the mitotic spindle [69–72]. Having a motor that
binds tightly to microtubules also appears to offer a
functionality that facilitates microtubule stabilization.
Therefore, KIF14 could act as an assembled array of
motors in between microtubule bundles to generate
a limited (distance-wise) but more powerful antipar-
allel sliding than Eg5. In this regard, the midzone or
midbody microtubule system involving KIF14 may
resemble more of a “mitotic muscle” than the mitotic
spindle [73,74]. The biochemical and structural
features of KIF14 that we present here provide a
molecular basis for testing this hypothesis in the
future.
Materials and Methods

Cloning, protein expression, and purification

KIF14_N391-L735 and KIF14_N391-D772 constructs
were generated as GST-fusion proteins. KIF14 coding
region were amplified by PCR and cloned into the
pGEX-6P1 vector. To express the recombinant proteins,
plasmids were transformed into BL21 pLys Escherichia
coli cells. Transformants were grown in Luria–Bertani
media and induced with 0.1-0.5 mM IPTG at 18 °C
overnight. GST-fusion proteins were purified on glutathi-
one resin (GE Healthcares) according to the manufac-
turer's protocol in lysis/binding buffer [20 mM Tris (pH 7.5),
250 mM NaCl, 0.1% Triton X-100, 1.5 mM MgCl2, 0.5 mM
ATP, 1 mM β-mercaptoethanol, 1 mM PMSF, and 2 mM
benzamidine HCl]. Resins were washed in the binding
buffer (with 500 mM NaCl and 0.2 mM ATP). Proteins
were either eluted with 5 mM reduced glutathione [in
50 mM Tris (pH 8.0), 150 mM NaCl, 1 mM MgCl2, 0.2 mM
ATP, and 1 mM DTT] to generate the GST-fusion or
cleaved on beads with PreScission protease [in cleavage
buffer: 20 mM Hepes (pH 7.2), 1 mM MgCl2, 200 mM
NaCl, 1 mM TCEP, and 0.2 mM ATP] to generate the
untagged motors. Eluted GST-KIF14 constructs were
dialyzed in storage buffer (1× BRB80, 150 mM KCl,
0.2 mM ATP, and 1 mM DTT) supplemented with 10%
sucrose, flash frozen in liquid nitrogen, and stored in −
80 °C freezer. The mouse KIF14_E390-N738 construct
was amplified by PCR and cloned into pMal-MATa1
(Addgene) using HindIII and PstI for expression as an
MBP f u s i o n [ 7 5 ] . T h e r e s u l t i n g p r o t e i n ,
MBP-KIF14MD-N738, was expressed in the BL21-Codon-
Plus (DE3)-RIL E. coli cell line (Stratagene) in Luria–
Bertani media supplemented with the appropriate antibi-
otics as previously described [76]. Cells were resuspended
in Column Buffer [10 mM NaPO4 (pH 7.2), 200 mM NaCl,
2 mM MgCl2, 1 mM ethylene glycol bis(β-aminoethyl
ether) N,N′-tetraacetic acid (EGTA), 0.2 mM ATP, 5 mM
β-mercaptoethanol, and ethylenediaminetetraacetic-acid--
free protease inhibitors (Sigma-Aldrich)] and lysed on ice
by sonication. Soluble protein was recovered by centrifu-
gation at 21,000 rpm for 40 min in a Beckman JA-25.5
rotor, and the supernatant was loaded onto an amylose
resin column (New England Biolabs) that had been
equilibrated with Column Buffer. After thorough washing
with 12 column volumes of Column Buffer, we eluted
MBP-KIF14MD-N738 with Column Buffer supplemented
with 10 mM maltose. Peak fractions containing purified
MBP-KIF14MD were pooled and further purified by
size-exclusion chromatography in 20 mM Hepes
(pH 7.2), 1 mM MgCl2, 150 mM NaCl, 1 mM TCEP, and
0.2 mM ATP. Final peak fractions from column chroma-
tography were pooled and concentrated with Amicon Ultra
concentrators (Millipore) and flash frozen in liquid nitrogen
for storage at −80 °C. GST-Eg5MD and MCAK-MD (187–
589) were purified as previously described [77]. Bovine brain
tubulins and fluorescently labeled tubulins were prepared
using standard protocols as previously described [78].

ATPase assay and kinetic analysis

All kinetic experiments were performed in 384-well
plates using the malachite green-based phosphate detec-
tion assay. Malachite green reagent was prepared by
dissolving 8.1 mM ammonium molybdate in 1 M HCl, to
which 2.7 mM malachite green was added to obtain a
saturating concentration; the reagent was then filtered to
remove any insolublematerials. Individual reaction mixtures
were usually assembled in a 30 μl volume with the following
composition: BRB40 [40 mM Pipes (pH 6.8), 0.5 mM
EGTA, and0.5 mMMgCl2], 10 μM taxol, 0.25 mg/ml casein,
1 mM DTT, 1 mM MgCl2, and 0.02% Tween-20 with the
indicated concentrations of KCl, ATP, microtubules, and
kinesin motors. In general, reactions were assembled in the
following way: A microtubule mix containing taxol-stabilized
microtubules and ATP and an enzyme mix containing the
rest of the reaction components were made separately.
Reactions were initiated by combining the two mixtures and
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were allowed to proceed for 10 or 15 min, within the linear
portion of the reaction curve (Fig. S1), and then quenched
with 30 μl of 90 mM perchloric acid. We then added 30 μl of
the quenched mixture to 40 μl malachite green reagent to
develop the color. After 5- to 10-min incubation, the amount
of phosphate generated in each well was quantified by
measuring the absorbance at 620 nm using the Tecan
Genios Plus plate reader. The amount of phosphate
generated in each well was determined by the absorbance
reading at 620 nm using a standardized calibration curve
obtained from a phosphate titration in the reaction buffer
(Fig. S1). Concentrations of KIF14MD constructs in the
ATPase reactions used were as follows, unless stated
otherwise: for tubulin dimer-stimulated or microtubule-
stimulated activity: 15 nM for KIF14MD-D772 (GST or
untagged), 60 nM for KIF14MD-L735, and 60 nM for
MBP-KIF14MD-N738. The basal rate for each construct
was determined either by a concentration titration or by a
calculation from the reaction without tubulin/microtubules.
Km, K1/2, MT, and kcat values were determined by hyperbolic
fits of the plots of turnover rates against substrate
concentrations to the Michaelis–Menten equation using
KaleidaGraph (Synergy).

Crystallization, data collection and processing, and
structure determination

Crystals of the MBP-KIF14MD-N738 fusion grew by
hanging-drop vapour diffusion at 4 °C after mixing protein
(28 mg/ml) supplemented with 1 mM Mg·ATP in a 1:1
volume ratio with a solution of 200 mM sodium formate
(pH 7.0) and 12% polyethylene glycol 3350. Rod-like
crystals appeared overnight and were flash frozen in
cryoprotectant composed of 15% polyethylene glycol
3350, 300 mM sodium formate (pH 7.0), and 25% (v/v)
ethylene glycol.
X-ray diffraction data were collected from a single frozen

crystal on the X6A beam line at the National Synchrotron
Light Source Facility (Brookhaven National Laboratory,
New York) and were integrated and scaled with the
program HKL2000 [79]. A molecular replacement search
using the program BALBES [80] identified coordinates
KIF13B (PDB ID: 3GBJ) (unpublished results) and MBP
(PDB ID: 2R6G) [46] as search models for Phaser [81]. A
series of manual building cycles using Coot [82] and
iterative restrained refinement cycles using non-crystallo-
graphic symmetry restraints and TLS refinement in
REFMAC 5.7 [83] were performed to generate the final
model. Data collection and refinement statistics are
summarized in Table 1. Coordinates and structure factors
have been deposited in the Protein Data Bank with
accession number 4OZQ.
Microtubule co-sedimentation assay

Co-sedimentation assays were performed as previously
described with some modifications [84]. Briefly, microtu-
bules were prepared by polymerizing tubulin at 25–50 μM
in 1× BRB80 (80 mM Pipes, 1 mM EGTA, and 1 mM
MgCl2), 1 mM GTP, and 1 mM DTT in the presence of
10% DMSO at 37 °C for 30 min, then diluted to 10 or
20 μM working stocks in 1× BRB80 with 20 μM taxol.
Binding reactions were performed by mixing the indicated
kinesin constructs with microtubules in 1× BRB80 supple-
mented with the indicated salt concentrations (25–75 mM
NaCl), 1 mM DTT, 0.01% Tween-20, and 20 μM taxol.
After a 20-min incubation, mixtures were spun at 45,000–
60,000 rpm in a Sorvall S120AT3 rotor at 25 °C for 5 min.
Supernatant and pellet fractions were recovered, resus-
pended in Laemmli buffer, and resolved by SDS-
polyacrylamide gel electrophoresis. Gels were then
stained with Coomassie blue R250 dye, destained, and
scanned with a digital scanner. Protein band intensities
were quantified using ImageJ (National Institutes of
Health).

Microtubule surface-gliding assay

KIF14 motile activity was measured in a surface-gliding
assay with polarity-marked microtubules in a flow chamber
assay as previously described [38,85]. Briefly, the flow
chamber was made by adhering a coverslip to a glass slide
using two parallel strips of water-resistant double-sided
adhesive tape. Polarity-marked microtubules were pre-
pared by polymerizing preformed Alexa-488-labeled
GMP-CPP seeds in an elongation mix containing 1.5 μM
X-rhodamine-labeled tubulin in 1× BRB80 with 0.05 mM
GMP-CPP (Jena Bioscience) and 1 mM DTT in a 37 °C
circulating water bath for 1 h. To carry out the micro-
tubule-surface-gliding assay, we non-specifically
absorbed GST-KIF14MD-D772 (at ~0.1 mg/ml) onto the
coverslip in the flow chamber. After surface blocking with
casein (0.5 mg/ml in BRB80), polarity-marked GMP-CPP
microtubules were flown into the chamber to be captured
by the surface-anchored GST-KIF14MD-D772. Reaction
mix containing 1× BRB80, 50 mM KCl, 0.5 mg/ml casein,
1 mM Mg·ATP, and 1× oxidation mix [22.5 mM glucose,
0.22 mg/ml glucose oxidase (Sigma G-2133), 0.036 mg/ml
catalase (SigmaC-40), and 4 mMDTT]was then introduced
into the chamber to initiateKIF14motility. Themovements of
microtubules were captured by a time-lapse recording every
30 s for 20 min using a Zeiss Axio-Imager Z1 microscope
equippedwith a 63×1.4Plan-APOCHROMATobjective and
a cooled CCD camera using the Zeiss AxioVision Rel. 4.8
software. Recorded TIFF images were then visualized and
analyzed using MetaMorph (Molecular Devices), with the
rates of KIF14-driven microtubule gliding determined by
kymography.
Cold-induced microtubule depolymerization assay

Microtubules were prepared as described above and
diluted to 20 μM with 1× BRB80 containing taxol (final
concentration = 20 μM). To prepare reaction mix for
cold-induced depolymerization, microtubule stock was
further diluted 10-fold in 1× BRB80 with 2 μM taxol and
75 mM NaCl in the absence or presence of
KIF14MD-D772 or Eg5MD (residues 1–437). To induce
microtubule depolymerization, the mixtures were incubat-
ed at 2 °C for 30 min in a PCR machine and the control
sample at room temperature. The mixtures were then
subjected to ultracentrifugation to separate the depolymer-
ized tubulin dimers from microtubules as described above
in the co-sedimentation assay. Supernatant and pellet
fractions were prepared and analyzed the same way as
described above.



3012 Biochemistry and structure of KIF14
Cryo-EM and helical 3D reconstruction

Taxol/DMSO polymerized microtubules [86] were incu-
bated with KIF14MD-L735 in a 2:1 (kinesin:tubulin)
stoichiometry in the presence of 2 mM AMPPNP (MP
Biomedicals). We applied 4 μl of this solution onto freshly
glow discharged holey carbon grids (Quantifoil R2/100)
blotted and flash frozen as previously described [87].
Frozen grids were imaged under low dose conditions with
a nominal defocus range of 1–2.5 μm on a Tecnai-20
cryo-electron microscope operated at 120 kV. Electron
micrographs were recorded on a TVIPS F415 4K × 4K
camera at a nominal magnification of 50,000× (1.6 Å pixel
size). Images with 15 protofilaments helical microtubules
were selected for 3D image reconstruction as were
selected for further analysis. Helical 3D reconstruction
was performed as previously described [88]. Briefly, we
used a Fourier–Bessel method to obtain a preliminary 3D
map. This map was used as an initial reference for 10
rounds of single particle and 3D reconstruction refinement.
Final resolution (1.6 nm) was estimated using the FSC0.143
criteria calculated from two independently refined recon-
structions each including half of the data set (Fig. S5)
[89,90]. The final map included 30 filaments and 24,722
asymmetric units. 3D map visualization and fitting of the
crystal structures into the map was performed using UCSF
chimera [91]. For fitting, we calculated 1-nm-resolution
models of the atomic structures of tubulin (PDB ID: 1JFF)
and the KIF14MD (PDB ID: 4OZQ) after deleting the MBP
domain and fitted them independently as rigid bodies into
the cryo-EM electron density map using the global fit
option of the UCSF Chimera [91] fitmap command.

Accession numbers

Coordinates and structure factors have been deposited
in the Protein Data Bank with accession number 4OZQ.
The EM 3D map has been deposited in the EMDataBank
with accession code EMD-2609.
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