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Abstract

The purpose of this paper is to introduce a cohomology theory for abelian matched p
Hopf algebras and to explore its relationship to Sweedler cohomology, to Singer cohomology
extension theory. An exact sequence connecting these cohomology theories is obtained for a
abelian matched pair of Hopf algebras, generalizing those of Kac and Masuoka for matche
of finite groups and finite-dimensional Lie algebras. The morphisms in the low degree part
sequence are given explicitly, enabling concrete computations.
 2004 Elsevier Inc. All rights reserved.

0. Introduction

In this paper we discuss various cohomology theories for Hopf algebras and
relation to extension theory.

It is natural to think of building new algebraic objects from simpler structures, o
get information about the structure of complicated objects by decomposing them
simpler parts. Algebraic extension theories serve exactly that purpose, and the classi
problem of such extensions is usually related to cohomology theories.

In the case of Hopf algebras, extension theories are proving to be invaluable to
the construction of new examples of Hopf algebras, as well as in the efforts to cl
finite-dimensional Hopf algebras [26].
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Hopf algebras, which occur for example as group algebras, as universal envelope
algebras, as algebras of representative functions on Lie groups, as coordinate alge
algebraic groups and as Quantum groups, have many ‘group like’ properties. In par
cocommutative Hopf algebras are group objects in the category of cocommu
coalgebras, and are very much related to ordinary groups and Lie algebras. In fac
an algebraically closed field of characteristic zero, such a Hopf algebra is a semi-dir
product of a group algebra by a universal envelope of a Lie algebra, hence just a
algebra if finite-dimensional (see [5,15,24] for the connected case, [9,10,30] for the gene
case).

In view of these facts it appears natural to try to relate the cohomology of
algebras to that of groups and Lie algebras. The first work in this direction was
by M.E. Sweedler [29] and by G.I. Kac [13] in the late 1960s. Sweedler introduc
cohomology theory of algebras that are modules over a Hopf algebra (now called Sw
cohomology). He compared it to group cohomology, to Lie algebra cohomology a
Amitsur cohomology. In that paper he also shows how the second cohomology
classifies cleft comodule algebra extensions. Kac considered Hopf algebra extensio
group algebrakT by the dual of a group algebrakN obtained from a matched pair of fini
groups(N,T ), and found an exact sequence connecting the cohomology of the g
involved and the group of Hopf algebra extensions Opext(kT , kN)

0→ H 1(N �� T , k•) → H 1(T , k•) ⊕ H 1(N, k•) → Aut
(
kN #kT

)
→ H 2(N �� T , k•) → H 2(T , k•) ⊕ H 2(N, k•)

→ Opext
(
kT , kN

) → H 3(N �� T , k•) → ·· ·

which is now known as the Kac sequence. In the work of Kac all Hopf algebras are
the field of complex numbers and also carry the structure of aC∗-algebra. Such structure
are now called Kac algebras. The generalization to arbitrary fields appears in recent wo
by A. Masuoka [19,20], where it is also used to show that certain groups of Hopf al
extensions are trivial. Masuoka also obtained a version of the Kac sequence for m
pairs of Lie bialgebras [21], as well as a new exact sequence involving the group of
Hopf algebra extensions of a finite-dimensional abelian Singer pair [22].

In this paper we introduce a cohomology theory for general abelian matched
(T ,N,µ, ν), consisting of two cocommutative Hopf algebras acting compatibly on ea
other with bismash productH = N �� T , and obtain a general Kac sequence

0→ H 1(H,A) → H 1(T ,A) ⊕ H 1(N,A) →H1(T ,N,A) → H 2(H,A)

→ H 2(T ,A) ⊕ H 2(N,A) →H2(T ,N,A) → H 3(H,A) → ·· ·

relating the cohomologyH∗(T ,N,A) of the matched pair with coefficients in a modu
algebraA to the Sweedler cohomologies of the Hopf algebras involved. For tr
coefficients the maps in the low degree part of the sequence are described ex
If T is finite-dimensional then abelian matched pairs(T ,N,µ, ν) are in bijective
correspondence with abelian Singer pairs(N,T ∗), and we get a natural isomorphis
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H∗(T ,N, k) ∼= H ∗(N,T ∗) between the cohomology of the abelian matched pair and
of the corresponding abelian Singer pair. In particular, together with results from [12
obtains

H1(T ,N, k) ∼= H 1(N,T ∗) ∼= Aut(T ∗ #N)

and

H2(T ,N, k) ∼= H 2(N,T ∗) ∼= Opext(N,T ∗).

The sequence gives information about extensions of cocommutative Hopf algeb
commutative ones. It can also be used in certain cases to compute the (low d
cohomology groups of Hopf algebras.

Such a sequence can of course not exist for non-abelian matched pairs, at leas
sequence is to consist of groups and not just pointed sets as in [27].

Together with the five term exact sequence for a smash product of Hopf alg
H = N � T [17], generalizing that of K. Tahara [31] for a semi-direct product of grou

1 → H 1
meas

(
T ,Hom(N,A)

) → H̃ 2(H,A) → H 2(N,A)T

→ H 2
meas

(
T ,Hom(N,A)

) → H̃ 3(H,A)

it is possible in principle to give a procedure to compute the second cohomology gro
any abelian matched pair of pointed Hopf algebras over a field of characteristic zer
a finite group of points and a reductive Lie algebra of primitives.

In Section 1 abelian Singer pairs of Hopf algebras are reviewed. In particular w
about the cohomology of an abelian Singer pair, about Sweedler cohomology and
algebra extensions [28,29].

In the second section abelian matched pairs of Hopf algebras are discusse
introduce a cohomology theory for an abelian matched pair of Hopf algebras
coefficients in a commutative module algebra, and in Section 4 we see how it com
to the cohomology of an abelian Singer pair.

The generalized Kac sequence for an abelian matched pair of Hopf algebra is presen
in Section 5. The homomorphisms in the low degree part of the sequence are
explicitly, so as to make it possible to use them in explicit calculations of groups of
algebra extensions and low degree Sweedler cohomology groups.

Section 6 examines how the tools introduced combined with some additional o
vations can be used to describe explicitly the second cohomology group of some abel
matched pairs.

In the appendix some results from (co-)simplicial homological algebra used in the
body of the paper are presented.

Throughout the paperHV , HA and HC denote the categories of leftH -modules,
H -module algebras andH -module coalgebras, respectively, for the Hopf algebraH over
the field k. Similarly, VH , AH andCH stand for the categories of rightH -comodules,
H -comodule algebras andH -comodule coalgebras, respectively.
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We use the Sweedler sigma notation for comultiplication:∆(c) = c1 ⊗ c2, (1 ⊗
∆)∆(c) = c1 ⊗ c2 ⊗ c3 etc. In the cocommutative setting the indices are clear from
context and we will omit them whenever convenient.

If V is a vector space, thenV n denotes itsn-fold tensor power.

1. Cohomology of an abelian Singer pair

1.1. Abelian Singer pairs

Let (B,A) be a pair of Hopf algebras together with an actionµ :B ⊗ A → A and
a coactionρ :B → B ⊗ A so thatA is a B-module algebra andB is an A-comodule
coalgebra. ThenA ⊗ B can be equipped with the cross product algebra structure as
as the cross product coalgebra structure. To ensure compatibility of these structures, i.e., to
get a Hopf algebra, further conditions on(B,A,µ,ρ) are necessary. These are most ea
expressed in term of the action ofB onA ⊗ A, twisted by the coaction ofA onB,

µ2 = (
µ ⊗ mA(1⊗ µ)

)
(14235)

(
(ρ ⊗ 1)∆B ⊗ 1⊗ 1

)
:B ⊗ A ⊗ A → A ⊗ A,

i.e., b(a ⊗ a′) = b1B(a) ⊗ b1A · b2(a
′), and the coaction ofA on B ⊗ B, twisted by the

action ofB onA,

ρ2 = (
1⊗ 1⊗ mA(1⊗ µ)

)
(14235)

(
(ρ ⊗ 1)∆B ⊗ ρ

)
:B ⊗ B → B ⊗ B ⊗ A,

i.e.,ρ2(b ⊗ b′) = b1B ⊗ b′
B ⊗ b1A · b2(b

′
A).

Observe that for trivial coactionρ :B → B ⊗ A one gets the ordinary diagonal acti
of B onA⊗A, and for trivial actionµ :B ⊗A → A the diagonal coaction ofA onB ⊗B.

Definition 1.1. The pair(B,A,µ,ρ) is called an abelian Singer pair ifA is commutative,
B is cocommutative and the following are satisfied.

(1) (A,µ) is aB-module algebra (i.e., an object ofBA),
(2) (B,ρ) is aA-comodule coalgebra (i.e., an object ofCA),
(3) ρmB = (mB ⊗ 1)ρ2, i.e., the diagram

B ⊗ B
mB

ρ2

B

ρ

B ⊗ B ⊗ A
mB⊗1

B ⊗ A

commutes,
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(4) ∆Aµ = µ2(1⊗ ∆A), i.e., the diagram

B ⊗ A
µ

1⊗∆A

A

∆A

B ⊗ B ⊗ A
µ2

A ⊗ A

commutes.

The twisted action ofB onAn and the twisted coaction ofA onBn can now be defined
inductively:

µn+1 = (
µn ⊗ mA(1⊗ µ)

)
(14235)

(
(ρ ⊗ 1)∆B ⊗ 1n ⊗ 1

)
:B ⊗ An ⊗ A → An ⊗ A

with µ1 = µ and

ρn+1 = (
1⊗ 1n ⊗ mA(1⊗ µ)

)
(14235)

(
(ρ ⊗ 1)∆B ⊗ ρn

)
:B ⊗ Bn → B ⊗ Bn ⊗ A

with ρ1 = ρ.

1.2. (Co-)modules over abelian Singer pairs

It is convenient to introduce the abelian categoryBVA of triples(V ,ω,λ), where

(1) ω :B ⊗ V → V is a leftB-module structure,
(2) λ :V → V ⊗ A is a rightA-comodule structure and
(3) the two equivalent diagrams

B ⊗ V
ω

1⊗λ

V

λ

B ⊗ V ⊗ A
ωV ⊗A

V ⊗ A,

B ⊗ V
ω

λB⊗V

B

λ

B ⊗ V ⊗ A
ω⊗1

V ⊗ A

commute, where the twisted actionωV ⊗A :B ⊗ V ⊗ A → V ⊗ A of B on V ⊗ A

is given byωV ⊗A = (ω ⊗ mA(1 ⊗ µ))(14235)((ρ ⊗ 1)∆B ⊗ 1 ⊗ 1) and the twisted
coactionλB⊗V :B ⊗ V → B ⊗ V ⊗ A of A on B ⊗ V by λB⊗V = (1 ⊗ 1 ⊗ mA(1⊗
µ))(14235)((ρ ⊗ 1) ⊗ ∆B ⊗ λ).

It has been recently pointed out to us that these objects are a special case of entwin
modules as introduced by Brzeziński and Majid in [3] (see also [2,4]).

The morphisms areB-linear andA-colinear maps. Observe that(B,mB,ρ), (A,µ,∆A)

and(k, εB ⊗1,1⊗ ιA) are objects ofBVA. Moreover,(BVA,⊗, k) is a symmetric monoida
category, so that commutative algebras and cocommutative coalgebras are defined
(BVA,⊗, k) [11].
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The free functorF :VA → BVA, defined byF(X,α) = (B ⊗ X,αB⊗X) with twisted
A-coactionαB⊗X = (1 ⊗ 1 ⊗ mA(1 ⊗ µ))(14235)((ρ ⊗ 1)∆B ⊗ α) is left adjoint to
the forgetful functorU : BVA → VA, with natural isomorphismθ : BVA(FM,N) →
VA(M,UN) given byθ(f )(m) = f (1 ⊗ m) andθ−1(g)(n ⊗ m) = µN(n ⊗ g(m)). The
unit ηM :M → UF(M) and the counitεN :FU(N) → N of the adjunction are given b
ηM = ιB ⊗ 1 andεN = µN , respectively, and give rise to a comonadG = (FU, ε, δ =
FηU).

Similarly, the cofree functorL : BV → BVA, defined byL(Y,β) = (Y ⊗A,βY⊗A) with
twistedB-actionβY⊗A = (β ⊗ mA(1 ⊗ µ))(14235)((ρ ⊗ 1)∆B ⊗ 1 ⊗ 1) is right adjoint
to the forgetful functorU : BVA → BV , with natural isomorphismψ : BV(UM,N) →
BVA(M,LN) given byψ(g) = (1⊗ g)δM andψ−1(f ) = (1⊗ εA)f . The unitηM :M →
LU(M) and the counitεN :UL(N) → N of the adjunction are given byηM = δM and
εN = 1⊗ εA, respectively. They give rise to a monad (or triple)T = (LU,η,µ = LεU) on
BVA. The (non-commutative) square of functors

V
L

F

VA

F

BV
L

BVA

together with the corresponding forgetful adjoint functors describes the situation. Ob
that BVA(G(M),T (N)) ∼= V(UM,UN). These adjunctions, monads and comon
restrict to coalgebras and algebras.

1.3. Cohomology of an abelian Singer pair

The comonadG = (FU, ε, δ = FηU) defined onBVA can be used to constructB-free
simplicial resolutionsXB(N) with Xn(N) = Gn+1N = Bn+1 ⊗N , faces and degeneraci

∂i = GiεGn−i (N) :Xn+1 → Xn, si = GiδGn−i (N) :Xn → Xn+1

given by∂i = 1i ⊗ mB ⊗ 1n+1−i for 0 � i � n, ∂n+1 = 1n+1 ⊗ µN , andsi = 1i ⊗ ιB ⊗
1n+2−i for 0 � i � n.

The monadT = (LU,η,µ = LεU) on BVA can be used to constructA-cofree
cosimplicial resolutionsYA(M) with Yn

A(M) = T n+1M = M ⊗ An+1, cofaces and
codegeneracies

∂i = T n+1−iηT i(M) :Yn → Yn+1, si = T ni µT i(M) :Yn+1 → Yn

given by ∂0 = δM ⊗ 1n+1, ∂i = 1i−1 ⊗ ∆A ⊗ 1n+2−i for 1 � i � n + 1, and si =
1i+1 ⊗ εA ⊗ 1n+1−i for 0 � i � n.

The total right derived functor [6] of

BRegA = U BHomA :
(

BCA
)op × BAA → Ab
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is now defined by means of the simplicialG-resolutionsXB(M) = G∗+1M and the
cosimplicialT-resolutionsYA(N) = T∗+1N as

R∗(
BRegA(M,N)

) = H ∗(TotBRegA
(
XB(M),YA(N)

))
.

Definition 1.2. The cohomology of an abelian Singer pair(B,A,µ,ρ) is given by

H ∗(B,A) = H ∗+1(TotZ0),

where Z0 is the double cochain complex obtained from the double cochain com
Z = BRegA(X(k),Y(k)) by deleting the 0th row and the 0th column.

1.4. The normalized standard complex

Use the natural isomorphism

BVA
(
FU(M),LU(N)

) ∼= V(UM,UN)

to get the standard double complex

Zm,n = (
BRegA

(
Gm+1(k)

)
, T n+1(k), ∂ ′, ∂

) ∼= (
Reg

(
Bm,An

)
, ∂ ′, ∂

)
.

For computational purposes it is useful to replace this complex by the normalized sta
complex Z+, where Z

m,n
+ = Reg+(Bm,An) is the intersection of the degeneraci

consisting of all convolution invertible mapsf :Bm → An satisfyingf (1 ⊗ · · · ⊗ ηε ⊗
· · · ⊗ 1) = ηε and(1⊗ · · · ⊗ ηε ⊗ · · · ⊗ 1)f = ηε. In more detail, the normalized standa
double complex is of the form

Reg+(k, k)
∂0,0

∂0,0

Reg+(B, k)
∂1,0

∂1,0

Reg+(B2, k)
∂2,0

∂2,0

Reg+(B3, k) · · ·
∂3,0

Reg+(k,A)
∂0,1

∂0,1

Reg+(B,A)
∂1,1

∂1,1

Reg+(B2,A)
∂2,1

∂2,1

Reg+(B3, k) · · ·
∂3,1

Reg+(k,A2)
∂0,2

∂0,2

Reg+(B,A2)
∂1,2

∂1,2

Reg+(B2,A2)
∂2,2

∂2,2

Reg+(B3,A2) · · ·
∂3,2

Reg+(k,A3)
∂0,3

∂0,3

Reg+(B,A3)
∂1,3

∂1,3

Reg+(B2,A3)
∂2,3

∂2,3

Reg+(B3,A3) · · ·
∂3,3

...
...

...
...
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The coboundary maps

di
n,m : Reg+

(
Bn,Am

) → Reg+
(
Bn+1,Am

)
defined by

d0
n,mα = µm(1B ⊗ α), di

n,mα = α(1Bi−1 ⊗ mB ⊗ 1Bn−i ), dn+1
n,m α = α ⊗ ε,

for 1 � i � n, are used to construct the horizontal differentials

∂n,m : Reg+
(
Bn,Am

) → Reg+
(
Bn+1,Am

)
,

given by the ‘alternating’ convolution product

∂n,mα = d0
n,mα ∗ d1

n,mα−1 ∗ d2
n,mα ∗ · · · ∗ dn+1

n,m α(−1)n+1
.

Dually the coboundaries

d ′ i
n,m : Reg+

(
Bn,Am

) → Reg+
(
Bn,Am+1)

defined by

d ′0
n,mβ = (β ⊗ 1A)ρn, d ′ i

n,mβ = (1Ai−1 ⊗ ∆A ⊗ 1An−i )β, d ′n+1
n,m β = η ⊗ β,

for 1 � i � n, determine the vertical differentials

∂n,m : Reg+
(
Bn,Am

) → Reg+
(
Bn,Am+1),

where

∂n,mβ = d ′0
n,mβ ∗ d ′1

n,mβ−1 ∗ d ′2
n,mβ ∗ · · · ∗ d ′n+1

n,m β(−1)n+1
.

The cohomology of the abelian Singer pair(B,A,µ,ρ) is by definition the cohomolog
of the total complex.

0 → Reg+(B,A) → Reg+
(
B2,A

) ⊕ Reg+
(
B,A2)

→ ·· · →
n⊕

i=1

Reg+
(
Bn+1−i ,Ai

) → ·· ·

There are canonical isomorphismsH 1(B,A) 	 Aut(A #B), H 2(B,A) 	 Opext(B,A)

[12] (here Opext(B,A) = Opext(B,A,µ,ρ) denotes the abelian group of equivalen
classes of those Hopf algebra extensions that give rise to the abelian Singe
(B,A,µ,ρ)).
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1.5. Special cases

In particular, forA = k = M andN a commutativeB-module algebra we get Sweedl
cohomology ofB with coefficients inN [29]

H ∗(B,N) = H ∗(Tot BReg
(
X(k),N

)) = H ∗(Tot BReg
(
G∗+1(k),N

))
.

In [29] it is also shown that ifG is a group andg is a Lie algebra, then there are canoni
isomorphismsHn(kG,A) 	 Hn(G,U(A)) for n � 1 and Hm(Ug,A) 	 Hm(g,A+)

for m � 2, whereU(A) denotes the multiplicative group of units andA+ denotes the
underlying vector space.

For B = k = N and M a cocommutativeA-comodule coalgebra we get the du
version [7,29]

H ∗(M,A) = H ∗(TotRegA
(
M,Y(k)

)) = H ∗(TotRegA
(
M,T∗+1(k)

))
.

2. Cohomology of an abelian matched pair

2.1. Abelian matched pairs

Here we consider pairs of cocommutative Hopf algebras(T ,N) together with a left
actionµ :T ⊗ N → N , µ(t ⊗ n) = t (n), and a right actionν :T ⊗ N → T , ν(t ⊗ n) = tn.
Then we have the twisted switch

σ̃ = (µ ⊗ ν)∆T ⊗N :T ⊗ N → N ⊗ T

or, in shorthand̃σ(t ⊗ n) = t1(n1) ⊗ t
n2
2 , which in case of trivial actions reduces to t

ordinary switchσ :T ⊗ N → N ⊗ T .

Definition 2.1. Such a configuration(T ,N,µ, ν) is called an abelian matched pair if

(1) N is a leftT -module coalgebra, i.e.,µ :T ⊗ N → N is a coalgebra map,
(2) T is a rightN -module coalgebra, i.e.,ν :T ⊗ N → T is a coalgebra map,
(3) N is a leftT -module algebra with respect to the twisted left actionµ̃ = (1⊗ µ)(σ̃ ⊗

1) :T ⊗ N ⊗ N → N , in the sense that the diagrams

T ⊗ N ⊗ N
1⊗mN

µ̃

T ⊗ N

µ

N ⊗ N
mN

N,

T ⊗ k
1⊗ιN

εT ⊗1

T ⊗ N

µ

k
ιN

N

commute, i.e.,µ(t ⊗ nm) = ∑
µ(t1 ⊗ n1)µ(ν(t2 ⊗ n2) ⊗ m) andµ(t ⊗ 1) = ε(t)1N ,

or in shorthandt (nm) = t1(n1)t
n2(m) andt (1N) = ε(t)1N ,
2
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(4) T is a rightN -module algebra with respect to the twisted right actionν̃ = (ν ⊗ 1)(1⊗
σ̃ ) :T ⊗ T ⊗ N → T ⊗ T , in the sense that the diagrams

T ⊗ T ⊗ N
mT ⊗1

ν̃

T ⊗ N

ν

T ⊗ T
mT

T ,

k ⊗ N
ιT ⊗1

1⊗εN

T ⊗ N

ν

k
ιT

T

commute, i.e.,ν(ts ⊗ n) = ∑
ν(t ⊗ µ(s1 ⊗ n1))ν(s2 ⊗ n2) andν(1T ⊗ n) = ε(n)1T ,

or in shorthand(ts)n = ts1(n1)s
n2
2 and 1nT = ε(n)1T .

The bismash product Hopf algebra(N �� T ,m,∆, ι, ε, S) is the tensor produc
coalgebraN ⊗ T with unit ιN⊗T : k → N ⊗ T , twisted multiplication

m = (m ⊗ m)(1⊗ σ̃ ⊗ 1) :N ⊗ T ⊗ N ⊗ T → N ⊗ T ,

in shortσ̃ (t ⊗ n) = t1(n1) ⊗ t
n2
2 , (n ⊗ t)(m ⊗ s) = nt1(m1) ⊗ t

m2
2 s, and antipode

S = σ̃ (S ⊗ S)σ :N ⊗ T → N ⊗ T ,

i.e.,S(n ⊗ t) = S(t2)(S(n2)) ⊗ S(t1)
S(n1). For a proof that this is a Hopf algebra see [1

To avoid ambiguity we will often writen �� t for n ⊗ t in N �� T . We also identifyN and
T with the Hopf subalgebrasN �� k andk �� T , respectively, i.e.,n ≡ n �� 1 andt ≡ 1 �� t .
In this sense we writen �� t = nt andtn = t1(n1)t

n2
2 .

If the actionν :T ⊗ N → T is trivial, then the bismash productN �� T becomes the
smash product (or semi-direct product)N � T . An actionµ :T ⊗ N → N is compatible
with the trivial action 1⊗ ε :T ⊗ N → T , i.e., (T ,N,µ,1 ⊗ ε) is a matched pair, if an
only if N is aT -module bialgebra andµ(t1 ⊗ n) ⊗ t2 = µ(t2 ⊗ n) ⊗ t1. Note that the las
condition is trivially satisfied ifT is cocommutative.

To make calculations more transparent we start to use the abbreviated Sweedle
notation for the cocommutative setting whenever convenient.

Lemma 2.2 [21, Proposition 2.3].Let (T ,N,µ, ν) be an abelian matched pair.

(1) A left T -module, leftN -module (V ,α,β) is a left N �� T -module if and only if
t (nv) = t (n)(tn(v)), i.e., if and only if with the twisted actioñα = (1⊗α)(σ̃ ⊗1) :T ⊗
N ⊗ V → N ⊗ V the square

T ⊗ N ⊗ V
1⊗β

α̃

T ⊗ V

α

N ⊗ V
β

V

commutes.
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(2) A right T -module, rightN -module(W,α,β) is a right N �� T -module if and only if
(vt )n = (vt(n))t

n
, i.e., if and only if with the twisted actioñβ = (β ⊗ 1)(1⊗ σ̃ ) :W ⊗

T ⊗ N → W ⊗ T the square

W ⊗ T ⊗ N
α⊗1

β̃

W ⊗ N

β

W ⊗ T
α

W

commutes.
(3) Let (V ,α) be a leftT -module and(W,β) a right N -module. Then

(i) N ⊗ V is a left N �� T -module withN -action on the first factor andT -action
given by

α̃ = (1⊗ α)σ̃ :T ⊗ N ⊗ V → N ⊗ V,

that is t (n ⊗ v) = t1(n1) ⊗ t
n2
2 (v).

(ii) W ⊗ T is a rightN �� T -module withT -action on the right factor andN -action
given by

β̃ = (β ⊗ 1)(1⊗ σ̃ ) :W ⊗ T ⊗ N → W ⊗ T ,

that is (w ⊗ t)n = wt2(n2) ⊗ t
n1
1 . Moreover,W ⊗ T is a left N �� T -module by

twisting the action via the antipode ofN �� T .
(iii) The mapψ : (N �� T ) ⊗ V ⊗ W → (W ⊗ T ) ⊗ (N ⊗ V ) defined byψ((n ��

t) ⊗ v ⊗ w) = wS(t)(S(n)) ⊗ S(t)S(n) ⊗ n⊗ tv, is aN �� T -homomorphism, whe
N �� T is acting on the first factor of(N �� T ) ⊗ V ⊗ W and diagonally on
(W ⊗ T ) ⊗ (N ⊗ V ) by (nt)(w ⊗ s ⊗ m ⊗ v) = w(sS(t))(S(n)) ⊗ (sS(t))S(n) ⊗
nt (m) ⊗ tm(v).

In particular, (W ⊗T )⊗ (N ⊗V ) is a free leftN �� T -module in which any basi
of the vector space(W ⊗ k) ⊗ (k ⊗ V ) is a N �� T -free basis.

Observe that the inverse ofψ : (N �� T ) ⊗ V ⊗ W → (W ⊗ T ) ⊗ (N ⊗ V ) is given by

ψ−1((w ⊗ t) ⊗ (n ⊗ v)
) = (

n �� S
(
tn

)) ⊗ (
wt(n) ⊗ tn(v)

)
.

The twisted actions can now be extended by induction to higher tensor powers

µp+1 = (1⊗ µp)
(
σ̃ ⊗ 1p

)
:T ⊗ Np+1 → Np+1

so thatµp+1(t ⊗ n ⊗ m) = µ(t ⊗ n) ⊗ µp(ν(t ⊗ n) ⊗ m), t (n ⊗ m) = t (n) ⊗ tn(m) and

νq+1 = (νq ⊗ 1)
(
1q ⊗ σ̃

)
:T q+1 ⊗ N → T q+1
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so thatνq+1(t ⊗ s ⊗ n) = νq(t ⊗ µ(s ⊗ n)) ⊗ ν(s ⊗ n), (t ⊗ s)n = ts(n) ⊗ sn. Observe tha
the squares

T ⊗ Np+1
µp+1

1⊗f

Np+1

f

T ⊗ Np
µp

Np,

T q+1 ⊗ N
νq+1

g⊗1

T q+1

g

T q ⊗ N
νq

T q

commute whenf = 1i−1 ⊗ mN ⊗ 1p−i for 1 � i � p andg = 1j−1 ⊗ mT ⊗ 1q−j for
1 � j � q , respectively.

By part 3 (iii) of the lemma aboveT i+1 ⊗ Nj+1 can be equipped with theN �� T -
module structure defined by(nt)(r ⊗ s ⊗ m ⊗ k) = r(sS(t))(S(n)) ⊗ (sS(t))S(n) ⊗ nt (m) ⊗
tm(k).

Corollary 2.3. The mapψ : (N �� T ) ⊗ T i ⊗ Nj → T i+1 ⊗ Nj+1, defined byψ((nt) ⊗
(r ⊗ k)) = rS(t)S(n) ⊗ S(t)S(n) ⊗ n ⊗ t (k), is an isomorphism ofN �� T -modules.

The content of the Lemma 2.2 can be summarized in the square of ‘free’ fun
between monoidal categories

V
FT

FN

T V

F̃N

NV
F̃T

N��T V

each with a corresponding tensor preserving right adjoint forgetful functor.

2.2. The distributive law of a matched pair

The two comonads onN��T V given by

G̃T = (G̃T , δT , εT ), G̃N = (G̃N , δN , εN)

with G̃T = F̃T ŨT , δT (t ⊗ x) = t ⊗ 1 ⊗ x, εT (t ⊗ x) = tx, and with G̃N = F̃N ŨN ,
δN(n ⊗ x) = n ⊗ 1⊗ x, εN(n ⊗ x) = nx, satisfy a distributive law [1]

σ̃ : G̃T G̃N → G̃NG̃T

given byσ̃ (t ⊗n⊗−) = σ̃ (t ⊗n)⊗− = t1(n1)⊗ t
n2
2 ⊗−. The equations for a distributiv

law

G̃NδT · σ̃ = σ̃ G̃T · G̃T σ̃ · δT G̃N , δNG̃T · σ̃ = G̃N σ̃ · σ̃ G̃N · G̃T δN
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and

εNG̃T · σ̃ = G̃T εN , G̃NεT · σ̃ = εT G̃N

are easily verified.

Proposition 2.4 [1, Theorem 2.2].The composite

G = GN ◦σ̃ GT

with G = (GNGT , δ = GNσ̃GT · δNδT and ε = εNεT ) is again a comonad onN��T V .
Moreover,G = GN��T .

The antipode can be used to define a left action

νS = Sν(S ⊗ S)σ :N ⊗ T → T

by n(t) = νS(n ⊗ t) = Sν(S ⊗ S)σ(n ⊗ t) = S(S(t)S(n)) and a right action

µS = Sµ(S ⊗ S)σ :N ⊗ T → N

by nt = µS(n⊗ t) = Sµ(S ⊗S)σ(n⊗ t) = S(S(t)(S(n)). The inverse of the twisted switc
is then

σ̃−1 = (νS ⊗ µS)∆N⊗T :N ⊗ T → T ⊗ N

given byσ̃−1(n ⊗ t) = n1(t1) ⊗ n
t2
2 , and induces the inverse distributive law

σ̃−1 :GNGT → GT GN.

2.3. Matched pair cohomology

For every cocommutative Hopf algebraH the category ofH -modulesHV is symmetric
monoidal. The tensor product of twoH -modulesV andW has underlying vector spac
the ordinary vector space tensor productV ⊗ W and diagonalH -action. Algebras
and coalgebras inHV are known asH -module algebras andH -module coalgebras
respectively. The adjoint functors and comonads of the last section therefore res
the situations whereV is replaced byC or A. In particular, if (T ,N,µ, ν) is an abelian
matched pair,H = N �� T andC is a H -module coalgebra thenXH(C) is a canonica
simplicial freeH -module coalgebra resolution ofC and by the Corollary 2.3 the compos
XN(XT (C)) is a simplicial double complex of freeH -module coalgebras.

Definition 2.5. The cohomology of an abelian matched pair(T ,N,µ, ν) with coefficients
in the commutativeN �� T -module algebra is defined by

H∗(T ,N,A) = H ∗+1(Tot(B0)
)
,
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where B0 is the double cochain complex obtained from the double cochain com
B = C(N��T Reg(XN(XT (k),A))) by deleting the 0th row and the 0th column.

2.4. The normalized standard complex

Let H = N �� T be a bismash product of an abelian matched pair of Hopf alge
and let the algebraA be a leftN and a rightT -module such that it is a leftH -module via
nt (a) = n(aS(t)), i.e.,(n(a))S(t) = (t (n))(aS(tn)).

Note that Hom(T p,A) becomes a leftN -module vian(f )(t) = n(f (νp(t, n))) and
Hom(Nq,A) becomes a rightT -module viaf t (n) = (f (µq(t,n)))t = S(t)(f (µq(t,n))).

The simplicial double complexGp
T G

q
N(k) = (T p ⊗ Nq)p,q , p,q � 1, of free H -

modules has horizontal face operators 1⊗ d∗
N :T p ⊗ Nq+1 → T p ⊗ Nq , vertical face

operatorsd∗
T ⊗ 1 :T p+1 ⊗ Nq → T p ⊗ Nq , horizontal degeneracies 1⊗ s∗

N :T p ⊗ Nq →
T p ⊗ Nq+1 and vertical degeneraciess∗

T ⊗ 1 :T p ⊗ Nq → T p+1 ⊗ Nq , where

di
N = 1i ⊗ m⊗ 1q−i−1, d

q
N = 1q ⊗ ε, si

N = 1i ⊗ η ⊗ 1q−i

for 0 � i � q − 1, and

d
j
T = 1p−j−1 ⊗ m⊗ 1j , d

p
T = ε ⊗ 1p, s

j
T = 1p−j ⊗ η ⊗ 1j

for 0 � j � p − 1.
These maps preserve theH -module structure onT p ⊗ Nq . Apply the functor

HReg(_,A) : HCop → Ab to get a cosimplicial double complex of abelian groups

B = HReg
(
XN

(
XT (k),A

))
with Bp,q = HReg(T p+1 ⊗Nq+1,A), coface operatorsHReg(dN∗,A), HReg(dT ∗,A) and
codegeneracies areHReg(sN∗,A), HReg(sT ∗,A).

The isomorphism described in Corollary 2.3 induces an isomorphism of do
complexesB(T ,N,A) ∼= C(T ,N,A) given by

HReg
(
T p+1 ⊗ Nq+1,A

)
HReg(ψ,A)−−−−−−→ HReg

(
H ⊗ T p ⊗ Nq,A

)
θ−→ Reg

(
T p ⊗ Nq,A

)
for p,q � 0, whereCp,q = Reg(T p ⊗Nq,A) is the abelian group of convolution invertib
linear mapsf :Np ⊗ T q → A.

The vertical differentialsδN :Cp,q → Cp+1,q and the horizontal differentials

δT :Cp,q → Cp,q+1

are transported fromB and turn out to be the twisted Sweedler differentials on theN and
T parts, respectively. The coface operators are

δN if (t ⊗ n) =



sf (t ⊗ n1 ⊗ · · · ⊗ nini+1 ⊗ · · · ⊗ nq+1), for i = 1, . . . , q,

n1(f (νq(t ⊗ n1) ⊗ n2 ⊗ · · · ⊗ np+1)), for i = 0,

f (t ⊗ n ⊗ · · · ⊗ n )ε(n ), for i = q + 1,
1 q q+1
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wheret ∈ T p andn = n1 ⊗ · · · ⊗ nq+1 ∈ Nq+1, and similarly

δT jf (t ⊗ n) =



sf (tp+1 ⊗ · · · ⊗ tj+1tj ⊗ · · · ⊗ t1 ⊗ n), for j = 1, . . . , p,

(f (tp+1 ⊗ · · · ⊗ t2 ⊗ µp(t1 ⊗ n)))t1, for j = 0,

ε(tp+1)f (tp ⊗ · · · ⊗ t1 ⊗ n), for j = p + 1,

wheret = t1 ⊗ · · · ⊗ tq+1 ∈ T q+1 andn ∈ Nq . The differentials in the associated doub
cochain complex are the alternating convolution products

δNf = δN 0f ∗ δN1f
−1 ∗ · · · ∗ δNq+1f

±1

and

δT f = δT 0f ∗ δT 1f
−1 ∗ · · · ∗ δT p+1f

±1.

In the associated normalized double complexC+, the(p, q) termC
p,q
+ = Reg+(T p ⊗

Nq,A) is the intersection of the degeneracyoperators, that is, the abelian group
convolution invertible mapsf :T p ⊗ Nq → A with f (tp ⊗ · · · ⊗ t1 ⊗ n1 ⊗ · · · ⊗ nq) =
ε(tp) . . .ε(nq), whenever one ofti or one ofnj is in k. ThenH∗(N,T ,A) ∼= H ∗+1(TotC0),
whereC0 is the double complex obtained fromC+ by replacing the edges by zero.

The groups of cocyclesZ i (T ,N,A) and the groups coboundariesBi (T ,N,A) consist
of i-tuples of maps(fj )1�j�i , fj :T j ⊗ Ni+1−j → A that satisfy certain conditions.

We introduce the subgroupsZ i
p(T ,N,A) � Z i (T ,N,A), that are spanned byi-tuples

in which thefj ’s are trivial forj = p and subgroupsBi
p =Z i

p ∩ Bi ⊂ Bi . These give rise

to subgroups of cohomology groupsHi
p = Z i

p/Bi
p 	 (Z i

p + Bi)/Bi ⊆ Hi which have a
nice interpretation wheni = 2 andp = 1,2; see Section 4.3.

3. The homomorphism π : H2(T ,N,A) → H 1,2(T ,N,A)

If T is a finite group andN is a finite T -group, then we have the following exa
sequence [16]

H 2(N, k•) δT−→ Opext
(
kT , kN

)
π−→ H 1(T ,H 2(N, k•)

)
.

Here we define a version of homomorphismπ for arbitrary smash products of cocomm
tative Hopf algebras.

We start by introducing the Hopf algebra analogue ofHi(T ,H j(N, k•)). For positive
i, j and an abelian matched pair of Hopf algebras(T ,N), with the action ofN onT trivial,
we define

Zi,j (T ,N,A) = {
α ∈ Reg+

(
T i ⊗ Nj ,A

) | δNα = ε, and

∃β ∈ Reg+
(
T i+1 ⊗ Nj−1,A

)
: δT α = δNβ

}
,

Bi,j (T ,N,A) = {
α ∈ Reg+

(
T i ⊗ Nj ,A

) | ∃γ ∈ Reg+
(
T i ⊗ Nj−1,A

)
,

∃γ ′ ∈ Reg+
(
T i−1 ⊗ Nj ,A

)
: α = δNγ ∗ δT γ ′},
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Hi,j (T ,N,A) = Zi,j (T ,N,A)/Bi,j (T ,N,A).

Remark. If j = 1, then

Hi,1(T ,N,A) 	 Hi
i (T ,N,A) 	 Hi

meas

(
T ,Hom(N,A)

)
,

where theHi
measdenotes the measuring cohomology [17].

Proposition 3.1. If T = kG is a group algebra, then there is an isomorphism

Hi
(
G,Hj(N,A)

) 	 Hi,j (kG,N,A).

Remark. Here theright action ofG on Hj(N,A) is given by precomposition. We ca
obtain symmetric results in case we start with aright action ofT = kG onN , hence aleft
action ofG onHj(N,A).

Proof of Proposition 3.1. By inspection we have

Zi
(
G,Hj(N,A)

) = Zi,j (kG,N,A)/
{
α :G → Bj(N,A)

}
,

Bi
(
G,Hj(N,A)

) = Bi,j (kG,N,A)/
{
α :G → Bj (N,A)

}
.

Here we identify regular maps from(kG)i ⊗ Nj to A with set maps fromG×i to
Reg(Nj ,A) in the obvious way. �

The following is a straightforward generalization of Theorem 7.1 in [17].

Theorem 3.2. The homomorphismπ :H2(T ,N,A) → H 1,2(T ,N,A), induced by
(α,β) �→ α, makes the following sequence

H 2(N,A) ⊕H2
2(T ,N,A)

δT +ι−−−→ H2(T ,N,A) π−→ H 1,2(T ,N,A)

exact.

Proof. It is clear thatπδT = 0 and obviously alsoπ(H2
2) = 0.

Suppose a cocycle pair(α,β) ∈ Z2(T ,N,A) is such thatα ∈ B1,2(T ,N,A). Then for
someγ :T ⊗ N → A and someγ ′ :N ⊗ N → A we haveα = δNγ ∗ δT γ ′, and hence
(α,β) = (δNγ,β) ∗ (δT γ ′, ε) ∼ (δNγ −1, δT γ ) ∗ (δNγ,β) ∗ (δT γ ′, ε) = (ε, δT γ ∗ β) ∗
(δT γ ′, ε) ∈ Z2

2(T ,N,A) ∗ δT (Z2(N,A)). �
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4. Comparison of abelian Singer pairs and abelian matched pairs

4.1. Abelian Singer pairs vs. abelian matched pairs

In this section we sketch a correspondence from abelian matched pairs to abelian
pairs. For more details we refer to [21].

Definition 4.1. We say that an actionµ :A ⊗ M → M is locally finite, if every orbit
A(m) = {a(m) | a ∈ A} is finite-dimensional.

Lemma 4.2 [25, Lemma 1.6.4].LetA be an algebra andC a coalgebra.

(1) If M is a right C-comodule viaρ :M → M ⊗ C, ρ(m) = m0 ⊗ m1, thenM is a left
C∗-module viaµ :C∗ ⊗ M → M, µ(f ⊗ m) = f (m1)m0.

(2) Let M be a leftA-module viaµ :A ⊗ M → M. Then there is(a unique) comodule
structureρ :M → M ⊗ A◦, such that(1 ⊗ ev)ρ = µ if and only if the actionµ is
locally finite. The coaction is then given byρ(m) = ∑

fi ⊗ mi , where{mi} is a basis
for A(m) andfi ∈ A◦ ⊆ A∗ are coordinate functions ofa(m), i.e.,a(m) = ∑

fi(a)mi .

Let (T ,N,µ, ν) be an abelian matched pair and supposeµ :T ⊗ N → N is locally
finite. Then the lemma above gives a coactionρ :N → N ⊗ T ◦, ρ(n) = nN ⊗ nT ◦ , such
that t (n) = ∑

nN · nT ◦(t).
There is a left actionν′ :N ⊗ T ∗ → T ∗ given by pre-composition, i.e.,ν′(n ⊗ f )(t) =

f (tn). If µ is locally finite, it is easy to see thatν′ restricts toT ◦ ⊆ T ∗.

Lemma 4.3 [21, Lemma 4.1].If (T ,N,µ, ν) is an abelian matched pair withµ locally
finite then the quadruple(N,T ◦, ν′, ρ) forms an abelian Singer pair.

Remark. There is also a correspondence in the opposite direction [18].

4.2. Comparison of abelian Singer and abelian matched pair cohomologies

Let (T ,N,µ, ν) be an abelian matched pair of Hopf algebras, withµ locally finite and
(N,T ◦, ν′, ρ) the abelian Singer pair associated to it as above.

The embedding Hom(Ni, (T ◦)j ) ⊆ Hom(Ni, (T j )∗) 	 Hom(T j ⊗ Ni, k) induced
by the inclusionT ◦j = (T j )◦ ⊆ (T j )∗ restricts to the embedding Reg+(Ni, (T ◦)j ) ⊆
Reg+(T j ⊗ Ni, k). A routine calculation shows that it preserves the differentials,
that it gives an embedding of double complexes, which is an isomorphism in casT is
finite-dimensional.

There is no apparent reason for the embedding of complexes to induce an isomo
of cohomology groups in general. It is our conjecture that this is not always the case

In some cases we can compare the multiplication part ofH 2(N,T ◦) (see the following
section) andH2(N,T , k). We use the following lemma for this purpose.
2
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Lemma 4.4. Let (T ,N,µ, ν) be an abelian matched pair with the actionµ locally finite. If
f :T ⊗ Ni → k is a convolution invertible map, such thatδT f = ε, then for eachn ∈ Ni ,
the mapfn = f (_,n) :T → k lies in the finite dualT ◦ ⊆ T ∗.

Proof. It suffices to show that the orbit offn under the action ofT (given by(s(fn)(t) =
fn(ts)) is finite-dimensional (see [8,25,30] for the description of finite duals). Using
fact thatδT f = ε we gets(fn)(t) = fn(ts) = ∑

fn1(s1)fµi(s2⊗n2)(t).
Let ∆(n) = ∑

j n′
j ⊗ n′′

j . The actionµi :T ⊗ Ni → Ni is locally finite, sinceµ :T ⊗
N → N is, and hence we can choose a finite basis{mp} for Span{µi(s ⊗ n′′

j ) | s ∈ T }.
Now note that{fmp } is a finite set which spansT (fn). �
Corollary 4.5. If (T ,N,µ, ν) is an abelian matched pair, withµ locally finite and
(N,T ◦,ω,ρ) is the corresponding abelian Singer pair, thenH1(T ,N, k) = H 1(N,T ◦).

4.3. The multiplication and comultiplication parts of the second cohomology group of
abelian Singer pair

Here we discuss in more detail the Hopf algebra extensions that have an “unpert
multiplication and those that have an “unperturbed” comultiplication, more precise
we look at two subgroupsH 2

m(B,A) and H 2
c (B,A) of H 2(B,A) 	 Opext(B,A), one

generated by the cocycles with a trivial multiplication part and the other generat
the cocycles with a trivial comultiplication part [16]. Let

Z2
c (B,A) = {

β ∈ Reg+(B,A ⊗ A) | (ηε,β) ∈ Z2(B,A)
}
.

We shall identifyZ2
c (B,A) with a subgroup ofZ2(B,A) via the injectionβ �→ (ηε,β).

Similarly let

Z2
m(B,A) = {

α ∈ Reg+(B ⊗ B,A) | (α, ηε) ∈ Z2(B,A)
}
.

If

B2
c (B,A) = B2(B,A) ∩ Z2

c (B,A) andB2
m(B,A) = B2(B,A) ∩ Z2

m(B,A)

then we define

H 2
c (B,A) = Z2

c (B,A)/B2
c (B,A) andH 2

m(B,A) = Z2
m(B,A)/B2

m(B,A).

The identification ofH 2
c (B,A) with a subgroup ofH 2(B,A) is given by

H 2
c (B,A) ∼−→ (

Z2
c (B,A) + B2(B,A)

)
/B2(B,A) � H 2(B,A),

and similarly forH 2
m � H 2.

Note that in caseT is finite-dimensionalH 2
c (N,T ∗) 	 H2

2(T ,N, k) andH 2
m(N,T ∗) 	

H2(T ,N, k) with Hi
p(T ,N, k) as defined in Section 2.4.
1
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Proposition 4.6. Let (T ,N,µ, ν) be an abelian matched pair, withµ locally finite and let
(N,T ◦,ω,ρ) be the corresponding abelian Singer pair. Then

H 2
m(N,T ◦) 	H2

1(T ,N, k).

Proof. Observe that we have an inclusionZ2
m(N,T ◦) = {α :N ⊗ N → T ◦ | ∂α = ε,

∂ ′α = ε} ⊆ {α :T ⊗ N ⊗ N → k | δT α = ε, δNα = ε} = Z2
1(T ,N, k). The inclusion is

in fact an equality by Lemma 4.4. Similarly the inclusionB2
m(N,T ◦) ⊆ B2

1(T ,N, k) is an
equality as well. �

5. The generalized Kac sequence

5.1. The Kac sequence of an abelian matched pair

We now start by sketching a conceptualway to obtain a generalized version
the Kac sequence for an arbitrary abelian matched pair of Hopf algebras relatin
cohomology of the matched pair to Sweedler cohomology. Since it is difficult to des
the homomorphisms involved in this manner,we then proceed in the next section to g
an explicit description of the low degree part of this sequence.

Theorem 5.1. Let H = N �� T , where(T ,N,µ, ν) be an abelian matched pair of Hop
algebras, and letA be a commutative leftH -module algebra. Then there is a long exa
sequence of abelian groups

0→ H 1(H,A) → H 1(T ,A) ⊕ H 1(N,A) →H1(T ,N,A) → H 2(H,A)

→ H 2(T ,A) ⊕ H 2(N,A) →H2(T ,N,A) → H 3(H,A) → ·· · .
Moreover, ifT is finite-dimensional then(N,T ∗) is an abelian Singer pair,H ∗(T , k) ∼=
H ∗(k, T ∗) andH∗(T ,N, k) ∼= H ∗(N,T ∗).

Proof. The short exact sequence of double cochain complexes

0→ B0 → B → B1 → 0,

where B1 is the edge double cochain complex ofB = H Reg(XT XN(k),A) as in
Section 2.3, induces a long exact sequence in cohomology

0 → H 1(Tot(B)
) → H 1(Tot(B1)

) → H 2(Tot(B0)
) → H 2(Tot(B)

)
→ H 2(Tot(B1)

) → H 3(Tot(B0)
) → H 3(Tot(B)

) → H 3(Tot(B1)
) → ·· ·

whereH 0(Tot(B0)) = 0 = H 1(Tot(B0)) and H 0(Tot(B)) = H 0(Tot(B1)) have already
been taken into account. By Definition 2.5H ∗+1(Tot(B0)) = H∗(T ,N,A) is the coho-
mology of the matched pair(T ,N,µ, ν) with coefficients inA. Moreover,H ∗(Tot(B1)) ∼=
H ∗(T ,A) ⊕ H ∗(N,A) is a direct sum of Sweedler cohomologies.
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From the cosimplicial version of the Eilenberg–Zilber theorem (see Appendix
follows that H ∗(Tot(B)) ∼= H ∗(Diag(B)). On the other hand, Barr’s theorem [1, The
rem 3.4] together with Corollary 2.3 says that DiagXT (XN(k)) 	 XH(k), and gives an
equivalence

H Reg
(
DiagXT

(
XN(k)

)
,A

) 	 Diag
(

H Reg
(
XT

(
XN(k)

)
,A

) = Diag(B)
)
.

Thus, we get

H ∗(H,A) = H ∗(
H Reg

(
XH (k),A

)) ∼= H ∗(Diag(B)
) ∼= H ∗(Tot(B)

)
,

and the proof is complete.�
5.2. Explicit description of the low degree part

The aim of this section is to define explicitly homomorphisms that make the follo
sequence

0 → H 1(H,A)
res2−−→ H 1(T ,A) ⊕ H 1(N,A)

δN ∗δT−−−−→H1(T ,N,A)
φ−→ H 2(H,A)

res2−−→ H 2(T ,A) ⊕ H 2(N,A)
δN ∗δ−1

T−−−−→H2(T ,N,A)
ψ−→ H 3(H,A).

exact. This is the low degree part of the generalized Kac sequence. HereH = N �� T is the
bismash product Hopf algebra arising from a matched pairµ :T ⊗N → N , ν :T ⊗N → T .
Recall that we abbreviateµ(t, n) = t (n), ν(t, n) = tn. We shall also assume thatA is a
trivial H -module.

We define res2 = resi2 :Hi(H,A) → Hi(T ,A)⊕Hi(N,A) to be the map(resT , resN)∆,
more precisely iff :Hi → A is a cocycle, then it gets sent to a pair of cocycles(fT , fN),
wherefT = f |T i andfN = f |Ni .

By δN ∗ δ
(−1)i+1

T , we denote the composite

Hi(T ,A) ⊕ Hi(N,A)
δN ⊕δ±1

T−−−−−→ Hi
i (T ,N,A) ⊕Hi

1(T ,N,A)

ι⊕ι−−→ Hi (T ,N,A) ⊕Hi (T ,N,A) ∗−→ Hi (T ,N,A).

Wheni = 1, the map just defined, sends a pair of cocyclesa ∈ Z1(T ,A), b ∈ Z1(N,A) to
a mapδNa ∗ δT b :T ⊗ N → A and if i = 2 a pair of cocyclesa ∈ Z2(T ,A), b ∈ Z2(N,A)

becomes a cocycle pair(δNa, ε) ∗ (ε, δT b−1) = (δNa, δT b−1) : (T ⊗ T ⊗ N) ⊕ (T ⊗
N ⊗ N) → A. HereδN andδT are the differentials for computing the cohomology o
matched pair described in Section 2.4.

The mapφ :H1(T ,N,A) → H 2(H,A) assigns to a cocycleγ :T ⊗ N → A, a map
φ(γ ) :H ⊗ H → A, which is characterized byφ(γ )(nt, n′t ′) = γ (t, n′).

The homomorphismψ :H2(T ,N,A) → H 3(H,A) is induced by a map that sends
cocycle pair(α,β) ∈ Z2(T ,N,A) to the cocyclef = ψ(α,β) :H ⊗ H ⊗ H → A given
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nt, n′t ′, n′′t ′′

) = ε(n)ε
(
t ′′

)
α
(
tn

′
, t ′, n′′)β(

t, n′, t ′
(
n′′)).

A direct, but lengthy computation shows that the maps just defined induce h
morphisms that make the sequence above exact [18]. The most important tool in
putations is the following lemma about the structure of the second cohomology
H2(H,A) [18].

Lemma 5.2. Letf :H ⊗ H → A be a cocycle. Define mapsgf :H → A, h :H ⊗ H → A

and fc :T ⊗ N → A by gf (nt) = f (n ⊗ t), h = f ∗ δgf and fc(t ⊗ n) = f (t ⊗
n)f −1(t (n) ⊗ tn). Then

(1) h(nt, n′t ′) = fT (tn
′
, t ′)fN(n, t ′(n′))fc(t, n

′),
(2) hT = fT , hN = fN , h|N⊗T = ε, h|T ⊗N = hc = fc , gh = ε,
(3) the mapsfT andfN are cocycles andδNfT = δT f −1

c , δT fN = δNf −1
c ,

(4) if a :T ⊗ T → A, b :N ⊗ N → A are cocycles andγ :T ⊗ N → A is a convolution
invertible map, such thatδNa = δT γ andδT b = δNγ , then the mapf = fa,b,γ :H ⊗
H → A, defined by

f
(
nt, n′t ′

) = a
(
tn

′
, t ′

)
b
(
n, t

(
n′))γ −1(t, n′)

is a cocycle andfT = a, fN = b, fc = f |T ⊗N = γ −1 andf |N⊗T = ε.

5.3. The locally finite case

Suppose that the actionµ :T ⊗ N → N is locally finite and let(N,T ◦,ω,ρ) be the
abelian Singer pair corresponding to the matched pair(T ,N,µ, ν) as in Section 4.1.

By Corollary 4.5 we haveH1(T ,N, k) = H 1(N,T ◦).
From the explicit description of the generalized Kac sequence, we see that(δN ∗

δ−1
T )|H2(T ,A) = δN :H 2(T ,A) → H2

2(N,T ,A) and similarly that(δN ∗ δ−1
T )|H2(N,A) =

δ−1
T :H 2(N,A) → H2

1(N,T ,A). By Proposition 4.6 we have the equalityH2
1(T ,N, k) =

H 2
m(N,T ◦). Recall thatH 2

m(N,T ◦) ⊆ H 2(N,T ◦) 	 Opext(N,T ◦).
If the action ν is locally finite as well, then there is also a (right) Singer p

(T ,N◦,ω′, ρ′). By ‘right’ we mean that we have a right actionω′ :N◦ ⊗ T → N◦ and
a right coactionρ′ :T → N◦ ⊗ T . In this case we get thatH2

2(T ,N, k) 	 H 2
m

′
(T ,N◦) ⊆

Opext′(T ,N◦). The dash refers to the fact that we have a right Singer pair.
DefineH 2

mc = H 2
m ∩H 2

c andH 2 ′
mc = H 2 ′

m ∩H 2 ′
c and noteHmc(N,T ◦) 	H2

2(N,T , k) ∩
H2

1(N,T , k) 	 H ′2
mc(T ,N◦). Hence

im
(
δN ∗ δ−1

T

) ⊆H2
1(T ,N, k) +H2

2(T ,N, k) 	 H2
1(T ,N, k) ⊕H2

2(T ,N, k)

H2
1(T ,N, k) ∩H2

2(T ,N, k)

= H 2
m(N,T ◦) ⊕ H 2 ′

m (T ,N◦)
2 ◦ 2 ′ ◦ .
〈Hmc(N,T ) ≡ Hmc(T ,N )〉
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In other words, im(δN ∗ δ−1
T ) is contained in a subgroup ofH2(T ,N, k), that is isomorphic

to the pushout

H 2 ′
mc(T ,N◦) 	 H 2

mc(N,T ◦) H 2
m(N,T ◦)

H 2
m

′
(T ,N◦) X.

Hence if both actionsµ andν of the abelian matched pair(T ,N,µ, ν) are locally finite
then we get the following version of the low degree part of the Kac sequence:

0 −→ H 1(H, k)
res2−−→ H 1(T , k) ⊕ H 1(N, k)

δN ∗δT−−−−→ H 1(N,T ◦) φ−→ H 2(H, k)

res2−−→ H 2(T , k) ⊕ H 2(N, k)
δN ∗δ−1

T−−−−→ X
ψ |X−−→ H 3(H, k).

5.4. The Kac sequence of an abelian Singer pair

Here is a generalization of the Kac sequence relating Sweedler and Doi cohomo
Singer cohomology.

Theorem 5.3. For any abelian Singer pair(B,A,µ,ρ) there is a long exact sequence

0 → H 1(TotZ) → H 1(B, k) ⊕ H 1(k,A) → H 1(B,A) → H 2(TotZ)

→ H 2(B, k) ⊕ H 2(k,A) → H 2(B,A) → H 3(TotZ) → ·· · ,
whereZ is the double complex from Definition1.2. Moreover, we always haveH 1(B,A) ∼=
Aut(A # B), H 2(B,A) ∼= Opext(B,A) and H ∗(TotZ) ∼= H ∗(DiagZ). If A is finite-
dimensional thenH ∗(TotZ) = H ∗(A∗ �� B,k).

Proof. The short exact sequence of double cochain complexes

0→ Z0 → Z → Z1 → 0,

whereZ1 is the edge subcomplex ofZ = BRegA(XB(k),YA(k)), induces a long exac
sequence

0 → H 1(TotZ) → H 1(TotZ1) → H 2(TotZ0) → H 2(TotZ)

→ H 2(TotZ1) → H 3(TotZ0) → H 3(TotZ) → H 3(TotZ0) → ·· ·
whereH 0(TotZ0) = 0 = H 1(TotZ0) and H 0(TotZ) = H 0(TotZ1) have already bee
taken into account. By definitionH ∗(TotZ0) = H ∗(B,A) is the cohomology of the abelia
Singer pair(B,A,µ,ρ), and by [12] we haveH 1(B,A) ∼= Aut(A # B) andH 2(B,A) ∼=
Opext(B,A). Moreover, we clearly haveH ∗(TotZ1) ∼= H ∗(B, k) ⊕ H ∗(k,A), where the
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summands are Sweedler and Doi cohomologies. By the cosimplicial Eilenberg–
theorem (see Appendix A) there is a natural isomorphismH ∗(Tot(Z)) ∼= H ∗(Diag(Z)).
Finally, if A is finite-dimensional thenZ = BRegA(X(k),Y(k)) ∼= A∗��B Reg(B(k), k),
whereB(k) = XA∗(XB(k)). �

6. On the matched pair cohomology of pointed cocommutative Hopf algebras over
fields of zero characteristic

In this section we describe a method which gives information about the se
cohomology groupH2(T ,N,A) of an abelian matched pair.

6.1. The method

Let (T ,N) be an abelian matched pair of pointed Hopf algebras, andA a trivial N �� T -
module algebra.

(1) Since chark = 0 and T and N are pointed we haveT 	 UP(T ) � kG(T ) and
N 	 UP(N) � kG(N) andN �� T 	 U(P(T ) �� P(N)) � k(G(T ) �� G(N)) [9,10].
If H is a Hopf algebra thenG(H) denotes the group of points andP(H) denotes the
Lie algebra of primitives.

(2) We can use the generalized Tahara sequence [17] (see introduction) to co
H 2(T ), H 2(N), H 2(N �� T ). In particular if G(T ) is finite then the cohomolog
group H 2

meas(kG(T ),Hom(UP(T ),A)) = H 2,1(kG(T ),UP(T ),A) = H2
2(kG(T ),

UP(T ),A) is trivial and there is a direct sum decompositionH 2(T ) = H 2(P (T ))G(T )

⊕ H 2(G(T )); we get a similar decomposition forH 2(N) if G(N) is finite and for
H 2(N �� T ) in the caseG(T ) andG(N) are both finite.

(3) Since the Lie algebra cohomology groupsHi(g) admit a vector space structure, t
cohomology groupsH 1,2(G,g,A) 	 H 1(G,H 2(g,A)) are trivial if G is finite (any
additive group of a vector space over a field of zero characteristic is uniquely divis

(4) The exactness of the sequence from Theorem 3.2 implies that the mapsδT :H 2(G(_))

→ H2(kG(_),UP(_),A) are surjective ifG(_) is finite, hence by the generalize
Kac sequence the kernels of the maps res3

2 :H 3(_) → H 3(P (_)) ⊕ H 3(G(_)) are
trivial. This then gives information about the kernel of the map res3

2 :H 3(N �� T ) →
H 3(T ) ⊕ H 3(N).

(5) Now use the exactness of the generalized Kac sequence

H 2(N �� T )
res22−−→ H 2(T ) ⊕ H 2(N)

δT +δ−1
N−−−−−→ H2(T ,N,A)

−→ H 3(N �� T )
res32−−→ H 3(T ) ⊕ H 3(N)

to get information aboutH2(T ,N,A).
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6.2. Examples

Here we describe how the above procedure works on concrete examples.
In the first three examples we restrict ourselves to a case in which one of the

algebras involved is a group algebra.
Let T = UP(T ) � kG(T ) andN = kG(N) and suppose that the matched pair oT

andN arises from actionsG(T )×G(N) → G(N) and(G(N)�G(T ))×P(T ) → P(T ).
If the groupsG(T ) and G(N) are finite and their orders are relatively prime, then
generalized Kac sequence shows that there is an injective homomorphism

Φ :
H 2(P (T ))G(T )

H 2(P (T ))G(N)�G(T )
⊕ H 2(G(N))

H 2(G(N))G(T )
→ H2(T ,N,A).

Theorem 3.2 guarantees that the mapH 3(N �� T ) = H 3(U(P (T ))�k(G(N)�G(T ))) →
H 3(P (T )) ⊕ H 3(G(N) � G(T )) is injective. Since the orders ofG(T ) and G(N) are
assumed to be relatively prime the mapH 3(G(N) � G(T )) → H 3(G(N)) ⊕ H 3(G(T ))

is also injective. Hence the map

res32 :H 3(N �� T ) → H 3(N) ⊕ H 3(T )

must be injective as well, since the compositeH 3(N �� T ) → H 3(N) ⊕ H 3(T ) →
H 3(G(N)) ⊕ H 3(P (T )) ⊕ H 3(G(T )) is injective. Hence by the exactness of t
generalized Kac sequenceΦ is an isomorphism.

Example 6.1. Let g = k×k be the abelian Lie algebra of dimension 2 and letG = C2 = 〈a〉
be the cyclic group of order two. Furthermore assume thatG acts ong by switching
the factors, i.e.,a(x, y) = (y, x). Recall thatUg = k[x, y] and thatHi

Sweedler(Ug,A) =
Hi

Hochschild(Ug,A) for i � 2 and thatHi
Hochschild(k[x, y], k) = k⊕(i

2). A computation
shows thatG acts onk 	 H 2(k[x, y], k) by a(t) = −t and henceH 2(k[x, y], k)G = 0.
Thus the homomorphismπ (Theorem 3.2) is the zero map and the homomorph
k 	 H 2(k[x, y], k)

δT−→ H2(kC2, k[x, y], k) is an isomorphism.

Example 6.2 (symmetries of a triangle). Here we describe an example arising from
action of the dihedral groupD3 on the abelian Lie algebra of dimension 3 (basis cons
of vertices of a triangle). More precisely letg = k × k × k, G = C2 = 〈a〉, H = C3 =
〈b〉, the actionsG × g → g, H × g → g and H × G → H are given bya(x, y, z) =
(z, y, x), b(x, y, z) = (z, x, y) andba = b−1 respectively. A routine computation revea
the following

• C2 acts onk × k × k 	 H 2(k[x, y, z], k) by a(u, v,w) = (−w,−v,−u), hence theG
stable part is

H 2(k[x, y, z], k)G = {
(u,0,−u)

} 	 k.
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• H = C3 acts onk × k × k by b(u, v,w) = (w,u, v) and theH stable part is
H 2(k[x, y, z], k)H = {(u,u,u)} 	 k.

• TheD3 = C2 � C3 stable partH 2(k[x, y, z], k)D3 is trivial.

Thus we have an isomorphismk × k•/(k•)3 	H2(k[x, y, z] � kC2, kC3, k).

Remark. The above also shows that there is an isomorphism

k × k × k 	H2(k[x, y, z], kD3, k
)
.

Example 6.3. Let g = sln, G = C2 = 〈a〉, H = Cn = 〈b〉, where a is a matrix that
has 1’s on the skew diagonal and zeroes elsewhere andb is the standard permutatio
matrix of ordern. Let H and G act on sln by conjugation inMn and let G act on
H by conjugation insideGLn. Furthermore assume thatA is a finite-dimensional trivia
Ug � k(H � G)-module algebra. By Whitehead’s second lemmaH 2(g,A) = 0 and hence
we get an isomorphismUA/(UA)n 	H2(Usln � kC2, kCn,A) if n is odd.

Example 6.4. Let H = Ug � kG, whereg is an abelian Lie algebra andG is a finite
abelian group and assume the action ofH on itself is given by conjugation, i.e.,h(k) =
h1kS(h2). In this case it is easy to see thatH 2(H,A)H = H 2(H,A) for any trivial
H -module algebraA and hence the homomorphism in the generalized Kac sequen
δH,1 ⊕ δH,2 :H 2(H,A) ⊕ H 2(H,A) → H2(H,H,A) is trivial. HenceH2(H,H,A) 	
ker(H 3(H � H,A) → H 3(H,A) ⊕ H 3(H,A)).

Appendix A. Simplicial homological algebra

This is a collection of notions and results from simplicial homological algebra
in the main text. The emphasis is on the cohomology of cosimplicial objects, bu
considerations are similar to those in the simplicial case [32].

A.1. Simplicial and cosimplicial objects

Let ∆ denote the simplicial category [23]. IfA is a category then the functor catego
A∆op

is the category of simplicial objects whileA∆ is the category of cosimplicial objec
in A. Thus a simplicial object inA is given by a sequence of objects{Xn} together with, for
eachn � 0, face maps∂i :Xn+1 → Xn for 0 � i � n+1 and degeneraciesσj :Xn → Xn+1

for 0 � j � n such that

∂i∂j = ∂j−1∂i for i < j, σiσj = σj+1σi for i � j,

∂iσj =



σj−1∂i , if i < j,

1, if i = j, j + 1,

σ ∂ , if i > j + 1.
j i−1
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A cosimplicial object inA is a sequence of objects{Xn} together with, for eachn � 0,
coface maps∂i :Xn → Xn+1 for 0 � i � n + 1 and codegeneraciesσj :Xn+1 → Xn such
that

∂j ∂i = ∂i∂j−1 for i < j, σ jσ i = σ iσ j+1 for i � j,

σ j ∂i =



∂iσ j−1, if i < j,

1, if i = j, j + 1,

∂i−1σj , if i > j + 1.

Two cosimplicial mapsf,g :X → Y are homotopic if for eachn � 0 there is a family
of maps{hi :Xn+1 → Yn | 0� i � n} in A such that

h0∂0 = f, hn∂n+1 = g,

hj ∂i =



∂ihj−1, if i < j,

hi−1∂i, if i = j = 0,

∂i−1hj , if i > j + 1,

hjσ i =
{

σ ihj+1, if i � j,

σ i−1hj , if i > j.

Clearly, homotopy of cosimplicial maps is an equivalence relation.
If X is a cosimplicial object in an abelian categoryA, thenC(X) denotes the associate

cochain complex inA, i.e., an object of the category of cochain complexes Coch(A).

Lemma A.1. For a cosimplicial objectX in the abelian categoryA let

Nn(X) =
n−1⋂
i=0

kerσ i and Dn(X) =
n−1∑
j=0

im ∂j .

Then C(X) ∼= N(X) ⊕ D(X). Moreover,C(X)/D(X) ∼= N(X) is a cochain complex
with differentials given by∂n :Xn/Dn → Xn+1/Dn+1, andπ∗(X) = H ∗(N∗(X)) is the
sequence of cohomotopy objects ofX.

Theorem A.2 (Cosimplicial Dold–Kan correspondence [32, 8.4.3]).If A is an abelian
category then:

(1) N :A∆ → Coch(A) is an equivalence andN(X) is a summand ofC(X).
(2) π∗(X) = H ∗(N(X)) ∼= H ∗(C(X)).
(3) If A has enough injectives, thenπ∗ = H ∗N :A∆ → Coch(A) and H ∗C :A∆ →

Coch(A) are the sequences of right derived functors ofπ0 = H 0N :A∆ → A and
H 0C :A∆ → A, respectively.

Proof. (1) If y ∈ Nn(X) ∩Dn(X) theny = ∑n−1
i=0 ∂i(xi), where eachxi ∈ Xn−1. Suppose

thaty = ∂0(x) andy ∈ Nn(X), then 0= σ 0(y) = σ 0∂0(x) = x and hencey = ∂0(x) = 0.
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Now proceed by induction on the largestj such that∂j (xj ) = 0. So lety = ∑j
i=0 ∂i(xi)

such that∂j (xj ) = 0, i.e.,y /∈ ∑
i<j im ∂i , andy ∈ Nn(X). Then

0 = σj (y) =
∑
i�j

σ j ∂i(xi) = xj +
∑
i<j

σ j ∂i(xi) = xj +
∑
i<j

∂iσ j−1(xi).

This implies thatxj = −∑
i<j ∂iσ j−1(xi) and hence

∂j (xj ) = −
∑
i<j

∂j ∂iσ j−1(xi) = −
∑
i<j

∂i∂j−1σj−1(xi) ∈
∑
i<j

im ∂i,

a contradiction. Thus,Nn(X) ∩ Dn(X) = 0.
Now let us show thatDn(X) + Nn(X) = Cn(X). Suppose thaty = ∂0(x) for some

x ∈ Xn−1 andy ∈ Nn(x) = ⋂n−1
i=0 kerσ i . Then 0= σ 0(y) = σ 0∂0(x) = x, so thatσ i(y) =

0. If y ′ = y − ∂iσ i(y) then y − y ′ ∈ Dn(X). For i < j we get σj (y ′) = σj (y) −
σj∂iσ i(y) = σj (y) − ∂iσ j−1σ i(y) = σj (y) − ∂iσ iσ j (y) = 0. Moreover,σ i(y ′) =
σ i(y) − σ i∂iσ i(y) = σ i(y) − σ i(y) = 0, so thati − 1 is the largest index for whic
σ i−1y ′ = 0. By induction, there is az ∈ Dn(X) such thaty − z ∈ Nn(X), and hence
y ∈ Dn(X) + Nn(X).

It now follows that

n−1⋂
i=0

kerσ i = Nn(X) ∼= Xn/Dn(X) = Xn
/ n−1∑

i=0

im ∂i.

The differential∂n :Nn(X) → Nn+1(X) is given by∂n(x + Dn(X)) = ∂n(x) + Dn+1(X).
(2) By definition, see [32, 8.4.3].
(3) The functorsN :A∆ → Coch(A) andC :A∆ → Coch(A) are exact. �
The inverse equivalenceK : Coch(A) → A∆ has a description, similar to that for th

simplicial case [32, 8.4.4].

A.2. Cosimplicial bicomplexes

The category of cosimplicial bicomplexes in the abelian categoryA is the functor
categoryA∆×∆ = (A∆)∆. In particular, in a cosimplicial bicomplexX = {Xp,q} in A

(1) horizontal and vertical cosimplicial identities are satisfied,
(2) horizontal and vertical cosimplicial operators commute.

The associated (unnormalized) cochain bicomplexC(X) with C(X)p,q = Xp,q has
horizontal and vertical differentials

dh =
p+1∑

(−1)i∂i
h :Xp,q → Xp+1,q , dv =

q+1∑
(−1)p+j ∂j

v :Xp,q → Xp,q+1
i=0 j=0
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,

serve
so thatdhdv = dvdh. The normalized cochain bicomplexN(X) is obtained fromX by
taking the normalized cochain complexof each row and each column. It is a summand
CX. The cosimplicial Dold–Kan theorem then says thatH ∗∗(CX) ∼= H ∗∗(NX) for every
cosimplicial bicomplex.

The diagonal diag :∆ → ∆ × ∆ induces the diagonalization functor

Diag=Adiag:A∆×∆ →A∆,

where Diagp(X) = Xp,p with coface maps∂i = ∂i
h∂i

v :Xp,p → Xp+1,p+1 and codegen

eraciesσj = σ
j

h σ
j
v :Xp+1,p+1 → Xp,p for 0 � i � p + 1 and 0� j � p, respectively.

Theorem A.3 (The cosimplicial Eilenberg–Zilber theorem).LetA be an abelian categor
with enough injectives. There is a natural isomorphism

π∗(DiagX) = H ∗(C Diag(X)
) ∼= H ∗(Tot(X)

)
,

whereTot(X) denotes the total complex associated to the double cochain complexCX.
Moreover, there is a convergent first quadrant cohomological spectral sequence

E
p,q

1 = πq
v

(
Xp,∗), E

p,q

2 = π
p

h πq
v (X) ⇒ πp+q(DiagX).

Proof. It suffices to show thatπ0 Diag∼= H 0(TotX), and that

π∗ Diag,H ∗ Tot :A∆×∆ → AN

are sequences of right derived functors.
First observe thatπ0(DiagX) = eq(∂0

h∂0
v , ∂0

h∂0
v :X0,0 → X1,1), while H 0(Tot(X)) =

ker((∂0
h − ∂1

h, ∂0
v − ∂1

v ) :X0,0 → X10 ⊕ X01). But ∂0
h∂0

v x = ∂1
h∂1

v x implies that∂0
v x =

σ 0
h ∂0

h∂0
v x = σ 0

h ∂1
h∂1

v x = ∂1
v x, sinceσ 0

h ∂0
h = 1 = σ 0

h ∂1
h , and similarly∂0

hx = σ 0
v ∂0

h∂0
v x =

σ 0
v ∂1

h∂1
v x = ∂1

hx, sinceσ 0
v ∂0

v = 1 = σ 0
v ∂1

v , so thatπ0(DiagX) ⊆ H 0(Tot(X)).
Conversely, if∂0

hx = ∂1
hx and ∂0

v x = ∂1
v x then ∂0

h∂0
v x = ∂0

h∂1
v x = ∂1

v ∂0
hx = ∂1

v ∂1
hx =

∂1
h∂1

v x, and henceH 0(Tot(X)) ⊆ π0(diagX).
The additive functors Diag :A∆×∆ → A∆ and Tot :A∆×∆ → Coch(A) are obviously

exact, whileπ∗,H ∗ are cohomologicalδ-functors, so that bothπ∗ Diag,H ∗ Tot :A∆×∆ →
Coch(A) are cohomologicalδ-functors.

The claim is that these cohomologicalδ-functors are universal, i.e., the right deriv
functors ofπ0 Diag,H 0 TotC :A∆×∆ → A, respectively. SinceA has enough injectives
so does Coch(A) by [32, Example 2.3.4], and hence by the Dold–Kan equivalenceA∆ and
A∆×∆ have enough injectives. Moreover, by the next lemma, both Diag and Tot pre
injectives. It therefore follows that

π∗ Diag= (
R∗π0)Diag= R∗(π0 Diag

)
,

H ∗ Tot= (
R∗H 0)Tot= R∗(H 0 Tot

)
.
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The canonical cohomological first quadrant spectral sequence associated w
cochain bicomplexC(X) has

E
p,q

1 = Hq
v

(
Cp,∗(X)

) = πq
v

(
Xp,∗), E

p,q

2 = H
p

h

(
C

(
πq

v (X)
)) = π

p

h πq
v (X)

and converges finitely toHp+q(Tot(X)) ∼= πp+q(diagX). �
Lemma A.4. The functorsDiag :A∆×∆ → A∆ and Tot :A∆×∆ → CochA preserve
injectives.

Proof. A cosimplicial bicomplexJ is an injective object inA∆×∆ if and only if

(1) eachJp,q is an injective object ofA,
(2) each row and each column is cosimplicially null-homotopic, i.e., the identity m

cosimplicially homotopic to the zero map,
(3) the vertical homotopieshj

v :J ∗,q → J ∗,q−1 for 0 � j � q − 1 are cosimplicial maps.

It then follows that Diag(J ) is an injective object inA∆, sinceJp,p is injective inA for
everyp � 0 and the mapshi = hi

hh
i
v :Jp,p → Jp−1,p−1, 0� i � p − 1 andp > 0, form a

contracting cosimplicial homotopy, i.e., the identity map of DiagJ is cosimplicially null-
homotopic.

On the other hand Tot(J ) is a non-negative cochain complex of injective objects inA,
so it is injective in Coch(A) if and only if it is split-exact, that is if and only if it is exac
But every column of the associated cochain bicomplexC(J ) is acyclic, sinceH ∗

v (J p,∗) =
π∗(J p,∗) = 0. The exactness of Tot(J ) now follows from the convergent spectral seque
with E

p,q

1 = Hq(Cp,∗(J )) = 0 andE
p,q

2 = H
p
h (H

q
v (C(J ))) ⇒ Hp+q(Tot(J )). �

A.3. The cosimplicial Alexander–Whitney map

The cosimplicial Alexander–Whitney map gives an explicit formula for the isom
phism in the Eilenberg–Zilber theorem. Forp + q = n let

gp,q = dn
hdn−1

h · · ·dp+1
h d0

v · · ·d0
v :Xp,q → Xn,n

and gn = (gp,q) : Totn(X) → Xn,n. This defines a natural cochain mapg : Tot(X) →
C(DiagX), which induces a morphism of universalδ-functors

g∗ :H ∗(Tot(X)
) → H ∗(C(DiagX)

) = π∗(DiagX).

Moreover,g0 : Tot0(X) = X0 = C0(DiagX), and hence

g0 :H 0(Tot(X)
) → H 0(C(DiagX)

) = π0(DiagX).
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3.

us/

37–
The cosimplicial Alexander–Whitney map is therefore (up to equivalence) the u
cochain map inducing the isomorphism in the Eilenberg–Zilber theorem. The invers
f :C(DiagX) → Tot(X) is given by the shuffle coproduct formula

f p,q =
∑

(p,q)-shuffles

(−1)µσ
µ(n)
h · · ·σµ(p+1)

h σµ(p)
v · · ·σµ(1)

v :Xn.n → Xp,q,

and is a natural cochain map. It induces a natural isomorphism

π0(DiagX) = H 0(C(DiagX)
) ∼= H 0(Tot(X)

)
,

and thus

f ∗ :π∗(DiagX) = H ∗(C(DiagX)
) ∼= H ∗(Tot(X)

)
is the unique isomorphism of universalδ-functors given in the cosimplicial Eilenberg
Zilber theorem. In particular,f ∗ is the inverse ofg∗.
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