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In the literature there are various theorems on the continuous 
dependence of solutions of boundary value problems for ordinary differen- 
tial equations, cf. [l-l 11. All these results present two peculiar features 
that restrict considerably their range of applicability: they apply only to 
special boundary value problems, and they require the hypothesis of 
“unrestricted” uniqueness. Unrestricted uniqueness can be roughly 
described in modern language by saying that the nonlinearity is below the 
first eigenvalue of the linear part. This assumption looks unnatural when 
compared with the initial value problem where uniqueness is required only 
for the limit problem. 

It is the purpose of this paper to prove a general theorem about con- 
tinuous dependence of solutions to boundary value problems that avoids 
these inconveniences and is the analogue of the general theorem on 
continuous dependence for the Cauchy problem (Theorem 3.2 at p. 14 of 
Hartman [ 121). This theorem provides a positive answer to the question 
raised on p. 123 of Conti [13]. It includes all the above mentioned 
theorems as special cases, as far as assumptions on boundary conditions 
are concerned, while for the hypotheses on Cauchy problems a comment is 
needed: unlike some of the earlier results, we require local uniqueness on 
Cauchy problems but we avoid completely the assumption of global exist- 
ence. The proof is quite different from the arguments in papers [l-11] 
since it is a simple application of the continuity of the Brouwer topological 
degree (the proof written below is long due to the technicality involved 
with the fact that global existence for the Cauchy problems has not been 
assumed). 

As an application, it is possible to generalize to nonlinear functional 
boundary value problems many of the results known in the linear cases. 
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2 GIOVANNI VIDOSSICH 

Since this program can be carried out along the line of the nice paper Opial 
[18], we prefer to omit it and to present two applications which do not 
seem obtainable in a traditional way: 

(i) an existence theorem for the perturbation of functional boundary 
value problems admitting unique solvability; and 

(ii) the results announced in Piccinini, Stampacchia, and Vidossich 
[ 14, Chap. IV, Ref. 1181 related to the use of the spectral theory of the 
two-point boundary value problem to get existence theorems for the 
n-point boundary value problem. This has been one starting point of this 
research, since the continuous dependence of solutions to boundary value 
problems was needed, and no sufhciently general result was available. 

1. THE GENERAL THEOREM 

In this section we prove a general theorem on the continuous depen- 
dence of solutions of functional boundary value problems. By functional 
boundary value problem we mean a problem of the type 

x’ =f(t, x), L(x) = r, 

where f: [a, b] x RN + RN and L is a mapping from the space of con- 
tinuous functions C( [a, b], RN) into RN. This type of problem has been 
introduced by Whyburn in the forties for linear L and has been intensively 
studied in the fifties and sixties by Conti, Lasota, and Opial; the first treat- 
ment for nonlinear operators L appeared in the seventies by McCandless. 
For a comprehensive bibliography on the subject, cf. Conti [lS], Mawhin 
[16], and Piccinini, Stampacchia and Vidossich [14]. 

In Theorem 1 special attention has been paid in order to avoid com- 
pletely the assumption of global existence for the Cauchy problems. This 
would be a “bad” hypothesis as the works on x” = a(t) x” show. Note that 
in the approximating boundary value problems no assumptions have been 
made on existence or uniqueness. Theorem 1 shows that existence is 
“spread around” for sufficiently near problems, a fact that could be useful 
in numerical analysis. 

THEOREM 1. For each n 20, let f,: [a, b] x RN + RN satisfy the 
generalized Caratheodory conditions, let L,: C( [a, b], RN) + RN be 
continuous, and let r, E RN. Assume that 

(a) lim,r, = r,; 
(b) lim, f, = f. and lim,L, = L, uniformly on compact sets of 

[a, b] x RN and C( [a, b], RN), respectivefy; 
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(c) each initial value problem 

x’ =f,(G x), x(a) = u 

has at most one local solution for ME RN; 

(d) the functional boundary value problem 

x’ = fo(t, xl, L,(x) = r 

has at most one solution for each r E [WN. 

Let x0 be the solution to x’ = fo( t, x), L,(x) = ro. Then for each E > 0 there 
exists nE such that the functional boundary value problem 

x'=fn(t, xl, L,(x) = r, 

has a solution x, for n > nE satisfying the condition 

11x0 - xn II 00 < E. 

We have denoted by II . II a, the sup norm, while by the statement f (t, x) 
satisfies the generalized Caratheodory conditions it is meant that f is 
measurable in t, continuous in x a.e. in t and for each A4 > 0 there is a 
summable function h such that 

llf(t, XIII G h(t) (1x1 <Ma.e. in t). 

Direct consequences of Theorem 1 are the following: 

COROLLARY 1. Under the hypothesis of Theorem 1, assume further that 
the boundary value problem 

x’ =fn(t, x), L(x) = rn 

has a unique solution x,. Then we have lim,x, =x0 uniformly on [a, b]. 

COROLLARY 2. If the Cauchy problems for x’ = f (t, x) enjoy local 
uniqueness and tf the boundary value problems 

x’=f(t, x), L(x) = r (1) 

have at most one solution for each r E RN, then the set U of all r E RN for 
which (1) has a solution is an open subset of RN. 
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Proof of Theorem 1. Fix E > 0. We claim that 

(*) there exists a pair (U, m) with U a neighbourhood of x0(a) in RN 
and m an integer, such that for each pair (u, n) E U x {n E N 1 n > m} the 
Cauchy problem 

x’ =f,(t, x), x(a) = 24 

has a unique solution u, defined on [a, b] and satisfying I/u, - x0 11 o. < E. 

In fact, if (*) fails, then for every pair (U, m) there exists a pair (a, n) such 
that u E U and n 2 m for which either the solution U, to 

x’ = f,(t, x), x(a) = u 

does not exist on [a, b] or U, exists on [a, b] but we have I/U, -x0 11 m > E. 
For each m > 1 we take U equal to the ball B(x,(a), l/m) of centre x,(a) 
and radius l/m. We find u,~B(x~(a), l/m) and n, >m such that the 
solution 2.7, of 

x’ =f,,(t, x), x(a) = 24, 

either does not exist on [a, b] or, alternatively, IlU, -x,, II oo > E. By virtue 
of Theorem 3.2 on p. 14 of Hartman [ 121 (whose proof works also for fn’s 
satisfying the generalized Caratheodory conditions), there is a subsequence 
(U,,& of (ii,), such that each il,, is defined on [a, b] and lim, ii,, = x0 
uniformly on [a, b]. This contradicts the definition of U,, and we conclude 
that (*) must hold. 

Let (U, m) be the pair defined by (*). By repeating the argument used 
to prove (*), we see that we can take U so small that each initial value 
problem 

x’ =fo(t, x), x(a) = 24 

with u E U has a (unique) solution u0 defined on [a, b] and [lx0 - u0 11 o. < E. 
Select such a U. For each n 2 m or n = 0 and each u E U, let u, be the 
unique solution to 

x’ =fAt, x), x(a) = u 

defined on [a, b], existing by (*) and the above remark. Now we fix a ball 
B of centre x,,(a) in RN such that B c U, and define for n = 0 and n 2 m a 
function I;,: B + RN as 

F,(u) = UuA 

where, as said above, U, is the unique solution to x’ = f,,( t, x), x(a) = u. By 
the uniqueness of Cauchy problems, the mapping UM U, is continuous. 
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Therefore, F, is continuous. We claim that 

lim I;, = F,, (2) n 
uniformly on B. If not, there exist 6 > 0, nk t co, and Yk E s such that 

(3) 

Passing to a subsequence if necessary, we assume lim, y, = y0 for a 
suitable y, E B. Let jjk be the unique solution to the Cauchy problem 

X’ = f”,(f, xl, x(a) = Yk, 

Using again Theorem 3.2 on p. 14 of Hartman [ 121, we see there exists a 
subsequence (jj,,)i of (jj,& such that 

lim yk, = 90 
i 

uniformly on [a, b]. Since lim, L, = L, uniformly on compact sets and 
since { Jk, I i > 1 } u {PO) is a compact subset of C( [a, b], RN), we have 

lim Ln(jk,) = Lo(jk,) 
n 

uniformly with respect to i This contradicts (3) since L,,(yk,) = F,,,+(yk,) 
and L,(j,J = F,(y,,). Therefore (2) must hold. Since F, is mjective by (d), 
we have r0 # F,(dB). It follows that 

c = dist( Fo( all), r,,) > 0 

since F,(BB) is closed. From this, from (2), and from (a), we get the 
existence of n, such that 

dist(FJJbl), r,) > i (n 2 no). 

This implies that the Brouwer topological degree deg(F,, B, r,) is well 
defined for n > no. By the continuous dependence of the topological degree 
there is n, 2 no such that 

d%V’,, 4 r,) = deg(Fo, & ro) @an,). 

Since F, is injective by (d), we have 

deg(F,, B, ro) = f 1 

by virtue of Theorem 3.3.3 of Lloyd 1171. Therefore we have 

deg(F,,, 4 I,,) = f 1 (nanI) 
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and the equation 

has at least one solution x, in B for n an,. From (*) it follows that the 
solution 2” to the Cauchy problem 

x’ =f,(t, XL x(a) =x, 

satisfies the condition lljEn-x,,lla <E. Thus the theorem is proven by 
taking n, = n r . Q.E.D. 

Proof of Corollary 1. Obvious. Q.E.D. 

Proof of Corollary 2. If rO E U is not an interior point of U, then there 
exists a sequence (r,), in RN such that lim,r, = rO and 

x’=f(t, x), L(x) = r, 

has no solution. But this contradicts the conclusion of Theorem 1 when we 
apply it by taking f, = f and L, = L. Q.E.D. 

2. APPLICATION TO THE EXISTENCE OF SOLUTIONS TO FUNCTIONAL 
BOUNDARY VALUE PROBLEMS 

We provide only one of the applications of Theorem 1 to functional 
boundary value problems because, as mentioned in the introduction of the 
paper, all the others considered by the author turned out, on second 
thought, to be more or less a natural extension of the argument in 
Opial [18] via the use of Theorem 1. 

THEOREM 2. Let f: [a, b] x RN + RN be a Cl-function and let 
L: C([a, b], RN) + RN be a bounded linear operator. Assume that 

(a) (c?/i?x)f is bounded; 

(b) the functional boundary value problem 

x’ =f(t, x), L(x) = r 

has a unique solution x, for every r E RN. 

Then for every bounded continuous function g: [a, b] x RN + RN and every 
rEIRN, the functional boundary value problem 

x’=f(t, x)+ g(t. x), L(x) = r 

has at least one solution. 
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Proof: For each x0 E RN, denote by x(t, t,, x0) the unique solution to 
the Cauchy problem 

x’=f(t, xl, x(to) =x0 

existing in [a, b] since (a/ax)f is bounded. It is well known that the 
function 

vt, to, x0) =$ x(t, to, x0) 
0 

satisfies the following ordinary differential equation in the space of Nx N 
matrices 

i u(t, to, x01 =f,(f, x(t, to, x0)). U(t, to, x0), U(t,, to, x0) = id, (4) 

where f, = (8/8x)$ From this and the Gronwall lemma it follows 

II U(t, to, XJI < eMCb-(I), 

where M is an upper bound for the norm off,, existing by (a). For each 
II 2 1 set 6, = (b - a)/n and define g,: [a, b] x C( [a, 61, RN) + RN by 

‘Y,(~~ xl = 
i 

0 ifa<t<a+6, 

g(t - L x(t - 6”)) iftau+6,. 

Clearly g, satisfies the generalized Caratheodory conditions. Fix n. We 
claim that the “functional” Cauchy problem 

Y’ =f(f, Y(t)) + gn(4 Y), Aa) =x0 

has a unique absolutely continuous solution y,(t, x0) defined on [a, b]. In 
fact, y,( ., x0) can be defined as follows. On [a, a + S,] we set y,(t, x0) = 
x(t, a, x0). The Cauchy problem 

z’ =f(t, z) + g,(c -4 ., 4 x0)), z(a + hz) = Y,(U + b,, x0) 

has a unique solution x2 on [a, b] since f, is bounded. We set y,(t, x0) = 
x2(t) for a + 6, < t < a + 26,. The Cauchy problem 

x’ =f(t, x) + &it, x2), x(u + 26,) = y,(u + 26,, x0) 

has a unique solution x3 on [a, b] since f, is bounded. We set y,( t, x0) = 
x3(t) for u + 26, < t < a + 36,. Proceeding in this way, we get the exis- 
tence and uniqueness of y,( ., x0) on [a, b]. Now differentiate 
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u(s) = x(t, s, y,(s, x0)) and integrate the result from a to t. From this and 
the relationship between (d/at,) x(t, t,,, x0) and (a/ax,) x(t, t,,, x0), it 
follows that y,( ., x0) satisfies the “Volterra” equation 

At) = 46 a, x0) + j' U(t 3 8, Y,(s, xo)) gn(s, Y) ds. (6) 
n 

Assume that u and u are two solutions to (6). Then u = v =x( . , a, x0) on 
[a, a + S,] by virtue of the definition of g,. It follows that g,(t, u) = g,(t, u) 
on [a, a + 26,] and therefore u and u are equal on [a + 6,, a + 26,] since 
the right-hand side of (6) is equal there. Proceeding in this way, we obtain 
u = u on [a, b]. Thus (6) has a unique solution. Now consider the mapping 
Y -+ x,, x, being defined in (b). By Theorem 1, r -vv) x, is continuous. By this 
and by the continuous dependence of solutions to Cauchy problems 
admitting uniqueness, it follows that the mapping 

r -+ 4 . , a, x,(a)) 

is a continuous function from RN into C( [a, b], W”). Now define an 
operator G,: C( [a, 61, KY”) + C( [a, b], RN) by 

G,(u)(t) = j' Vf 3 s, Y,(s, u(a))) gn(s, u) ds (n>O) 
a 

with go= g. Since the solutions to (4) as well as y,( ., x0) depend 
continuously on the parameter x0, G, is continuous. From (5) and the 
Ascoli theorem it follows that G, is completely continuous, i.e., G, maps 
bounded subsets of C( [a, b], RN) into compact subsets. By continuity it 
follows that the mapping u ul* x( . , a, x,_ Lc,c,,(a)) transforms bounded 
subsets of C( [a, b], IX”‘) into compact subsets. Therefore the operator 
defined by 

f’“‘,(u) = 4 .> a, xr-~~.~uJa)) + G,(u) 

is a completely continuous operator C( [a, b], RN) + C( [a, b], RN) taking 
values into a bounded set. Then from the Schauder fixed point theorem we 
get the existence of a function U, such that U, = F,(u,), i.e., 

u,(t) = x(t, a, x,- m,*“,(a)) + j’ U( t, s> Y,(s> u,(a))) g,(s, 4 ds. (7) 
a 

Taking t = a we get 

u,(a) = xr- ..“(,“)(a) 
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and so we have 

u,(t) = x(t, a, u,(a)) + jr u(t, s, Y,(s, u,(a))) g,(s, u,) ds. a (8) 

By virtue of the above, the function y,( ., u,(a)) must satisfy Eq. (6). Since 
(6) can have only one solution as shown above, we have U, = Y,,( ., u,(a)) 
and so u,, n 3 1, is a solution to the perturbed equation y =f(t, y) + 
g,(t, y). Now we apply L on both sides of (7) and we get 

Lu, = r - LG,(u,) + LG,(u,) 

= r. (9) 

Since (G,), is uniformly bounded, (u,), and hence (~1)” are uniformly 
bounded. Then by the Ascoli theorem there is a subsequence (u,,), 
converging uniformly to a function u, . Taking limits in (8) and (9) we get 
u’, =f(t, u,) + g(t, urn), L(u,) = r and so u, is the desired solution. 

Q.E.D. 

3. APPLICATIONS TO BOUNDARY VALUE PROBLEMS FOR n'h-O~~~~ 
EQUATIONS USING EIGENVALUES OF SECOND ORDER EQUATIONS 

In this section we shall prove an existence theorem for boundary value 
problems of nth-order equations by using the properties of the spectral 
theory for the two-point boundary value problem. 

In place of the Picard problem we can use any Sturm-Liouville problem 
for second order equations. Moreover, our argument can be used to handle 
those non-symmetric problems that admit a nice symmetric lower part. 

THEOREM 3. Let f: [a, b] x KY-’ --+ Iw be continuous together with 
(a/ax, _, ) f (t, x, . . . . x, _, ). Let 1, be the mth eigenvalue of the Picard 
problem 

y” + ly = 0, y(a) = y(b) = 0. (10) 

Let L: C( [a, b], KY-*) + Iw”- 2 be a continuous function such that the 
functional boundary value problem 

xc”-*)= u(t), L(x, . . . . x(” - 3)) = r 

has a unique solution u,for every u E C( [a, b]) and r E IX”-*. Iff( ., ., . . . . ., 0) 
is bounded and tf one of the following conditions holds: 
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(i) there exists p E L” such that 

axap f( t, x I, -.., x,-1)Gp(t) (a.e. t; all Xi) 
n 1 

and p < 1, a.e. with strict inequality in a set of positive measure; or alter- 
natively 

(ii) there exist p, qE L” such that 

p(t)<-- axa- f(t 9X , 3 ..., X,-l)G 4(t) (a.e. t; all xi) 
n 1 

and for a suitable m we have 

Ll G p(t), q(t)~L+1 

a.e. with strict inequality in a set of positive measure; 

then the nib-order boundary value problem 

x’“‘+f(t,x, . . . . x’“-2’)=0, 

x(“-*)(a) = A, x’“-*‘(b) = B, L(x, . . . . x(“-~)) = r 

has at least one solution for any A, BE [w and r E KY-*. 

If L is linear, then it follows from the Fredholm alternative that the 
uniqueness assumption on 

XC” - *) = u(t), L(x, . . . . x(” - “) = r 

is satisfied whenever x = 0 is the only solution to xCn-*) = 0, 
L(x, . . . . x (n-39=0. 

A simple application of Theorem 3 is furnished by the following n-point 
boundary value problem 

x(“)= f(t, x, . ..) X+2)), 

x(+*)(a)=A, x’“-*‘(b)= B, xCmi)(ti)=ri 
( 

i=O, . . . . k; i m,=n-3 
i=l > 

with tie [a, b]. In this case, L(z)= (z,,(tl), . . . . z,Jtk)). 
To prove Theorem 3 we need the following 

LEMMA Let 1, be the first eigenvalue of (10) and let p E L” be such that 
p < 1, with strict inequality in a set of positive measure. Then for every 
continuous g and every A, B 2 0, the Picard problem 

x”+p(t)x+g(t)=O, x(a) = A, x(b) = B 
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has a unique solution xg with absolutely continuous first derivative. If p > 0 
and g 2 0 a.e. and if A, B 2 0 then we have xg 3 0. 

Proof Let pi be the first positive eigenvalue of 

v” + pp(t)v = 0, v(a) = v(b) = 0. 

Suppose pi < 1. Let us compare the eigenvalue problems 

u”+12’~1u=o, u(a) = u(b) = 0 (11) 

Z”+/l”p~p(t)Z=o, z(a) = z(b) = 0 (12) 

and call A;, 1; their first positive eigenvalues. Since pip < p, we have 
meas { p i p < 1 i } > 0. Therefore from Proposition 1.12A of de Figueiredo 
[19] it follows 

n; < 2;. 

Obviously A; = 1. Thus 1; < 1. But this goes against the fact that for 1’ = 1 
problem (11) has a positive solution (namely, any eigenfunction corre- 
sponding to A1) and therefore 1’ = 1 must be the first eigenvalue. This 
contradiction shows that the case pi < 1 cannot occur, i.e., 

Pl ’ 1. (13) 

Now let G be the Green function corresponding to the problem 

-x” = h(t), x(a) = x(b) = 0. 

Let Z be the identity of C( [a, b]) and let L: C( [a, b]) + C( [a, b]) be the 
linear operator defined by 

Lx(t) = I” G(t, s) p(s) x(s) ds. 
a 

From (13) it follows that Ker(Z- L) is reduced to the origin. Then by the 
Fredholm alternative for any g E C( [a, b]) and any A, BE R, there is at 
least one solution x~,~ of 

x(t)-Lx(t)=[bG(t,s)g(s)ds+A+(B-A)E. (14) LI 

This function x~,~ is a solution to the given problem. The uniqueness of 
solutions follows from (13). It remains to show that x~,~ > 0 whenever the 
additional assumptions hold. Let x0 be the solution to (14) corresponding 
to A= B=O and a fixed ga0. Since p>O a.e., it follows from 
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Theorem 1.14 of de Figueriredo [19] that x,2 0. Then it is enough to 
show that w = x~,~ -x0 is not negative. If w < 0 in at least one point, then 
there exist a<a </I< b such that w <O in ]a, /I[ and w(a)= w(b)=O. 
Moreover, w is a solution to 

w”+p(t)w=O. 

Therefore it follows from the uniqueness portion of the lemma (the part 
already established), applied on [a, /I], that we must have w = 0 on [cr, fl], 
a contradiction. Q.E.D. 

Proof of Theorem 3. Assume (i). By changing p with max ( p( t), ,I,/2 > if 
necessary, we assume p > 0. Let 

M>sup If(c Xl, -.Jn-2,O)l. 

LX 

By the above lemma there is a unique positive solution /I to the Picard 
problem 

u”+p(t)u+M=O, u(a) = IAl, u(b) = IBI. 

Setting 

g(c Xl , -..9 xn - 1 )=j;$-J-(wl,..., X,-2,5X*-l)& 
n 

the given equation can be rewritten in the form 

x@)+ g(t, x, . ..) X+*))X(“-*)+f(t, x, . ..) x(“-3), O)=O (15) 

with g(t, .) < p(t) a.e.. Fix r E R”- *. For every u E C( [a, b]), let U be the 
unique solution to the functional boundary value problem 

z’“-*‘=u(t), L(z, . . . . z(“- 3)) = r. 

Clearly p and -/I are an upper and a lower solution to the Picard problem 

y”+ q(t, ti(t), . ..) iPyt), u(t))y+f(t, ii(t), . ..) ii’“-3’(t),O)=O, 

v(a) = A y(b) = B. 
(16) 

Therefore a well-known theorem ensures that (16) has a solution y, such 
that -fi < y,< 8. The solution to (16) is unique by virtue of the above 
lemma. Consider the map T: C( [a, b] ) + C( [a, b] ) defined by 

T(u) = Y,. 
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By Theorem 1, u-+ ii and T are continuous. Since IIy,ll o. < [l/Ill oo, it is 
easily seen from the Ascoli theorem that T maps bounded sets into 
relatively compact sets. Then we apply the Schauder fixed point theorem to 
the restriction of T on the ball B(0, llj?l/,) in C([a, b]) and we get the 
existence of a function u0 such that u0 = T(u,). It is easily seen that U, is 
a solution to Eq. (15), hence to the given boundary value problem. 

Assume (ii). Let g and U be as above. The Picard problem (16) has a 
unique solution y, by Mawhin-Ward [20]. We claim that the set 
(yU 1 u E c”} is bounded. In fact, if there is lIy,~ll o. + co, then we set z, = 
Yu,lllYunll cc and by using the weak compactness of the coefficients of 

zi+g(t, ii, )...) t.p3’, u,)z,+ &f(c, u,, . . . . LP3’,0)=0 
m 

we get a contradiction against the fact that z” = g(t)z, z(a) = 0 = z(b) can 
have only z = 0 as a solution whenever p 6 g 6 q. Now we can conclude as 
in case (i). Q.E.D. 
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