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We automatically create enormous, free and multilingual silver-standard training annota-
tions for named entity recognition (ner) by exploiting the text and structure of Wikipedia.
Most ner systems rely on statistical models of annotated data to identify and classify
names of people, locations and organisations in text. This dependence on expensive
annotation is the knowledge bottleneck our work overcomes.
We first classify each Wikipedia article into named entity (ne) types, training and
evaluating on 7200 manually-labelled Wikipedia articles across nine languages. Our cross-
lingual approach achieves up to 95% accuracy.
We transform the links between articles into ne annotations by projecting the target
article’s classifications onto the anchor text. This approach yields reasonable annotations,
but does not immediately compete with existing gold-standard data. By inferring additional
links and heuristically tweaking the Wikipedia corpora, we better align our automatic
annotations to gold standards.
We annotate millions of words in nine languages, evaluating English, German, Spanish,
Dutch and Russian Wikipedia-trained models against conll shared task data and other
gold-standard corpora. Our approach outperforms other approaches to automatic ne

annotation (Richman and Schone, 2008 [61], Mika et al., 2008 [46]) competes with gold-
standard training when tested on an evaluation corpus from a different source; and
performs 10% better than newswire-trained models on manually-annotated Wikipedia text.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Named entity recognition (ner) is the information extraction task of identifying and classifying mentions of people,
organisations, locations and other named entities (nes) within text. It is a core component in many natural language pro-
cessing (nlp) applications, including question answering, summarisation, and machine translation.

Manually annotated newswire has played a defining role in ner, starting with the Message Understanding Conference
(muc) 6 and 7 evaluations [14] and continuing with the Conference on Natural Language Learning (conll) shared tasks [76,
77] held in Spanish, Dutch, German and English. More recently, the bbn Pronoun Coreference and Entity Type Corpus [84]
added detailed ne annotations to the Penn Treebank [41].

With a substantial amount of annotated data and a strong evaluation methodology in place, the focus of research in
this area has almost entirely been on developing language-independent systems that learn statistical models for ner. The
competing systems extract terms and patterns indicative of particular ne types, making use of many types of contextual,
orthographic, linguistic and external evidence.
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Fig. 1. Deriving training sentences from Wikipedia text: sentences are extracted from articles; links to other articles are then translated to ne categories.

Unfortunately, the need for time-consuming and expensive expert annotation hinders the creation of high-performance
ne recognisers for most languages and domains. This data dependence has impeded the adaptation or porting of existing
ner systems to new domains such as scientific or biomedical text, e.g. [52]. The adaptation penalty is still apparent even
when the same ne types are used in text from similar domains [16].

Differing conventions on entity types and boundaries complicate evaluation, as one model may give reasonable results
that do not exactly match the test corpus. Even within conll there is substantial variability: nationalities are tagged as misc

in Dutch, German and English, but not in Spanish. Without fine-tuning types and boundaries for each corpus individually,
which requires language-specific knowledge, systems that produce different but equally valid results will be penalised.

We process Wikipedia1—a free, enormous, multilingual online encyclopaedia—to create ne annotated corpora. Wikipedia
is constantly being extended and maintained by thousands of users and currently includes over 3.6 million articles in English
alone. When terms or names are first mentioned in a Wikipedia article they are often linked to the corresponding article.
Our method transforms these links into ne annotations.

In Fig. 1, a passage about Holden, an Australian automobile manufacturer, links both Australian and Port Melbourne, Victoria
to their respective Wikipedia articles. The content of these linked articles suggest they are both locations. The two mentions
can then be automatically annotated with the corresponding ne type (loc). Millions of sentences may be annotated like this
to create enormous silver-standard corpora—lower quality than manually-annotated gold standards, but suitable for training
supervised ner systems for many more languages and domains.

We exploit the text, document structure and meta-data of Wikipedia, including the titles, links, categories, templates,
infoboxes and disambiguation data. We utilise the inter-language links to project article classifications into other languages,
enabling us to develop ne corpora for eight non-English languages. Our approach can arguably be seen as the most intensive
use of Wikipedia’s structured and unstructured information to date.

1.1. Contributions

This paper collects together our work on: transforming Wikipedia into ne training data [55]; analysing and evaluating
corpora used for ner training [56]; classifying articles in English [75] and German Wikipedia [62]; and evaluating on a
gold-standard Wikipedia ner corpus [5]. In this paper, we extend our previous work to a largely language-independent
approach across nine of the largest Wikipedias (by number of articles): English, German, French, Polish, Italian, Spanish,
Dutch, Portuguese and Russian.

We have developed a system for extracting ne data from Wikipedia that performs the following steps:

1. Classifies each Wikipedia article into an entity type;
2. Projects the classifications across languages using inter-language links;
3. Extracts article text with outgoing links;
4. Labels each link according to its target article’s entity type;
5. Maps our fine-grained entity ontology into the target ne scheme;

1 http://www.wikipedia.org.

http://www.wikipedia.org
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6. Adjusts the entity boundaries to match the target ne scheme;
7. Selects portions for inclusion in a corpus.

Using this process, free, enormous ne-annotated corpora may be engineered for various applications across many languages.
We have developed a hierarchical classification scheme for named entities, extending on the bbn scheme [11], and have

manually labelled over 4800 English Wikipedia pages. We use inter-language links to project these labels into the eight
other languages. To evaluate the accuracy of this method we label an additional 200–870 pages in the other eight languages
using native or university-level fluent speakers.2

Our logistic regression classifier for Wikipedia articles uses both textual and document structure features, and achieves
a state-of-the-art accuracy of 95% (coarse-grained) when evaluating on popular articles.

We train the C&C tagger [18] on our Wikipedia-derived silver-standard and compare the performance with systems
trained on newswire text in English, German, Dutch, Spanish and Russian. While our Wikipedia models do not outper-
form gold-standard systems on test data from the same corpus, they perform as well as gold models on non-corresponding
test sets. Moreover, our models achieve comparable performance in all languages.

Evaluations on silver-standard test corpora suggest our automatic annotations are as predictable as manual annotations,
and—where comparable—are better than those produced by Richman and Schone [61].

We have created our own “Wikipedia gold” corpus (wikigold) by manually annotating 39,000 words of English Wikipedia
with coarse-grained ne tags. Corroborating our results on newswire, our silver-standard English Wikipedia model outper-
forms gold-standard models on wikigold by 10% F -score, in contrast to Mika et al. [46] whose automatic training did not
exceed gold performance on Wikipedia.

We begin by reviewing Wikipedia’s utilisation for ner, for language models and for multilingual nlp in the following
section. In Section 3 we describe our Wikipedia processing framework and characteristics of the Wikipedia data, and then
proceed to evaluate new methods for classifying articles across nine Wikipedia languages in Section 4. This classification
provides distant supervision to our corpus derivation process, which is refined to suit the target evaluation corpora as de-
tailed in Section 5. We introduce our evaluation methodology in Section 6, providing results and discussion in the following
sections, which together indicate Wikipedia’s versatility for creating high-performance ner training data in many languages.

2. Background

Named entity recognition (ner), as first defined by the Message Understanding Conferences (muc) in the 1990s, sets out
to identify and classify proper-noun mentions of predefined entity types in text. For example, in

[PER Paris Hilton] visited the [LOC Paris] [ORG Hilton]

the word Paris is a personal name, a location, and an attribute of a hotel or organisation. Resolving these ambiguities makes
ner a challenging semantic processing task. Approaches to ner are surveyed in [48].

Part of the challenge is developing ner systems across different domains and languages, first evaluated in the Multilin-
gual Entity Task [44]. The conll ner shared tasks [76,77] focused on language-independent machine-learning approaches
to identifying persons (per), locations (loc), organisations (org) and other miscellaneous entities (misc), such as events,
artworks and nationalities, in English, German, Dutch and Spanish. Our work compares using these and other manually-
annotated corpora against harnessing the knowledge contained in Wikipedia.

2.1. External knowledge and named entity recognition

World knowledge is often incorporated into ner systems using gazetteers: categorised lists of names or common words.
While extensive gazetteers of names in each entity type may be extracted automatically from the web [22] or from
Wikipedia [79], Mikheev et al. [47] and others have shown that relying on large gazetteers for ner does not necessar-
ily correspond to increased ner performance: such lists can never be exhaustive of all naming variations, nor free from
ambiguity. Experimentally, Mikheev et al. [47] showed that reducing a 25,000-term gazetteer to 9000 gave only a small
performance loss, while carefully selecting 42 entries resulted in a dramatic improvement.

Kazama and Torisawa [31] report an F -score increase of 3% by including many Wikipedia-derived gazetteer features in
their ner system, although deriving gazetteers by clustering words in unstructured text yielded higher gains [32]. A state-of-
the-art English conll entity recogniser [59] similarly incorporates 16 Wikipedia-derived gazetteers. Unfortunately, gazetteers
do not provide the crucial contextual evidence available in annotated corpora.

2.2. Semi-supervision and low-effort annotation

ner approaches seeking to overcome costly corpus annotation include automatic creation of silver-standard corpora and
semi-supervised methods.

2 These and related resources are available from http://schwa.org/resources.

http://schwa.org/resources
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Prior to Wikipedia’s prominence, An et al. [3] created ne annotations by collecting sentences from the web containing
gazetteered entities, producing a 1.8 million word Korean corpus that gave similar results to manually-annotated data.
Urbansky et al. [81] similarly describe a system to learn ner from fragmentary training instances on the web. In their
evaluation on English conll-03 data, they achieve an F -score 27% lower (absolute difference with the MucEval metric) with
automatic training than the same system trained on conll training data. Nadeau et al. [49] perform ner on the muc-7 corpus
with minimal supervision—a short list of names for each ne type—performing 16% lower than a state-of-the-art system in
the muc-7 evaluation. Like gazetteer methods, these approaches benefit from being largely robust to new and fine-grained
entity types.

Other semi-supervised approaches improve performance by incorporating knowledge from unlabelled text in a super-
vised ner system, through: highly-predictive features from related tasks [4]; selected output of a supervised system [86,87,
37]; jointly modelling labelled and unlabelled [74] or partially-labelled [25] language; or induced word class features [32,
59].

Given a high-performance ner system, phrase-aligned corpora and machine translation may enable the transference of
ne knowledge from well-resourced languages to others [89,64,69,39,28,21].

Another alternative to expensive corpus annotation is to use crowdsourced annotation decisions, which Voyer et al.
[82] and Lawson et al. [35] find successful for ner; Laws et al. [34] show that crowdsourced annotation efficiency can be
improved through active learning.

Unlike these approaches, our method harnesses the complete, native sentences with partial annotation provided by
Wikipedia authors.

2.3. Learning Wikipedia’s language

While solutions to ner and related tasks, e.g. ne linking [12,17,45] and document classification [29,66] rely on Wikipedia
as a large source of world knowledge, fewer applications exploit both its text and structured features. Wu and Weld [88]
learn the relationship between information in Wikipedia’s infoboxes and the associated article text, and use it to extract
similar types of information from the web. Biadsy et al. [7] exploit the sentence ordering in Wikipedia’s articles about
people, harnessing it for biographical summarisation.

Wikipedia’s potential as a source of silver-standard ne annotations has been recognised by [61,46,55] and others.
Richman and Schone [61] and Nothman et al. [55] classify Wikipedia’s articles into ne types and label each outgoing

link with the target article type. This approach does not label a sufficient portion of Wikipedia’s sentences, since only first
mentions are typically linked in Wikipedia, so both develop methods of annotating additional mentions within the same
article.

Richman and Schone [61] create ner models for six languages, evaluated against the automatically-derived annotations
of Wikipedia and on manually-annotated Spanish, French and Ukrainian newswire. Their evaluation uses Automatic Content
Extraction entity types [36], as well as muc-style [15] numerical and temporal annotations that are largely not derived from
Wikipedia. Their results with a Spanish corpus built from over 50,000 Wikipedia articles are comparable to 20,000–40,000
words of gold-standard training data.

In [55] we produce silver-standard conll annotations from English Wikipedia, and show that Wikipedia training can per-
form better on manually-annotated news text than a gold-standard model trained on a different news source. We also show
that our Wikipedia-trained model outperforms newswire models on a manually-annotated corpus of Wikipedia text [5].

Mika et al. [46] use infobox information, rather than outgoing links, to derive their ne annotations. They treat the infobox
summary as a list of key-value pairs, e.g. values Nicole Kidman and Katie Holmes for the spouse key in the Tom Cruise infobox,
and their system finds instances of each value in the article’s text, and labels it with the corresponding key.

They learn associations between ne types and infobox keys by tagging English Wikipedia text with a conll-trained
ner system. This mapping is then used to project ne types onto the labelled instances which are used as ner training
data. They perform a manual evaluation on Wikipedia, with each sentence’s annotations judged acceptable or unacceptable,
avoiding the complications of automatic ner evaluation (see Section 6.2). They find that a Wikipedia-trained model does not
outperform conll training, but combining automatic and gold-standard annotations in training exceeds the gold-standard
model alone.

Fernandes and Brefeld [25] similarly use Wikipedia links with automatic ne tags as training data, but use a perceptron
model specialised for partial annotations to augment conll training, producing a small but significant increase in perfor-
mance.

2.4. Multilingual processing in Wikipedia

Wikipedia is a valuable resource for multilingual nlp with over 100,000 articles in each of 37 languages, and inter-
language links associating articles on the same topic across languages. Wentland et al. [85] refine these links into a resource
for named entity translation, while other work integrates language-internal data and external resources such as WordNet
to produce multilingual concept networks [50,51,43]. Richman and Schone [61] and Fernandes and Brefeld [25] use inter-
language links to transfer English article classifications to other languages.
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Approaches to cross-lingual information retrieval, e.g. [58,67], or question answering [26] have mapped a query or doc-
ument to a set of Wikipedia articles, and use inter-language links to translate the query. Attempts to automatically align
sentences from inter-language linked articles have not given strong results [1], probably because each Wikipedia language
is developed largely independently; Filatova [27] suggests exploiting this asymmetry for selecting information in summari-
sation. Adar et al. [2] and Bouma et al. [10] translate information between infoboxes in language-linked articles, finding
discrepancies and filling in missing values. Thus nlp is able to both improve Wikipedia and to harness its content and
structure.

3. Processing Wikipedia

Wikipedia’s articles are written using MediaWiki markup,3 a markup language developed for use in Wikipedia. The raw
markup is available in frequent xml database snapshots. We parse the MediaWiki markup, filter noisy non-sentential text
(e.g. table cells and embedded html), split the text into sentences, and tokenise it.

MediaWiki allows nestable templates to be included with substitutable arguments. Wikipedia makes heavy use of tem-
plates for generating specialised formats, e.g. dates and geographic coordinates, and larger document structures, e.g. tables
of contents and information boxes. We recursively expand all templates in each article and parse the markup using mwlib,4

a Python library for parsing MediaWiki markup. We extract structured features and text from the parse tree, as fol-
lows.

3.1. Structured features

We extract each article’s section headings, category labels, inter-language links, and the names and arguments of included
templates. We also extract every outgoing link with its anchor text, resolving any redirects.

Further processing is required for disambiguation pages, Wikipedia pages that list the various referents of an ambiguous
name. The structure of these pages is regular, but not always consistent. Candidate referents are organised in lists by entity
type, with links to the corresponding articles. We extract these links when they appear zero or one word(s) after the list
item marker. We apply this process to any page labelled with a descendant of the English Wikipedia Disambiguation pages
category or an inter-language equivalent.

We then use information from cross-referenced articles to build reverse indices of incoming links, disambiguation links,
and redirects for each article.

3.2. Unstructured text

All the paragraph nodes extracted by mwlib are considered body text, thus excluding lists and tables. Descending the
parse tree under paragraphs, we extract all text nodes except those within references, images, math, indented portions, or
material marked by html classes like noprint. We split paragraph nodes into sentences using Punkt [33], an unsupervised,
language-independent algorithm. Our Punkt parameters are learnt from at least 10 million words of Wikipedia text in each
language.

Tokenisation is then performed in the parse tree, enabling token offsets to be recorded for various markup features,
particularly outgoing links. We slightly modify our Penn Treebank-style tokeniser to handle French and Italian clitics, and
non-English punctuation. In Russian, we treat hyphens as separate tokens to match our evaluation corpus.

3.3. Wikipedia in nine languages

We use the English Wikipedia snapshot from 30 July, 2010, and the subsequent snapshot for the other eight languages,5

together constituting the ten largest Wikipedias excluding Japanese (to avoid word segmentation). The languages, snapshot
dates and statistics are shown in Table 1. English Wikipedia at 3.4 million articles is about six times larger than Russian,
our smallest Wikipedia. All of the languages have at least 100 million words—comparable in size to the British National
Corpus [9].

These statistics also highlight disparities in language and editorial approach. For instance, German has substantially fewer,
and Russian substantially more, category pages per article; the reverse is true for disambiguation pages, with one for every
9.8 articles in German.

Table 2 shows mean and median statistics for selected structured and text content in Wikipedia articles. English articles
include substantially more categories, incoming and outgoing links on average than other languages, which together with
its size highlights its greater development and diversity of contributors than other Wikipedias.

3 http://www.mediawiki.org/wiki/Markup_spec.
4 http://code.pediapress.com.
5 All accessed from http://download.wikimedia.org/backup-index.html.

http://www.mediawiki.org/wiki/Markup_spec
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Table 1
Summary of Wikipedias used in our analysis. Columns show the total number of articles, how many of them are disambiguation pages, the number of
category pages (though not all contain articles), and the number of body text tokens.

Wiki Language Snapshot Articles Disamb. Categ. Tokens

en English 2010-07-30 3 398 404 200 113 605 912 1 205 569 685
de German 2010-08-15 1 123 266 114 404 89 890 389 974 559
fr French 2010-08-02 980 773 61 678 150 920 293 287 033
it Italian 2010-08-10 723 722 45 253 106 902 211 519 924
pl Polish 2010-08-03 721 720 40 203 69 744 126 654 300
es Spanish 2010-08-06 632 400 27 400 119 421 254 787 200
nl Dutch 2010-08-04 617 469 37 447 53 242 123 047 016
pt Portuguese 2010-08-04 598 446 21 065 94 117 120 137 554
ru Russian 2010-08-10 572 625 44 153 140 270 156 527 612

Table 2
Mean and median feature counts per article for selected Wikipedias.

Feature
Language en de es nl ru

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Incoming links 67.9 11 38.4 8 36.2 5 41.0 7 46.18 6
Outgoing links 73.8 30 43.3 24 41.2 29 46.8 23 55.6 29
Redirects 1.2 0 0.7 0 1.8 1 0.4 0 1.2 0
Categories 5.6 4 3.5 3 2.8 2 2.0 2 4.3 3
Templates 7.9 4 3.6 2 3.7 2 5.0 2 8.3 4

Tokens 354.8 135 347.2 196 402.9 177 199.3 95 273.4 111
Sentences 14.8 6 17.6 10 14.8 7 10.6 5 14.5 7
Paragraphs 5.3 3 6.0 4 6.2 3 3.9 3 5.6 3

4. Classifying Wikipedia articles

We first classify Wikipedia’s articles into a fixed set of entity types, which can then label links to those articles. Since
classification errors transfer into our ner models, high accuracy is essential. To facilitate this, we reimplement three classifi-
cation approaches from the literature, extending our state-of-the-art method to nine languages, including novel multilingual
features (Section 4.2). We use two article sampling approaches to create collections of manually-classified Wikipedia articles
(Section 4.3); Section 4.4 considers the projection of this data to other Wikipedia versions and languages.

4.1. Background

Wikipedia’s category hierarchy is a folksonomy [71], making it unsuitable for many semantic applications. Suchanek et al.
[72] class each Wikipedia category as either conceptual—Holden is a Motor vehicle company; relational—Holden was established
in 1856; thematic—Holden has theme Holden; or administrative—Date of birth missing. Non-conceptual categories may include
articles of many different types. For example, products (Apple III), fictional characters (Yoda) and facilities (Cairns Tropical
Zoo) are all members of the 1980 introductions category. Infoboxes are strongly correlated to entity type, but only have high
coverage on loc and per articles.

Since Wikipedia does not have a direct source of entity types, there has been interest in mapping articles to existing
ontologies such as WordNet [63,73,57] and Cyc [42], or classifying them into coarser schemes using heuristics [80,6,61] and
semi-supervised [83,19,55] or fully supervised modelling approaches [6,19,75,78].

4.2. Article classification approaches

We compare a baseline heuristic, a semi-supervised and a fully-supervised monolingual classification approach from the
literature. We then provide three ways to extend the latter approach to multiple languages.

4.2.1. Classification with category keyword heuristics
Richman and Schone [61] produced a set of key phrases from English Wikipedia category names that correspond to

per, loc, org and other entity types (but not misc or non-entities). When classifying, each article’s categories are matched
against the phrases, backing off to parents and grandparents of those categories, until support for a particular type exceeds
a threshold. If the threshold is not met, the article’s type remains unknown. Each key phrase votes with a manually set
weight [60].

For example, Queanbeyan has categories Cities in New South Wales, Populated places established in 1838, Queanbeyan and
Australian Aboriginal placenames. The key phrase Cities might vote for type loc, but the other categories do not match any
keywords directly. This may not exceed the threshold, so the parents of unmatched categories are also considered. The
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Table 3
Examples and quantity of category keywords for each coarse-grained type.

ne type Keyword example Quantity

loc Rivers of, Towns 30
org Organizations, musical groups 27
per Living People, Year of birth 36
misc Television series, discographies 27

non Years, Wikipedia 18
dab Disambiguation 3

Queanbeyan category has parent categories Cities in New South Wales and Categories named after populated places in Australia,
so Cities again votes for Queanbeyan as a loc.

We attempt to replicate Richman and Schone [61], but the key phrases were unavailable and many of the details were
underspecified, so our replica is approximate. For instance, in the case of a tie between types, we randomly choose a type,
and we use a support threshold of one to discourage unknowns.

We have created our own list of key phrases, starting with their published examples and adding phrases from large type-
homogeneous categories, if the other categories matching those phrases are also homogeneous. We have also added phrases
for matching misc, non-entities (non), disambiguation pages (dab). Table 3 shows some examples of the 141 keywords, with
the full list in Appendix A.

4.2.2. Classification with keyword bootstrapping
In [55] we developed a semi-supervised approach to classify English Wikipedia articles with relatively few labelled

instances.6 A small number of structural features are extracted from each article. Iteratively, confident mappings from feature
to ne type are inferred from classified articles, and the classifier is again applied to all of Wikipedia. Over three iterations
(empirically selected), the mapped feature space grows, and the proportion of unknown articles decreases.

The following features are used in bootstrapping:

• Plural category heads: Suchanek et al. [72] suggest that categories with plural head nouns are usually conceptual, such
as cities, places and placenames—but not Queanbeyan—in the Queanbeyan example above. We extract head unigrams and
collocated bigrams.

• Definition noun: Since many of Wikipedia’s articles begin with a definition, we extract the head unigram or bigram
following a copula, if any, from the first sentence, following [31].

An article is assigned the type most supported by its features, remaining unknown in a tie. Specialised heuristics identify
non-entity articles (non and dab), including the capitalisation of incoming anchor text and title keyword matching for
disambiguation and list pages.

4.2.3. Classification as text categorisation with structured features
The approaches above, along with many in the literature, have relied on the precision of Wikipedia’s structured features.

However, the most successful have used statistical models of its body text [19], which may also be more readily ported to
new languages.

In [75], we compare Naïve Bayes (nb) and Support Vector Machines (svm) for classifying Wikipedia articles using bag-
of-words and structured features. Here we use the liblinear [23] in the logistic regression with L2 regularisation mode.

Dakka and Cucerzan [19] suggest that most humans will be able to classify an article after reading its first paragraph.
We therefore use the words of the first paragraph, first sentence and title as separate feature groups. In addition, we use
template names, and the contents of infobox, sidebar and taxobox templates. These templates often contain a condensed set
of important facts relating to the article, and so are powerful additions to the bag-of-words representation of an article.

Monolingual classification Having projected our gold-standard classifications to nine other languages via inter-language links,
we train monolingual article classifiers for each language.

Multilingual classification Each topic is likely to have different coverage in different Wikipedias. We therefore present two
methods for combining the knowledge found in equivalent articles in multiple languages:

voted We learn monolingual classifiers for each language, and classify an article as the most popular vote of its inter-
language equivalents, backing off to English (our best-performing monolingual model) in a tie.

6 We extended this method to German in Ringland et al. [62].
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uber We merge the feature spaces of language-linked articles across the nine languages, prefixing each feature name
with the language it came from. We model this extended feature space, and classify each article using features
from it and its cross-lingual equivalents.

4.3. Annotating gold-standard classifications

We use manual classifications of Wikipedia pages as indirect supervision for ner and to evaluate our classifiers. However,
it is unclear how best to sample articles. Random sampling produces more challenging instances for evaluation, but we
found it under-samples entity types that have few instances but are essential to ner, such as countries [55]. Selecting only
popular articles provides advantages for multilingual processing, and should assist with classifying the entities most frequent
in text. We therefore present two sets of labelled articles, popular and random. Both are available for download.7

4.3.1. popular labelled corpus
As previously presented [75,62], we produced a corpus of approximately 2300 English Wikipedia articles (March 2009

snapshot), including the 1000 most frequently-accessed pages of August 20088 and otherwise the pages with most incom-
ing links. We required that each article include inter-language links to all ten largest language Wikipedias. This favoured
typically longer, high-quality articles and about popular and useful subjects. It also largely avoided stubs and automatically-
generated pages [62].

Each article was double-annotated with a single fine-grained type. We extended the hierarchical scheme from bbn [11],
allowing us to use bbn in later ner evaluations. However, Sekine’s [68] scheme would have been equally suitable. In order to
get an estimate of inter-annotator agreement, about 1000 articles were annotated independently, achieving 97.5% agreement,
calculated over a finer type schema than used in the experiments below (agreement on coarse-grained ne types was 99.5%).
Subsequently, annotation was periodically paused to resolve conflicts.

4.3.2. random labelled corpus
The articles in popular are not representative of Wikipedia’s long tail of obscure articles, stubs, and automatically-

generated pages. We therefore annotated a random sample of Wikipedia’s articles to more accurately reflect its make-up:
2500 in English, 850 in German, and 200 in each of the seven other languages. We annotated a few extra articles to allow
for MediaWiki extraction errors.

Each article was classified by at least two annotators, of whom at least one was a native speaker or had university-
level language skills in the appropriate language. random presented many more edge cases for classification than popular,
making its annotation more time consuming. Nonetheless, all discrepancies were resolved at the ne type granularity used
in the present work.

The annotation followed the method we developed in [75]: annotators were able to add fine-grained types to the hierar-
chy as required, leading to very fine distinctions; suburb, admin district and state are all subtypes of loc:gpe. This resulted
in 154 types, which were grouped together to create 62 very fine-grained types, 19 fine-grained types and 6 coarse-grained
types. Of the original 154 categories, 67 map to non, 29 to loc, 14 to org, 4 to per, and 37 to misc. Table 4 gives examples
from popular and random; the mappings are available for download.9

For languages where two fluent speakers were not available, we used Google Translate10 to assist in classification
decisions. This approach makes subtle, very fine-grained distinctions difficult. For example, the German word Gemeinde
translates to town, borough, or parish depending on use, each of which may belong in a different loc subtype.

In other cases, the extremely fine granularity created annotation disputes. For example, annotators disagreed on whether
Manhattan, an island borough of New York City, should be classified as its own independent city/town, a suburb, or an
island. The annotators resolved their disagreements and annotation guidelines were updated continuously.

Table 5 compares the final sizes of popular and random samples, and their distributions over coarse-grained entity
types. Within English Wikipedia, popular contains far more loc and non articles, and random is skewed more toward per

and misc. The random type distribution varies greatly between languages; however, for most, the sample size is small.

4.4. Projecting data between Wikipedia versions

Wikipedia articles are referred to by title, which does not ensure accurate linking since articles may be renamed over
time. Our data maps Wikipedia titles from 2008–10 Wikipedia snapshots to ne types, and we need to transfer these types
to newer Wikipedia snapshots, and across inter-language links.

Sorg and Ciniano [70] analysed the coverage of inter-language links between English and German Wikipedias from Octo-
ber 2007: 46% of German pages linked to English, and 14% of English pages had German links. Of the links present, around

7 From http://schwa.org/resources.
8 According to the Wikipedia proxy logs from http://dammit.lt/wikistats.
9 From http://schwa.org/resources.

10 http://translate.google.com.

http://schwa.org/resources
http://dammit.lt/wikistats
http://schwa.org/resources
http://translate.google.com
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Table 4
Fine-grained ne types with examples from popular and random collections.

Fine-grained ne type popular example random example

Location (loc):
Town/City Bangkok Terese, California
GPE Aceh Castel di Judica
Facility Beijing National Stadium Urashuku Station
Other Great Wall of China Bressay

Organisation (org):
Band Blink-182 Transitional (band)
Corporation Atari Logitech
Other Interpol Manchester A’s

Person (per):
Person John F. Kennedy Peter McConnell
Other Yoda Bold Reason

Other (misc):
Event 2008 South Ossetia war 2006 J&S Cup
norp Hungarian People Norts
WorkOfArt Entourage (TV series) Man of the Hour
Product AK-47 Bugatti Type 53
Miscellaneous Capoeira World Habitat Awards

Non-Entity (non):
Life Capsicum Platysilurus
Substance DNA Mango oil
Other Blitzkrieg Canadian units

Disambiguation (dab) California (disambiguation) Lip (disambiguation)

Table 5
Gold-standard classification statistics per corpus: size; percentage of articles with inter-language links to any/English Wikipedia; distribution of coarse
entity types, disambiguation pages (dab) and non-entities (non).

Corpus No. of
articles

% inter-lang Coarse type distribution (%)

Any en loc org per misc non dab

popular English 2322 100 – 28 11 11 16 30 4
random English 2531 46 – 20 10 26 18 16 10
random German 872 57 49 19 11 33 13 12 12
random Spanish 203 58 51 28 10 19 19 20 4
random French 210 61 54 22 5 25 20 20 8
random Italian 203 71 64 30 4 23 19 18 6
random Dutch 286 73 63 34 9 17 15 17 8
random Polish 210 68 60 36 4 30 13 11 6
random Portuguese 202 72 66 38 6 17 15 19 5
random Russian 223 62 51 30 8 26 14 13 9

95% were bijective, i.e. linking from en to its de equivalent, and back to the same en page. Table 5 gives the proportion of
each language’s articles with inter-language links. In [62] we checked the integrity of a sample of English–German links,
and found very few were erroneous.11 Confusion between an entity article and a disambiguation page of the same title are
a common source of error.

We assume that ne type is maintained across an inter-language link and for an article with the same name in different
snapshots of Wikipedia. We do not manually check this, instead applying a naive approach: look up the title, following any
redirects; if no such page exists, or the target is a section (not a full article), remove the instance.

For example, en Yoda links to the Yoda section of de Star Wars Characters, and so is discarded in de. In some cases, two
different articles link to the same title in another language, which is especially problematic when their types differ; Gulf
Coast Wing (org) and Aviation (non) both appear in popular, but both link to Aviation in other languages.

Changes over time are handled similarly: Anglesey now redirects to Isle of Anglesey, but the projected type is still valid.
Death (band) now redirects to the subsection Music of Death (disambiguation), and so is discarded.

In the present work, we do not project across random language links for classification.

11 Bijective links may still have errors, since editors may insert language links without ensuring that the target page exists, or before it is created. The
titles may be translations, but the articles on different topics (commonly one is a disambiguation page and the other not). Further, bots exist to check for
or ensure bijectivity.
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Table 6
Coarse and fine-grained results over popular for multilingual text categorisation.

textcat

classifier
Coarse-grained Fine-grained

Precision Recall F -score Precision Recall F -score

English 94.6 94.6 94.6 89.9 89.7 89.8
German 94.1 93.9 94.0 89.7 88.6 89.2
Spanish 93.9 93.7 93.8 88.6 87.9 88.2
French 93.9 93.7 93.8 89.8 88.7 89.3
Italian 93.9 93.7 93.8 89.6 88.7 89.2
Dutch 94.0 93.8 93.9 89.1 88.1 88.6
Polish 93.1 92.7 92.9 88.9 87.7 88.3
Portuguese 93.2 93.0 93.1 88.5 87.1 87.8
Russian 93.6 93.3 93.5 88.0 87.1 87.6

voted 94.9 94.8 94.9 89.9 88.9 89.4
uber 94.9 94.8 94.8 89.9 89.3 89.6

Table 7
Coarse-grained English textcat classification F -score when training and testing over different datasets.

Train
Test popular random pop + rand

popular 94.6 75.1 83.5
random 91.7 90.4 90.7
pop + rand 95.5 90.7 93.1

Table 8
English coarse-grained classification F -score over pop + rand.

ne type keyword bootstrap textcat voted uber

loc 57.8 89.7 96.8 96.6 96.5
org 58.1 84.1 87.5 87.3 86.4
per 86.7 97.0 97.2 97.5 97.2
misc 45.9 80.7 87.5 87.8 86.8

non 45.3 83.1 91.7 91.6 92.0
dab 80.8 77.4 94.5 93.9 94.3

Total 64.6 87.0 93.1 93.1 92.9

4.5. Results and discussion

We report 10-fold cross-validated precision, recall and F -score, evaluating over: language; classification approach; use of
popular, random or their combination; and fine (18 types) vs coarse (6) entity types.

The results in Table 6 extend Tardif et al.’s [75] approach to 9 languages, relying on popular’s full complement of
inter-language links. The high coarse-grained performance (94.6%) on English is similar to that previously reported on an
older snapshot of Wikipedia; other languages’ monolingual classifiers perform less than 2% worse, proving this approach is
effective independent of language. voted and uber results are almost identical, and only differ marginally from the English
monolingual result, but are often better than other monolingual results. Fine-grained F -scores are 4–6% lower than the
coarse equivalents.

Although results on popular are promising in all languages, it is not clear how this applies to Wikipedia’s long tail.
To explore this, we consider every train-test combination of popular, random and their union (pop + rand), with coarse-
grained English results shown in Table 7. popular alone is very poor training for random, achieving only 75%, while top
performance on random is about 5% lower than on popular. Independent of the test corpus, performance is best when
trained with pop + rand.

This result may be surprising when evaluating on popular, given how much noise may be introduced by random.
However, the combined dataset is about twice as large, and consists of both the longer, better-edited pages with richer
features from popular and the variety of random. We select pop + rand for the remaining experiments, given its high
performance and its relative suitability for ner.

Table 8 compares the coarse-grained performance of the three approaches. textcat significantly outperforms the boot-

strap approach and the keyword baseline, and has the most uniform distribution of performance over types. keyword

performs particularly poorly on the most diverse types, misc and non, though Richman and Schone [61] did not develop
classifiers for these types. bootstrap performance is close to textcat on per and org, but is greatly exceeded on loc, non

and dab. Overall, per, loc and dab are easiest to classify, while org and misc are the hardest, a trend which continues
across all languages (Table 9).
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Table 9
Coarse-grained classification F -score for monolingual textcat over pop + rand.

ne type English German Spanish French Italian Dutch Polish Portuguese Russian

loc 96.8 96.9 97.8 97.8 97.4 97.7 97.6 98.1 97.8
org 87.5 87.4 88.0 89.0 90.2 89.5 91.1 89.9 89.3
per 97.2 97.5 95.3 95.5 97.8 96.0 94.4 94.0 96.3
misc 87.5 83.5 86.0 86.2 85.3 84.5 84.0 83.8 84.9

non 91.7 91.5 92.7 93.0 92.5 92.1 91.2 91.7 92.0
dab 94.5 95.7 97.7 92.2 93.5 92.6 95.6 94.9 93.2

Total 93.1 92.8 93.4 93.4 93.5 93.0 92.8 92.9 93.2

Table 10
Fine-grained textcat classification F -score for five monolingual models, voted and uber (evaluating for English), over pop+rand. Count is the total number
of gold instances of each type, though fewer are available in each language

ne type Count English German Spanish Dutch Russian voted uber

loc:Town/City 568 94.7 96.4 95.4 95.8 95.8 95.2 95.4
loc:GPE 345 86.9 89.9 88.3 89.8 89.9 88.0 87.7
Facility 141 79.9 71.8 31.2 61.5 37.0 76.7 79.3
loc:Other 134 82.9 73.7 55.3 55.4 78.7 82.5 82.9

org:Band 101 93.8 97.1 98.0 98.8 98.7 94.4 92.2
org:Corporation 158 87.4 87.3 92.0 87.7 91.0 88.1 87.7
org:Other 218 76.5 64.2 64.9 59.3 55.5 75.4 74.9

per:Person 871 97.1 99.4 96.9 96.0 97.6 97.6 96.4
per:Other 66 61.1 54.3 69.2 66.7 64.9 64.2 58.8

Event 138 80.6 77.9 68.5 71.0 75.3 77.3 78.1
norp 32 41.9 37.0 56.0 51.9 0.0 35.9 41.9
WorkOfArt 359 89.3 86.3 87.8 87.7 91.5 89.0 87.9
Product 228 87.6 84.8 89.2 87.4 83.9 87.1 86.8
Miscellaneous 65 50.5 5.0 24.4 37.2 29.3 43.7 50.0

Non-entity:Life 276 95.0 94.0 93.8 92.3 93.7 94.6 95.0
Non-entity:Substance 111 73.2 70.7 70.1 73.3 69.9 67.1 74.4
Non-entity 711 83.7 81.5 82.6 81.5 80.7 81.1 83.4

dab 321 94.6 95.2 98.2 92.6 93.8 93.7 94.3

Total 4843 88.7 88.4 87.6 87.4 87.4 88.3 88.4

In Table 10 we show fine-grained classification results in five languages,12
voted and uber. Performance is low for

types which have few training instances, are diverse, and lack defining article structure (such as infoboxes, categories, or
geographical coordinates). Non-entity acts as the default type due to its diversity and high frequency: for every classifier,
instances of each other type are misclassified as Non-Entity, including Bugatti Type 53 (Product), British Japan Consular
Service (org:Other), Battle of Pistoria (Event) and The Star-Spangled Banner (WorkOfArt). norp

13 is difficult to identify in
all classifiers, and in Russsian all norp articles are classified as Non-entity.

Entities which function as multiple types challenge our single-label classifiers. While the Popeye and James Bond articles
specify that they are about fictional characters (per:Other), they also discuss the related media franchises, so both are
incorrectly classified WorkOfArt. Similarly, Facility articles are often confused with loc and org types.

Some misclassifications arise from debatable down-mappings of our annotation types. For instance, we group disam-
biguation and list pages together as dab, but many list pages include additional content that makes them more similar to
non than the largely-fixed structure of dab pages.

Other mistakes are due to our naive approach to modifications of Wikipedia (see Section 4.4); Eagles now is a redirect
to the animal Eagle, whereas when the page was annotated, it described the band, The Eagles.

Our overall results for fine-grained classification of English Wikipedia articles compare favourably to Tkatchenko et al.
[78] who report approximately 75% accuracy over randomly-sampled articles labelled with 18 types; we attain 85% accuracy
for cross-validation on random.

12 We use these languages for ner evaluation due to available gold-standard corpora.
13

norp is a term used by bbn [11] to refer to national, organisational, religious, or political affiliations in an adjectival form. We use it for nationalities
and other non-organisational named groups of people, which are generally considered misc in conll ner.
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4.6. Summary

We have developed accurate coarse- and fine-grained Wikipedia article classifiers for nine languages. These have been
evaluated on both a high-quality popular gold standard and a noisier but more representative random gold standard. We
find that the combination of popular and random training data produces the best results. This combined data set trains
our uber multilingual text-categorisation approach, allowing us to classify all Wikipedia articles and label links to them as
ne tags.

5. Designing a training corpus

Under the broad definition of ner, our basic approach to creating a Wikipedia-derived ne-annotated corpus described
in Section 1 produces reasonable annotations. However, in order to automatically produce a corpus comparable to existing
gold standards, heuristic selection and further refinement of the annotations is required.

While both gold-standard corpora and Wikipedia have some inconsistencies in their markup [56], the former are gen-
erally created with strict annotation guidelines, by a small number of annotators, and for the precise purpose of ner. Not
surprisingly, Wikipedia’s link spans and targets often do not directly correspond to the ne annotation scheme of a particular
evaluation corpus. Through a set of heuristics, we design Wikipedia corpora that better approximate existing gold standards.

In this section, we describe methods we apply to reduce the differences between Wikipedia and gold-standard ner

corpora, beginning with an overview of our approach to identifying these differences.

5.1. Comparing ner corpora

In [56] we describe three approaches for identifying inconsistencies within and between corpora with phrasal annota-
tions:

N-gram tag variation: search for internal variations, where the same text span with different tags but identical context
appears multiple times in the corpus, as proposed by Dickinson and Meurers [20].

Type frequency: compare the entity type distribution across corpora, by extracting all entity mentions, representing them
by their orthography or pos-tag sequences, and comparing aggregates over each type.

Tag sequence confusion: as a simple confusion matrix cannot be applied to phrasal tagging, analyse confusion between the
type of each predicted entity and the corresponding gold-standard tag sequence (which may include entity and
non-entity portions), and between each gold-standard entity and the corresponding predicted tag sequence.

We apply these methods systematically to derive an annotated corpus from English Wikipedia, by comparing to conll

and bbn gold-standard annotations. Aware of key issues from our work in English, we mostly use direct inspection to apply
similar methods in other languages. This analysis was performed by the authors (native English speakers) with contributions
from volunteers familiar with the Cyrillic alphabet; a second-language speaker of German with some Dutch knowledge; and
a native speaker of Spanish.

5.2. Selection approach

We include portions of articles in our training corpus using criteria based on confidence that we have correctly identified
all entities within that portion, and on its utility for learning ner. The size and redundancy of Wikipedia’s content allows us
to discard large portions of the available data.

We consider the following baseline criteria:

Confidence: all capitalised words are linked to articles of known entity type.
Utility: at least one entity is marked.

This confidence criterion was designed for general-domain ner in English where capitalisation usually corresponds closely
to nes.

In prior work, we applied our baseline criteria to each sentence in Wikipedia. We now consider two additional ap-
proaches: (a) upon identifying a token which fails the criteria, remove the containing parenthesised expression, or the
whole sentence if not in parentheses; (b) do not require whole sentences, instead selecting the longest confident fragment
of some utility from each sentence, following [46]. Often Wikipedia’s parenthesised expressions contain glosses into other
languages and other noisy material, removed by (a). Using sentence fragments slightly reduced our ner performance, while
parenthesis removal improved performance and is used below.

Our confidence criterion is overly restrictive since: it extracts a low proportion of sentences per article; it is biased
towards short sentences; and each entity mention is often linked only on its first appearance in an article, so we are more
likely to include fully-qualified names than shorter referential forms (surnames, acronyms, etc.) found later in the article.
Many conventionally capitalised words, which do not correspond to entities, still cause problems and are discussed below.
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Table 11
A summary of conventional capitalisation applying, as a (breakable) rule, in our evaluation languages. Y = yes, capitalised; N = not
capitalised; S = sometimes; – = used infrequently outside of entities, so largely irrelevant.

Capitalised? English German Spanish Dutch Russian

Most entities Y Y Y Y Y
Sentence initial Y Y Y Y Y
Common nouns N Y N N N
Days and months Y S N N N
Personal titles Y Y Y S N
Acronyms Y S Y S Y
Roman numerals – – – Y Y
Adjectival entities Y N N S N

5.3. Inferring additional links

In order to increase our coverage of Wikipedia sentences, our system infers additional links. Since Wikipedia style dic-
tates that only the first mention of an entity should be linked in each article, we try to identify other mentions of that
entity in the same article. We begin by compiling a list of aliases for each article. Then for any article in which we are
attempting to infer links, we produce a trie containing the aliases of the current article and all outgoing links. We attempt
to find the longest matching string within the trie, starting at each unlinked token in an article, and assign its entity type
to the matching text. Aliases for an article A include:

Type 1 The title of A and those of redirects14 to A (with expressions following a comma or within parentheses removed);
Type 2 Titles (and redirect titles) of disambiguation pages linking to A, enabling, e.g.: AMP as an alias for AMP Limited

and Ampere, and Howard an alias for Howard Dean and John Howard;
Type 3 The anchor text of all links whose target is A.

We vary the level of inference (e.g. level 2 consists of types 1 and 2) below. The following exceptions help avoid over-
generation and noisy links:

• aliases matching a list of stop-words from nltk [38];
• aliases whose link boundaries would be adjusted (Section 5.6); and
• aliases which are the concatenation of another alias with lowercase words (e.g. Australian is a better match than Aus-

tralian people, though both are redirect aliases for Australia).

Although it introduces many spurious links due to noisy data sources and ambiguity, this additional link inference allows
for more variation in how our ne-annotated corpus refers to an entity.

5.4. Anomalous capitalisation

Non-entity links which are capitalised and all-lowercase entity links may be problematic as ne annotations. They often
result from mis-classification, or to a link including a ne in its title, e.g. Greek alphabet or Jim Crow laws, in which case it
would be incorrect to leave the reference untagged. Lowercase entity links result from common noun phrase references, e.g.
in In the Ukraine, anarchists fought in the civil war . . . , the anchor civil war links to Russian Civil War. Text containing capitalised
non links (except in German) or lowercase entity links is discarded, except for entities like gzip that Wikipedia explicitly
marks as a lowercase title.

5.5. Conventional capitalisation

European orthographic systems that distinguish alphabet case do so in different contexts, as summarised according to
our analysis in Table 11. As an exception to our confidence criterion, we attempt to identify non-entity capitalised words
for inclusion in our corpus.

Sentence initial If a word which begins a sentence or follows some punctuation (semicolon, left-quote, etc.) is capitalised
and unlinked, we consider it safe for inclusion if it is linked to a non-entity (non) article, or is found on a list of commonly
lowercase words. For each language, this list consists of frequent sentence starters from our sentence boundary detection
models [33], and a list of words which occurred at least 50 times lowercase, and at least 50 times sentence-initially, in
100,000 Wikipedia articles.

14 Redirect pages make articles accessible through non-canonical titles.
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Common nouns In German, all nouns are capitalised, presenting a challenge for our confidence criterion. We compile a
list of common nouns using dict.cc, a collaboratively-constructed German–English dictionary. We utilise its translation
database15 to ignore German unigrams that have only lowercase glosses. Of 251,846 such German entries, we found 230,489
had only lowercase translations, while 17,538 had only capitalised translations.

German conll frequently mentions the German currency, the Mark, which is not identified as a common noun because it
is identical to a personal name. We use a list of currency names from German Wikipedia and label them as common nouns
when the prior two tokens contain a cardinal. We also mark the word I in English, assuming it is the personal pronoun.

Days and months English and German month and day names are marked for inclusion.

Personal titles Personal titles (e.g. Dr., Brig. Gen., Prime Minister-elect) are conventionally capitalised in English and other
languages, but are non-entities in conll-style ner (although some are included in bbn). Titles are sometimes linked in
Wikipedia, but allowing a link text like U.S. President as a non-entity would leave the entity U.S. unlabelled. Titles often
appear immediately before per mentions, so the most frequent instances can be compiled into a list of known titles.

In English, these are manually filtered—removing loc or org mentions—and supplemented with abbreviated titles ex-
tracted from bbn, producing a list of 384 base forms, 11 prefixes (e.g. Vice) and 3 suffixes (e.g. -elect). Using this gazetteer,
titles are identified and stripped of erroneous ne tags. In German, we extracted 203 base titles from Wikipedia, with 5
morphological suffixes and 1 prefix.

Acronyms Our initial approach to acronyms—including all unlinked uppercase words—degraded performance, but we found
that including all-uppercase words linked to non-entity articles was successful.

Roman numerals Russian and Spanish make extensive use of capitalised Roman numerals. We identify them with a regular
expression and include them in our corpus when unlinked.

Adjectival forms In English, the adjectival forms of entities, such as nationalities or religions e.g. American or Islamic, are
capitalised. Both conll and bbn (see Section 6.1) annotate them as misc. In Wikipedia, nationalities often link to loc articles.

For English, German, Dutch and Russian, we compile a list of nationalities from Wikipedia words that our postagger
marks as an adjective, and morphological variants to handle cases like Americans.16 Each link matching this list is relabelled
misc. In German and Russian (and Dutch to a lesser extent), where adjectival forms are lowercase, but nominal forms of
nationalities are capitalised, we include the lowercase forms in our corpus when linked, and remove sentences where they
appear unlinked.

5.6. Adjusting link boundaries

We unlink certain strings when found at the end of link text: parenthesised expressions; text following a comma for loc,
org and per; possessive ’s in English; or other punctuation. For example, [LOC Sydney, Australia] is adjusted to [LOC Sydney],
Australia, and may become [LOC Sydney], [LOC Australia] after link inference to match conll and bbn annotations.

5.7. Miscellaneous changes

State abbreviations A gold standard may use stylistic forms which are rare in Wikipedia. For instance, the Wall Street
Journal (bbn) uses US state abbreviations, while Wikipedia nearly always refers to states in full. We boost bbn performance
by merely substituting a random selection of US state names in Wikipedia with their abbreviations.

Removing rare cases Personal title abbreviations (e.g. Mr.) are rare in Wikipedia compared to newswire text, so their ap-
pearance in entity names can lead to frequent tagging errors. In order to ensure against learning and over-generating these
rare entity cases, we explicitly remove English sentences containing title abbreviations appearing in non-per entities such as
movie titles. We also exclude personal names containing of, which are much more common in English Wikipedia’s historical
content than in newswire.

Our initial Wikipedia models evaluated on German conll generated long, spurious misc entities containing punctuation.
We therefore exclude misc entities containing quotation marks and other punctuation from German.

Truncated conjunctions For German and Dutch prefix coordinations like [LOC Under-] und [LOC Ober-Lais], we ensure the first
prefix is tagged identically to the coordinated term, which is more likely to have an inferred link.

15 From http://www1.dict.cc/translation_file_request.php, accessed 2010-10-21.
16 While this requires highly language-dependent resources, it is entirely reasonable to consider another entity scheme in which Americans is marked loc,

as our default automatic annotation approach would label it. We require this more language-intensive approach only because we need to match an existing
scheme.

http://www1.dict.cc/translation_file_request.php
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Table 12
Gold standard entity-annotated corpora. The misc column indicates whether the corpus annotates all entities marked in conll as misc.

Language Corpus Text Number of tokens misc

train dev test

English conll-03 Reuters 1996 203 621 51 362 46 435 Yes
bbn wsj 1998 901 894 142 218 129 654 Yes
wikigold Wikipedia 2008 39 007 Yes

German conll-03 Frankfurter Rundschau 1992 206 931 51 444 51 943 Yes
europarl EuroParl 1996 89 708 20 697 Yes

Dutch conll-02 De Morgen 2000 199 069 36 908 67 473 Yes
Spanish conll-02 EFE 2000 264 715 52 923 51 533 Yes
Russian abh Various news 459 125 58 751 58 250 No

Fixing tokenisation While Penn Treebank and conll tokenisation consider hyphenated terms (e.g. Sydney-based) as single
tokens, it is rare to infer links to hyphenated terms. We therefore split hyphenated terms into separate tokens before link
inference in English, and rejoin them prior to training a model, excluding the sentence if the constituent entity types differ.

This approach does not readily apply to languages like German, where hyphenation represents compound nouns like
Anne-Frank-Schule. For Russian, we treat the hyphen as a separate token since the evaluation data contains a number of
hyphens between entities of different types.

6. Evaluation

To evaluate our automatically-annotated corpora, we train the C&C tagger17 (a) with Wikipedia data; (b) with hand-
annotated training data; and (c) with both combined, comparing the tagging results of each ner model on gold-standard
test data.

We apply out-of-the-box the C&C Maximum Entropy ner tagger with default orthographic, contextual, in-document and
personal name gazetteer features [18] in English. In other languages, we replaced this gazetteer with names extracted from
Wikipedia articles listing of common names in various languages, and also supplemented this with first and last names
from Wikipedia articles of that language that our classification model identified as per more than 100 times. C&C optimises
the Maximum Entropy task using Generalised Iterative Scaling over 200 iterations, with smoothing parameter σ = √

2.
The text is tagged using the Penn Treebank-trained C&C pos tagger for English, and TreeTagger [65] with default param-

eters for German, Dutch and Spanish, and “small tagset”18 parameters for Russian. ner tags are universally represented in
iob1 as used in conll-03 corpora.

Our experiments use 3.5 million tokens of Wikipedia-derived training data.19 Although much greater quantities are
available, we are limited by the time and memory required to train a model. To conserve space, we only report results in
languages where gold-standard corpora are available.

6.1. Evaluation corpora

Our primary evaluation uses conll 2002–3 shared task ner annotations on English, German, Dutch and Spanish news
text. In addition, we use other newswire corpora available for purchase—English bbn from the ldc and Russian from Appen
Butler Hill (abh)20; a European Parliament transcript [24]; and a collection of Wikipedia pages with gold-standard ne an-
notations. Where standard train (train), development (dev) and final evaluation (test) divisions are not provided, we have
split the corpora, resulting in the sizes shown in Table 12.

We map bbn and abh annotations to conll entity types (per, loc, org, misc). There are many stylistic and genre differ-
ences between the source texts and their annotation. For example, the English conll corpus formats headlines in all-caps,
and includes non-sentential data such as tables of sports scores. We now describe each corpus and its preprocessing.

The conll ner shared tasks [76,77] evaluated machine learning approaches to multilingual ner, on Spanish and Dutch
(2002) and German and English (2003). The entity types are common but each language has an idiosyncratic annotation
and genre. For instance, Spanish marks no lowercase adjectival nationalities and includes 192 instances where surrounding
quotes are included in the entity annotation; Dutch annotates as per the initials of photographers; and English has lots of
financial and sports data in tables.

17 http://schwa.org/candc.
18 The default Russian TreeTagger tagset has 717 entries, including detailed morphology. Since C&C only uses pos as a discrete feature, coarse tags are

more appropriate.
19 Nothman [54] reported performance over training corpora from 0.25 to 6.5 million tokens (Section 7.2), finding it plateaued at around 3–4 million

tokens.
20 http://www.appenbutlerhill.com/.

http://schwa.org/candc.
http://www.appenbutlerhill.com/
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The bbn Pronoun Coreference and Entity Type Corpus [84] annotates the entire Penn Treebank corpus with 105 fine-
grained tags [11]: 54 corresponding to conll entities; 21 for numerical and time data; and 30 common noun types. We
map bbn tags to conll equivalents, removing extra tags.21 We use sections 03–21 for train, 00–02 for dev and 22–24 for
test.

Appen Butler Hill (abh) has produced approximately 500,000 tokens of ne-annotated data in a number of languages. We
use their Russian (RUS_NER001) corpus, consisting of news reports from various sources. abh’s ne annotations divide conll’s
loc into locations, geopolitical entities and facilities, mark conll misc entities only when they are nationalities or religions
(though religious organisations may be org in conll), and mark titles and quantities left unannotated in conll. Because not
all misc entities are marked, we evaluate on abh without misc. Of the 1869 articles in the Russian abh corpus, we used
0001–1489 as train, 1490–1679 as dev, and 1680–1869 as test. We apply the sentence boundary detector and tokeniser
used on our Russian Wikipedia data.

Faruqui and Padó (europarl [24]) present an out-of-domain evaluation for a conll-trained German ner system on the
first two German Europarl session transcripts, with conll-style annotation. We used the larger transcript as dev and the
other as final test.

For an in-domain evaluation, we use our conll-style Wikipedia corpus (wikigold [5]). 149 articles from a 2008 snapshot
of English Wikipedia were annotated by three annotators, achieving a Fleiss’ Kappa of 0.83 on ne tokens only, and 0.92
overall. We ensure that none of our English Wikipedia training corpora use the articles included in wikigold.

For each evaluation language we also hold out just over 100,000 tokens of silver-standard Wikipedia annotations, derived
using the same method as our training data, but from different Wikipedia articles. We use this to evaluate how predictable
our Wikipedia-derived data is in comparison to gold-standard corpora.

6.2. Evaluating ner performance

Establishing a sensible evaluation metric for ner is challenging [48]. Both the span and type of an entity may be mis-
matched, and the severity of an error depends on the specific instance being evaluated.

muc [14] awards equal score for matching an entity’s type when at least one boundary is correct, and text, where
an entity’s boundaries are matched correctly, irrespective of classification.22 This equal weighting is unrealistic, as some
boundary errors are highly significant, while others are arbitrary (for example, the inclusion of punctuation, Mr. or the).

conll only awards Exact phrasal matches—requiring correct type and text—providing a lower-bound measure of ner per-
formance. Manning [40] argues that this style of evaluation favours systems that leave entities with ambiguous boundaries
untagged, since boundary errors incur false positives and false negatives simultaneously.

We present our results using micro-averaged F -score for both metrics, for comparability to the conll shared task litera-
ture and the MucEval results reported by Richman and Schone [61].

6.3. Statistical significance of results

For each pair of systems (trained on different corpora), we consider the null hypothesis that their F -scores differ only
by chance. We apply approximate randomisation [53], in which we randomly keep or swap the outputs of the two systems
for each sentence, and reevaluate the difference between the resulting pseudo-systems’ Exact overall F -scores. If the dif-
ference between F -scores is greater than the original in less than 50 of 9999 such trials (i.e. p � 0.005), we reject the null
hypothesis and consider the results significantly different.

7. Results

7.1. Wikipedia-derived training corpora

For each evaluation language we classify all articles with an uber model in each language trained on pop + rand, and set
a hand-picked threshold of 0.5 on liblinear’s confidence, below which we consider an article’s classification unknown
(unk). This threshold gives reasonable coverage in all entity types, but exploits Wikipedia’s redundancy by discarding entities
with doubtful classifications. In English we retain classifications (as ne types or non) for 96% of all articles after applying
this threshold.

We produce five training corpora, each of around 3.5M tokens, for each target language:

• wiki-base applies ne types to links, and uses our basic utility and confidence criteria, loosened to allow capitalised
sentence starters and German common nouns.

21 We map: loc := fac ∪ gpe ∪ location; org := organization; per := person; misc := event ∪ language ∪ law ∪ norp ∪ product ∪ work_of_art.
22 The muc scorer maximises F -score over the possible mappings between gold and predicted entity mentions. Each of {type, text} for mapped

mention pairs is marked as correct (C ) or incorrect (I). Those which cannot be mapped are considered spurious (S) predictions, or gold mentions
missing (M) in prediction. Then P := |C |

|C |+|I|+|S| and R := |C |
|C |+|I|+|M| [13]. Note that when evaluating performance for a particular entity type t ,

I := (gold t mentions mapped to predictions ¬t). As a result, per-type precision fails to account for false positives with the same span as a gold men-
tion.
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Table 13
The sizes of some of our Wikipedia-derived silver-standard corpora, with the quantities of initial Wikipedia data used to produce them. We compare
corpora in the top portion of the table to gold-standard ne annotations.

Language Corpus Million tokens Thousand sentences Articles

Initial Selected Initial Selected Initial

English wiki-0 66.4 3.5 2561 150 35 735
wiki-3 14.1 3.5 540 142 6 452

German wiki-0 156.5 3.5 8426 252 777 797
wiki-3 39.6 3.5 2087 237 146 425

Spanish wiki-0 58.1 3.5 2048 137 67 980
wiki-3 18.0 3.5 631 128 15 585

Dutch wiki-0 50.7 3.5 2666 212 194 024
wiki-3 14.7 3.5 745 181 25 984

Russian wiki-0 69.2 3.5 3569 222 191 251
wiki-3 56.0 3.5 2851 211 139 941

French wiki-0 47.1 3.5 1756 141 56 212
wiki-3 15.5 3.5 572 134 15 277

Italian wiki-0 57.0 3.5 1967 134 142 485
wiki-3 18.1 3.5 612 128 22 457

Polish wiki-0 52.8 3.5 3004 235 282 839
wiki-3 19.9 3.5 1101 203 50 617

Portuguese wiki-0 69.5 3.5 2766 160 255 776
wiki-3 20.9 3.5 803 143 32 325

• wiki-0 applies all enhancements, but performs no link inference.
• wiki-1 adds link inference with title and redirect aliases.
• wiki-2 adds link inference with disambiguation aliases.
• wiki-3 adds link inference with link text aliases.

All sentences passing our criteria are included, in the order of the Wikipedia snapshot, until the target 3.5M tokens
is exceeded. Although each corpus’ size in tokens is similar, the quantity of tokens or sentences discarded and the total
number of articles processed varies greatly (Table 13). Link inference reduces the initial data required to produce a 3.5M
token corpus by nearly 5 times in English. Sentences where not all proper names are labelled at lower inference levels may
be included at higher levels, resulting in longer sentences on average. However, link inference has little impact in Russian.

Table 14 lists the top three entity mentions per type in each wiki-2 corpus. The most frequent entities in each corpus
are locations and nationalities, reflecting their regular appearance on Wikipedia’s most frequent types of article, person and
location. In all languages but Italian, the equivalent of World War II is among the 20 most frequent entity texts. German’s
top entity mentions exhibit some high-profile classification errors, such as [ORG DDR] which should be loc, and non-entity
[PER griechischen Mythologie]; many models classify Soviet Union as an org, while conll considers it a loc.

7.2. Selecting an English Wikipedia model

Our English dev results in Table 15 indicate the effectiveness of link inference, which raises F -score significantly, by
up to 4%,23 and that our other refinements provide a substantial 9% increase over wiki-base. At the baseline, Exact and
MucEval performance differs by 13–17%, while our enhancements reduce this gap to around 10%, suggesting that many
baseline errors relate to incorrect entity boundaries, or incorrect entity types where boundaries are correctly identified.
Results over the three levels of link inference are insignificantly different, whether testing on conll or bbn; we select wiki-2

for final English testing.

7.3. Comparing English Wikipedia to gold-standard training

Our dev (Table 15) and test (Table 16) results confirm that none of our English Wikipedia models approach the ner

performance of a conll-trained model evaluated on conll, or bbn on bbn. We italicise such intra-corpus results in our tables
and—where appropriate and not captioned otherwise—mark the highest inter-corpus (non-italic) performance in bold.

The 19–25% mismatch between training and evaluation data suggests that the training corpus is an important perfor-
mance factor, cf. [16]. However, our final model performs as well as bbn training when tested on conll, and as well as
a conll model tested on bbn.24 A key result of our work is that the performance of non-corresponding hand-annotated
corpora is often exceeded by Wikipedia-trained models.25

23 Reported differences in F -score are absolute.
24 Our wiki-2 result on bbntestis almost significantly better (0.005 < p � 0.01) than conll. Our devwiki-0 results differ from these inter-corpus results

only by chance, while wiki-2 is significantly better.
25 Since we only have multiple gold-standard corpora in English and German, we cannot yet validate this claim for other languages.
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Table 14
The three most frequent entity mentions for each type, for wiki-2 in each language.

Language loc org per misc

English U.S. EU Henry American
United States European Union Alexander World War II
Germany NFL Jesus French

German Berlin SPD Johannes Paul II. deutscher
Deutschland DDR griechischen Mythologie US-amerikanischer
München CDU Paul VI. Schweizer

Spanish España Unión Europea Hitler Segunda Guerra Mundial
Estados Unidos Unión Soviética Zeus Internet
Francia Microsoft Jesús Primera Guerra Mundial

Dutch Nederland Sovjet-Unie Hitler Nederlandse
België Europese Unie Jezus Duitse
Duitsland PvdA Napoleon Tweede Wereldoorlog

Russian SXA SSSR Petra I Veliko� Oteqestvenno� vo�ny
Rossii Microsoft P�tr I Vtoro� mirovo� vo�ny
Moskve IBM Gal�der Franc Pervo� mirovo� vo�ny

French France UMP Platon Seconde Guerre mondiale
États-Unis URSS Nietzsche Internet
Paris Microsoft Jung Première Guerre mondiale

Italian Italia Apple Dante Internet
Roma Unione Sovietica Hitler Seconda guerra mondiale
Stati Uniti Formula 1 Napoleone Linux

Polish Włoszech ZSRR J. R. R. Tolkiena II wojny światowej
Francji PRL Hitler I wojny światowej
USA PZPR Peter Jackson II wojnie światowej

Portuguese Brasil União Soviética Aníbal Segunda Guerra Mundial
Estados Unidos URSS Hitler Internet
França União Europeia Jesus Primeira Guerra Mundial

Table 15
English dev results with Wikipedia and gold-standard training corpora.

Train
Test Exact F -score MucEval F -score

conll bbn conll bbn

conll 89.6 69.4 93.1 79.9
bbn 65.0 88.6 75.4 92.3

wiki-base 55.2 50.2 68.7 67.1
wiki(wiki-0) 64.2 69.1 75.3 79.9

+ page & redirect titles (wiki-1) 67.3 71.7 77.7 81.9
+ dab page titles (wiki-2) 67.9 71.6 77.9 81.9
+ link text (wiki-3) 67.6 71.9 78.2 82.1

Table 16
English test results with our best Wikipedia model.

Train
Test Exact F -score MucEval F -score

conll bbn wikigold conll bbn wikigold

conll 85.2 68.3 55.2 89.9 78.7 68.6
bbn 61.3 89.1 56.7 72.0 92.4 70.6
wiki-2 61.3 69.5 66.6 73.0 80.5 78.1

This is similarly apparent when evaluating on Wikipedia text (wikigold), where our Wikipedia-trained model sig-
nificantly outperforms gold-standard training by 10–12% Exact F -score.26 Although this is much smaller than the 23%
difference when testing on conll, it emphasises that automatically-derived training data can produce top results given an
appropriately-matched evaluation corpus.

To account for the overall low performance on this corpus, Balasuriya et al. [5] suggest that Wikipedia is a difficult evalu-
ation target for ner, containing a wider variety of entity types, with longer names and less cues for their identification than

26
bbn and conll F -scores on wikigold differ by chance.
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Table 17
Results on conll 2002–3 dev corpora when training on the corresponding conll train data, two Wikipedia derived models, and both together. Results in
bold exceed the respective conll on conll performance.

Train
Language Exact F -score MucEval F -score

English German Spanish Dutch English German Spanish Dutch

conll 89.6 63.6 77.6 76.5 93.1 71.0 85.7 85.3
wiki-base 55.2 53.5 54.5 55.9 68.7 64.1 71.8 71.7
wiki-0 64.2 56.7 56.1 61.4 75.3 67.2 72.6 73.4
wiki-2 67.9 60.9 60.7 62.2 77.9 70.9 75.2 75.9
wiki-2 + conll 87.9 67.7 73.0 72.7 92.2 75.9 83.5 83.4

Table 18
Results on conll 2002–3 test corpora when training on wiki-2.

Train
Language Exact F -score MucEval F -score

English German Spanish Dutch English German Spanish Dutch

conll 85.2 66.5 79.6 78.6 89.9 72.8 87.7 85.9
wiki-2 61.3 55.8 61.0 64.0 73.0 66.9 75.8 76.8

Table 19
German dev results with Wikipedia and gold-standard training corpora. The best inter-corpus and Wikipedia-trained results are marked in bold.

Train
Test Exact F -score MucEval F -score

conll europarl conll europarl

conll 63.6 61.2 71.0 66.0

wiki-base 53.5 40.0 64.1 45.1
wiki-0 56.7 49.0 67.2 56.1
wiki-1 59.0 53.4 69.6 61.0
wiki-2 60.9 55.2 70.9 61.8
wiki-3 61.6 51.7 71.8 59.0

Table 20
German test results with our best Wikipedia model.

Train
Test Exact F -score MucEval F -score

conll europarl conll europarl

conll 66.5 49 72.8 56
wiki-3 56.6 48 67.8 59

traditional newswire corpora. Our result may also be compared to Mika et al.’s [46] training data which under-performed a
conll-trained model on Wikipedia text. Overall, these results demonstrate that, ignoring idiosyncratic annotation variations,
our English Wikipedia-trained models perform very well.

7.4. Multilingual evaluation and joint training

Table 17 shows dev results on all conll 2002–3 corpora. We generalise to show results with wiki-2, despite wiki-3

performing significantly better (1.7%) on es dev. While conll-trained and wiki-2-trained models differ by 22% F -score in
English, the equivalent margins in German, Spanish and Dutch are markedly smaller (3–17%). This may be partly reflecting
the lower performance of conll-trained systems on these languages, suggesting their annotations are less predictable; it is
also a reflection of the C&C ner system being primarily tuned for English performance. Nonetheless, wiki-2 results are not
far from conll-trained results, and are significant improvements over wiki-base,27 though none as much as English, which
received the greatest attention when tuning the automatic annotation process to the evaluation corpus.

We also experiment with training on a combined corpus consisting of conll train and wiki-2 in each language (Table 17).
Apart from German, where performance increases 4.1%, this extra data degrades the conll model’s performance. Final conll

test results in Table 18 show large drops in performance from English and German dev results when training on wiki-2,
with smaller increases in Spanish and Dutch.

Tables 19 and 20 show German dev and test results on conll and europarl. In the dev results, we find a conll-trained
model performs almost as well on europarl as it does on conll, and Wikipedia therefore does not outperform conll when
evaluating on europarl. However, conll performs 12% worse on the europarl test data than dev; this result differs from

27
wiki-0 performs significantly better than wiki-base, and link inference improves significantly on this result except in Dutch (nl) where link inference

results differ by chance.
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Table 21
Russian dev results with Wikipedia and gold-standard training.

Train
Test Exact F -score MucEval F -score

abh abh

abh 78.7 83.8

wiki-base 65.3 73.9
wiki-0 65.8 74.1
wiki-1 64.9 73.3
wiki-2 64.8 73.2
wiki-3 64.9 73.2

Table 22
Russian test results with our best Wikipedia model.

Train
Test Exact F -score MucEval F -score

abh abh

abh 79.8 85.0
wiki-base 65.5 74.1

Table 23
Performance given training and evaluation corpora produced by the same process. Row 1: gold-standard conll and ru abh corpora. Row 2: silver-standard
wiki-2. The highest result in each column is marked in bold.

Train and test Exact F -score MucEval F -score

English German Spanish Dutch Russian English German Spanish Dutch Russian

Gold standard 85.2 66.5 79.6 78.6 79.8 89.9 72.8 87.7 85.9 85.0
wiki-2 82.4 90.5 83.5 89.7 82.4 89.2 93.3 90.1 93.8 88.4

wiki-3 performance only by chance, and wiki-3 outperforms conll when using the MucEval metric. Since the europarl data
consists of only two parliamentary transcripts, one for dev and one test, it is unsurprising that their differing subject matter
may cause vastly different results. Parliamentary transcripts are also a more formalised genre than news, and contain a high
frequency of honorific terms like Herr that are infrequent in Wikipedia. Nonetheless, the similar test performance of conll

and wiki-3 models on europarl again illustrates Wikipedia’s effective use as a versatile and cheap source of ner training
data.

Our Russian results (dev Table 21; test Table 22) are unusual in that our baseline system performance differs insignifi-
cantly from wiki-0 (which attempts to identify adjectival entities and nationalities), which is significantly better than models
with link inference. This may reflect the fact that we spent very little time adapting Russian Wikipedia to the abh anno-
tation schema, and that we do not evaluate on the challenging misc entity type. It may also stem from the difficulty of
applying our simple string-based matching approaches in link inference to the complex morphology of Russian. However,
our Wikipedia models again perform at a similar margin from the same-corpus result (13–14% Exact) to what we find in
other languages.

7.5. Self-similar evaluation

We also assess the reliability of our wiki-2 corpora by evaluating them on automatic annotations of other Wikipedia arti-
cles produced using the same process. Table 23 compares these results to the self-similar results we have already presented
on gold-standard test corpora (i.e. conll on conll, or abh on abh). Although our corpus selection process may automati-
cally remove many difficult cases, we see that the resulting annotations are predictable (or learnable) to an extent roughly
equivalent to those in manually-annotated corpora.

The main replicable evaluation in Richman and Schone [61] also uses self-similar Wikipedia testing,28 so we present
comparative results in Table 24.29 Our overall self-similar results are 5–8% higher, but consider different entity types. Con-
sidering only org and per, for which Richman and Schone gave results, our self-similar evaluation consistently outperforms
Richman and Schone [61], by up to 17.6% on ru per.

7.6. Entity type performance

We present our English results on recognising each entity type in Table 25. Regardless of test corpus, our best perfor-
mance is on per, followed by loc, with much lower performance on the diverse org and misc types, corresponding with

28 The gold-standard corpora used by Richman and Schone are not publicly available.
29 This comparison is very rough, since every component differs between our experiments, including: entity types (Richman and Schone use ace types:

person, gpe, organization, vehicle, weapon, location, facility, date, time, money & percent); articles used in training and portion selection; maturity of
Wikipedia; and machine learner (they use a modified version of bbn’s IdentiFinder [8]).
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Table 24
Comparing our self-similar MucEval results to Richman and Schone [61].

ne type Spanish Russian

R&S 2008 This work R&S 2008 This work

All 84.6 90.1 80.2 87.5
org 70.1 73.4 71.2 81.3
per 82.1 92.8 75.1 92.7

Table 25
en wiki-2 performance (Exact metric) broken down by named entity type.

ne type conll wikigold wiki-2-similar

P R F P R F P R F

loc 63.8 70.6 67.0 70.8 80.9 75.5 80.8 87.5 84.0
org 65.0 36.2 46.5 63.0 48.0 54.0 78.2 71.0 74.4
per 87.6 77.9 82.5 80.0 84.0 82.0 90.7 90.7 90.7
misc 29.0 54.0 38.0 43.0 58.0 49.0 73.6 72.6 73.1

All 62.1 60.5 61.3 64.6 68.7 66.6 82.0 82.7 82.4

our article classification results (see Table 9). The written form of org and misc entity names is generally much less regular
than per and loc; using a finer-grained type scheme might provide lower entropy over forms. However, we find low misc

precision and low org recall, suggesting that many organisations are incorrectly identified as misc, which is the second-
highest form of per-token error on conll, behind marking non-entity tokens as misc. This org-misc confusion may also
relate to a nested ne approach describing misc entities within orgs (e.g. [ORG [MISC Australian] Mutual Provident Society]) or
org entities within misc (e.g. [MISC [ORG Apple] iPod]), as well as metonymy in entities like New York Times as an organisation
or publication, or a band and its self-titled album.

8. Discussion and future work

Our results clearly demonstrate the use of Wikipedia to derive high-performance ne-annotated data in many languages,
and while we only present evaluations on languages with existing ner corpora, our results suggest their application to the
many resource-scarce languages covered by Wikipedia.

Our initial approach [55] focused on English Wikipedia and was optimised through extensive analysis and comparison
between our Wikipedia-derived corpora and the target gold standards [56]. We have since presented state-of-the-art ap-
proaches to labelling and classifying Wikipedia’s articles [75], transferring this knowledge into German [62], and evaluating
our English Wikipedia-derived corpus on manually-annotated Wikipedia data [5], as reviewed in this paper. However, we
had not yet taken a more broadly multilingual approach to article classification or the derivation of training data to test the
robustness of our approach across languages and gold standards.

The present work succeeds in overcoming differences in capitalisation conventions between languages such as English
and German, and also identifies that non-English Wikipedias have sufficient structural and textual information to create
usable training data. However, the sorts of extensive analysis we used in English to match our Wikipedia corpora more
closely to gold-standard targets [56] are outside the scope of this paper, and hence we by no means consider our non-
English performance as the method’s upper-bound.

It is also apparent that the distribution of entity mentions in Wikipedia (see Table 14) does not match newswire corpora
or general-domain text, and we plan to investigate more robust text selection techniques to reduce the discrepancy between
Wikipedia and target domains’ entity distributions.

Similarly, an ideal general training corpus should be widely varied in topic and language, but our current process only
considers 0.2% of English Wikipedia articles in creating wiki-3, suggesting topical coverage is low. We are also concerned
about the utility of including almost-identical sentences from automatically-generated pages in Wikipedia (usually derived
from location gazetteers), which may make up a large proportion of Wikipedia languages with few contributors. In future
work, we intend to explore methods for redefining a sentence or article’s utility, measuring how much information it would
add to an existing corpus, and utilising measures of Wikipedia article quality (e.g. [30]).

While we harnesses Wikipedia’s breadth of language, tagging only the four conll ne types ignores Wikipedia’s diverse
coverage of technical and popular domains; misc performance remains low, even when testing on gold Wikipedia annota-
tions. We are yet to evaluate corpora produced with our medium or fine-grained classifications, or to take advantage of our
ability to re-target these fine-grained classifications by mapping them to another schema. Further, by using domain-oriented
article classifications and sentence selection, we foresee this method being used for rapid construction of entity-annotated
corpora in particular domains.

Our work also highlights the brittleness of ner evaluation. conll does not provide annotation guidelines, and various
inconsistencies appear both within a corpus and between the various conll corpora in different languages. For example,
the adjectival forms of entities such as nationalities and religions are usually annotated in the English conll data, mostly in
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German and Dutch, and vary rarely in Spanish. This makes achieving good results without substantial corpus-specific tuning
impossible. conll-style annotations are directed at token-tagging approaches suited to machine learning, and hence label
each token with at most a single entity. Nested entity mentions, such as [ORG [LOC New York] Stock Exchange], cannot be
described in conll and add evaluation ambiguity.

This points us towards the benefits of an extrinsic evaluation, using an ner application such as Question Answering,
where the severity of errors can be more meaningfully evaluated, especially since our work shows that a Wikipedia-derived
model is likely to excel over a news-trained model when extracting entity-related information from diverse sources.

9. Conclusion

We have demonstrated a method of automatically producing named entity-annotated text in a number of languages
from Wikipedia, based on labelling each outgoing link with the entity type of the target article. Our results demonstrate
this approach will be highly effective and efficient for creating ner models in resource-scarce languages. It even performs
comparably to existing gold-standard corpora when idiosyncratic annotation scheme variations are ignored.

Our method initially requires classification of all Wikipedia articles into ne types. We present a multilingual state-of-the-
art supervised classification approach—achieving up to 94.9% on coarse and 89.9% on fine-grained entity types—and compare
it to other approaches from the literature. In order to model and evaluate classification, we have labelled 4800 English, 870
German and 1500 other-language Wikipedia articles with fine-grained ne types. We demonstrate the combination of popular
and randomly selected articles as ideal for training such a classification approach.

Using publicly available conll 2002–3 shared task test data and other corpora, we have evaluated the performance of
ner models trained with 3.5 million tokens of Wikipedia-derived annotations in each of English, German, Spanish, Dutch
and Russian. Our Wikipedia models do not perform as well on traditional ner evaluation data as models trained on corre-
sponding traditional training data, which is unsurprising given the domain mismatch.

However, we have found that in English and German, Wikipedia-derived ner models perform as well or better than gold
models on inter-corpus evaluations, such that Wikipedia is better training data for conll text than the bbn corpus, and is
as good as conll for bbn. Further, our silver-standard annotations outperform traditional training on a manually-annotated
collection of Wikipedia articles [5] by 10–12% F -score. Together these suggest that a Wikipedia model may be better for ner

in some domains than existing gold standards, but also generally applicable where training data is not available to match a
particular target.

In other languages, our results are generally consistent with these conclusions, with Wikipedia models closer in perfor-
mance to gold models (12–19%) than in English (24%) when comparing Wikipedia results on gold-standard test corpora to
models built from corresponding training data.

We also evaluate performance on annotated copora produced by the same automated method as our training data, with
strong results across all languages (see Section 7.5) suggesting that the automatic annotations are learnable to a similar
extent to gold-standard data. We have shown better performance on Wikipedia text than Mika et al. [46] (see Section 7.3),
and arguably better performance on automatically-annotated test data than Richman and Schone [61].

Within the Wikipedia processing literature, this task of generating ne-annotated corpora is arguably the most intensive
use of Wikipedia’s structured features together with its sentential text. We use Wikipedia’s category graph, infoboxes and
bag-of-words content in article classification; article body text and outgoing links in deriving training data; incoming link
texts, redirects and information from disambiguation pages as aliases for inferring additional outgoing links; and inter-
language links to transfer knowledge between languages. Nonetheless, there are other Wikipedia features we do not utilise:
citations, revision history, extra-sentential structure, text styling, etc.

Our work illustrates the wealth of linguistic and world knowledge freely available in Wikipedia’s structured and unstruc-
tured content. We exploit this knowledge to derive enormous and accurate ne-annotated corpora for a variety of domains
and languages.
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Appendix A. Key phrases used in category keyword classification approach

The following is the complete set of 141 case-sensitive keywords/phrases matched against Wikipedia category titles for
the classification approach described in Section 4.2.1.
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loc asteroids; Asteroids; asteroid stubs; cities; Cities; Counties; Countries; geography stubs; infobox lake; Infobox Settlement; lakes; Lakes of; moun-
tains; Mountains; municipalities; Municipalities; Populated places; Regions; Republics; Rivers of; Settlements; States; Suburbs of; Territories; towns;
Towns; Unincorporated communities; villages; Villages; Water bodies

org Advocacy groups; Agencies; booksellers; bookstores; Businesses; Clubs; Club stub; Colleges; companies; Companies; Company stub; Corpora-
tions; Legislatures; Media by; musical groups; music groups; Newspapers; Organizations; Political parties; record labels; Record labels; software
companies; Teams; Team stub; Unions; Universities; University stub

per academics; Actors needing; actors; alumni; Alumni; Biography stub; births; by occupation; Characters; composers; deaths; Fellows of; football
defedners; footballers; football forwards; Free software programmers; Given names; guitarists; human names; living people; Living people; musicians;
painters; Participants; People by; People from; People in; personnel; pitchers; players; poets; producers; singers; Surname; Year of birth; Year of
death

misc albums; album stubs; books; bowl games; discographies; facilities; films; film stubs; games; hAudio; Houses on; journals; magazines; Magazines;
novels; Operas; plot summary; racehorse; Racehorse; Ship infoboxes; Ships; Singlechart; singles; Sonnets; Stations of; television series; Television
series

non about singers; Centuries; -Class; Days; features; Gaelic games; History of; Incidents; List of; Lists; Months; navigational boxes; Screenshots; sports
and games; Wars; Wikipedia; WikiProject; Years

dab disambiguation; Disambiguation; List
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