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The Root and Bell’s disk iteration methods are of the same error
propagation characteristics in the simultaneous determination of the
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Abstract

In this paper we consider the error propagation of the Root and Bell’s disk iteration methods enhanced by incorporating a
correction term and a choice of a disk inversion formula in the methods, for the simultaneous computation of the zeros of a
polynomial. The asymptotic error propagation is proved to be the same in both methods. This result is important considering the
fact that these methods are in popular usage in the simultaneous computation of the zeros of a polynomial. The proof of the results
herein follows the ideas of [M.S. Petkovic, C. Carstensen, Some improved inclusion methods for polynomial roots with Weierstrass
corrections, Comput. Math. Appl. 25 (3) (1993) 59–67]. When the refinement process of correction is efficient, it is this mode of
correction we have desired to propose.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction: The Root iteration and Bell’s disk iteration methods

This paper is concerned with the simultaneous numerical computation of the simple zeros {λ j }
n
j=1 of the

polynomial

Pn(z) =

n∑
j=0

a j z
j
=

n∏
j=1

(z − λ j ); n > 2 (1.1)

with degree n where the variable z and the constants {a j } j=0(1)n can take real or complex values, by any of the
members in the family of the simultaneous root iteration methods
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Fig. 1.1. Disks separation and arithmetic operations on circular intervals.

z(s+1)
j = z(s)

j −
1hk(z

(s)
j ) −

N∑
i=1
j 6=i

(
1

z(s)
j −z(s)

i

)k
 1

k

; j = 1(1)n, k = 1, 2, 3, . . . (1.2)

in point arithmetic for a fixed k. The order of convergence is k + 2, and s = 0, 1, 2, . . . is the iteration index and
hk(z

(s)
j ) is

hk(z) =
(−)k−1

(k − 1)!

dk−1

dzk−1

(
P ′

n(z)

Pn(z)

)
=

n∑
j=1

(
1

z − λ j

)k

; k = 1, 2, 3, . . . . (1.3)

The conversion of (1.2) into an interval iteration process is achieved by the application of the inclusion relation

N∑
i=1,i 6= j

(
1

z j − zi

)
∈

N∑
i=1,i 6= j

(
1

z j − Zi

)
; Zi ∩ Z j = φ (empty),

∣∣z j
∣∣ > r j (1.4)

that holds with the set of circular disks {Z j } j=1(1)N . This is a consequence of the isotonicity inclusion theorem, with
the circular disks Z j = {z j ; r j } defined as Z j = {w : |w − z j | ≤ r j ; z j ∈6⊂, r j ∈ R, r j > 0} = {z j ; r j }. This is a
circular region of centre z j = Mid(Z j ) and radius r j = Rad(Z j ), obeying arithmetic operations defined in [2] and
also stated in Fig. 1.1, but note that the interior of the disks have been shaded and ϕ is a constant.

Consequently, the point iteration in (1.2) therefore suggests the interval iteration procedure

Z (s+1)
j = z(s)

j −
1hk(z

(s)
j ) −

n∑
i=1
j 6=i

(
1

z(s)
j −Z (s)

i

)k
 1

k

; j = 1(1)n, k = 1, 2, 3, . . . . (1.5)

This interval iteration procedure includes the zeros of the polynomial in (1.1) in the generated disks. The initial
approximate points {z(0)

j }
n
j=1 and circular inclusion disks {Z (0)

j }
n
j=1 of the simples zeros {λ j }

n
j=1 of (1.1) are supplied

to commence the iterations in (1.2) and (1.5) respectively. The implementation of (1.5) require the kth root of a disk,
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when for example the disk is Z = {z; r}, then the kth root is given by

Z
1
k =

k−1⋃
m=0

|z|
1
k e

θ+2πm
k ;

r
k−1∑
j=0

|z|
k− j−1

k (|z| − r)
j
k

 ; θ = arg(z); k = 2, 3, 4, . . . ; |z| > r. (1.6)

The choice of the appropriate kth root of the disk in the denominator of (1.5) is made possible by a theorem due
to [3] for the specific case of k = 2, the general case is resolved in [4]. The popularity of this class of methods despite
their high attainable order which increases with increasing k is limited by their implementation difficulties which
arises from the requirement to compute the square root of the denominator and the problems created by the need to
choose the appropriate kth root in (1.2) and root of the disk as in the case of (1.5). In this regard, their computational
complexity deteriorates with increasing k and for k = 2 is seem to be worse than the method of Newton (same as
k = 1, also known as Maehly’s method), as observed in [3]. By this reason, the Borsch–Supan’s, Maehly’s or Halley-
like methods or some others of comparable convergence and without need to compute radicals may be preferred,
see [7–28]. The difficulties not withstanding, these methods are no doubt found useful in the numerical inclusion of
polynomial zeros. In fact, their accuracy improves in the order of increasing k, though this is most often than not
inhibited by round-offs, a default arising from the limited precision of the computing device currently available. Next,
consider another class of methods known as the Bell’s iteration methods for the simultaneous computation of the zeros
of the polynomial in (1.1) from [4, p. 163] in chapter five, the point iteration methods

z(s+1)
j = z(s)

j −

∆k−1, j

(
z(s)

j

)
∆k, j

(
z(s)

j

)
− Bk

(
S(s)

1, j (z), S(s)
2, j (z), . . . , S(s)

k, j (z)
) ; k = 1, 2, 3, . . . (1.7)

derived from the Bell’s polynomials Bk = Bk(z1, z2, z3, . . . , zk) of degree k, given by the recursive relation

Bk (z1, z2, z3, . . . , zk) =



1; k = 0
z1; k = 1
1
2

(
z2 + z2

1

)
; k = 2

1
3

z3 +
1
2

z2z1 +
1
6

z3
1; k = 3

1
k

k∑
v=1

zv Bk−v (z1, z2, z3, . . . , zk) ; k ≥ 4

(1.8)

where

S(s)
v, j (z) =

n∑
i=1
j 6=i

(
1

z(s)
j − z(s)

i

)v

; v = 1(1)k

and since the zeros are simple,

∆k, j

(
z(s)

j

)
=

k∑
v=1

(−)v+1

v!

P(v)
n

(
z(s)

j

)
Pn

(
z(s)

j

) ∆k−v, j

(
z(s)

j

)
; j = 1(1)n. (1.9)

The analysis to be given is easily extended to cases of multiplicity of the zeros of (1.1). Similarly, the interval
arithmetic version of these methods in (1.7) by (1.4) is

Z (s+1)
j = z(s)

j −

∆k−1, j

(
z(s)

j

)
∆k, j

(
z(s)

j

)
− Bk

(
S(s)

1, j (Z), S(s)
2, j (Z), . . . , S(s)

k, j (Z)
) ; k = 1, 2, 3, . . . (1.10)
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proposed by Wang and Zheng, see [4, p. 167] for numerically isolating the zeros of (1.1) in the respective disks
{Z j }

n
j=1, where

S(s)
v, j (Z) =

N∑
i=1
j 6=i

(
1

z(s)
j − Z (s)

i

)v

; v = 1(1)k. (1.11)

It is instructive to emphasise that the inequalities

Rad
(

1

Z
1
k

)
≤ Rad

((
1
Z

) 1
k
)

; 0 6∈ Z = {z; r}

and
m∑

j=1; j 6=i

Rad

((
1

zi − Z j

)k
)

≤

m∑
j=1; j 6=i

Rad

(
1(

zi − Z j
)k
)

; 0 6∈ Z j =
{
z j ; r j

} (1.12)

influences the way of implementation of (1.5) and (1.10), the methods are implemented as presented. By these, the
methods will generate disks of smaller radii than if the computation is reversed with respect to inversion of the power
of a disk. In both approaches the convergence rate stays the same. These classes of methods require the need to find
the power of a disk,

Z k
= {z; r}

k
=

{
zk

;

k∑
j=1

(
k
j

)
|z|k− j r j

}
=

{
zk

; (|z| + r)k
− |z|k

}
; k = 1, 2, . . . . (1.13)

The order of convergence of the methods in (1.2), (1.5), (1.7) and (1.10) is k + 2. In particular, when k = 1 in (1.2),
(1.5), (1.7) and (1.10) gives the Maehly’s method, while k = 2 in (1.2) and (1.5) is the square root method and for
k = 2 in (1.7) and (1.10) is the Halley-like method. The explicit nature of these methods becomes robust with a
growing k. In what follows, we consider enhancing the convergence rate of the simultaneous root iteration methods in
(1.2) and (1.5) and Bell’s disk iteration methods in (1.7) and (1.10) by means of application of corrections and in the
case of the inclusion methods we use the inversion formulae from [1],

INV(Z) =



{
z̄

|z|2 − r2
;

r

|z|2 − r2

}
=

 1

z
(

1 −
r2

|z|2

) ;
r

|z|2 − r2

 ; ( )−1, β = 1{
1
z
;

r
|z| (|z| − r)

}
; ( )II , β = 0{

1
z
;

2r

|z|2 − r2

}
; ( )I2 , β = 0.

(1.14)

The β is to distinguish the choices with respect to the inversion formulae above. The point z is the conjugate of the
complex number z. It can be shown, see [1] again, that

|Mid(INV(Z))| ≤
|z|

|z|2 − r2
; Rad(INV(Z)) ≤

2r

|z|2 − r2
; |z| > r (1.15)

and also Z−1
⊆ Z I1 ⊆ Z I2 . This inclusion relation tells which of the inversion will give best zero inclusion in the

methods (2.1) and (2.2) in the section ahead.
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2. Simultaneous iteration methods with corrections and a choice of disk inversion

Starting with the root iteration (1.2) and (1.5), an enhancement in mind of these methods which incorporates
corrections in the process and a choice for inversion of the disk is

Z (s+1)
j = z(s)

j −
1hk(z

(s)
j ) −

n∑
i=1
j 6=i

(
INV

(
z(s)

j − Z (s)
i + C (s)

i

))k

 1
k

; k = 1, 2, . . . (2.1)

and that of an improvement of Wang and Zheng’s method (1.7) and (1.10), is now

Z (s+1)
j = z(s)

j −

∆k−1, j

(
z(s)

j

)
∆k, j

(
z(s)

j

)
− Bk

(
SI (s)

1, j (Z), SI (s)
2, j (Z), . . . , SI (s)

k, j (Z)
) ; k = 1, 2, 3, . . . (2.2)

where

SI (s)
v, j (Z) =

n∑
i=1, j 6=i

(
INV

(
z(s)

j − Z (s)
i + C (s)

i

))v

; v = 1(1)k (2.3)

for a fixed k. Here, C (s)
i is the correction term taken from the point method z(s+1)

i = z(s)
i − C (s)

i of order p. The

application of correction in (2.1) and (2.2) is motivated by the fact that the approximation z(s)
j − C (s)

j is closer to

the root λ j than the point z(s)
j and therefore enhances convergence rate than the corresponding basic methods (1.2),

(1.5), (1.7) and (1.10) respectively as will be seen. The methods (2.1) and (2.2) offer improved convergence than their
corresponding basic methods (1.5) and (1.10) respectively, as would be seen from their R-order shortly. The point
arithmetic cases k = 1, 2 considered in [4] form special instances of (2.1) and (2.2), we herein provide a generalised
study of these class of methods. When the correction term C (s)

i is efficient, it is this mode of correction we have
desired to propose. Since

Rad

 m∑
j=1; j 6=i

(
INV

(
zi − Z j

))k ≤ Rad

 m∑
j=1; j 6=i

INV
((

zi − Z j
)k) ; 0 6∈ Z j =

{
z j ; r j

}
(2.4)

the implementation of the methods will be as it is above and also during this, sources of zero divide shall be factored
out. The convergence requirement of these methods will be given with respect to the initial disk separation ρ in the
form ρ ≥ θ(n − 1)r where θ is a positive constant, n the degree of the polynomial, r is the maximum radius of the
initial starting disks. The point version of (2.1) and (2.2) are given as

z(s+1)
j = z(s)

j −
1hk(z

(s)
j ) −

n∑
i=1
j 6=i

(
1

z(s)
j −z(s)

i +C(s)
i

)k
 1

k

(2.5)

and

z(s+1)
j = z(s)

j −

∆k−1, j

(
z(s)

j

)
∆k, j

(
z(s)

j

)
− Bk

(
SC (s)

1, j (z), SC (s)
2, j (z), . . . , SC (s)

k, j (z)
) (2.6)

where
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SC (s)
v, j (z) =

n∑
i=1
j 6=i

(
1

z(s)
j − z(s)

i + C (s)
i

)v

; v = 1(1)k (2.7)

respectively. The convergence of these point methods can be deduced from its interval version, this will be seen in
the next section, the hint is that when the radii of the inclusion disks in (2.1) and (2.2) are zeros we have the point
methods in (2.5) and (2.6) accordingly.

3. The convergence of the corrected families of inclusion methods (2.1) and (2.2)

The convergence of the modified methods (2.1) and (2.2) is considered in what follows. However, in the analysis
to be provided we are supposing that the zeros {λ j }

n
j=1 of the polynomial Pn(z) are simple. The result from this finds

simple extension to the case of multiple zeros of the polynomial. For this purpose, set

z j = Mid(Z j ); r j = Rad(Z j ); ε j = z j − λ j ; ε = Max
j=1(1)n

∣∣ε j
∣∣

r = Max
j=1(1)n

{
r j
}
; vi j = zi − z j + C j , mc = Min

j=1(1)n

∣∣C j
∣∣ , i 6= j = 1(1)n.

(3.1)

A measure of separateness of the disks will be ρ = Min1≤i, j≤n
{
|z| ; z ∈ zi − Z j

}
= Min1≤i, j≤n

{∣∣zi − z j
∣∣− r j

}
,

though the other alternatives d = Min1≤i, j≤n
{∣∣zi − z j

∣∣} employed in [1] or σ = Min1≤i, j≤n
{∣∣zi − z j

∣∣− ri − r j
}

could also well be found useful. In fact, σ > 0 guarantee non-overlap of the disks
{

Z j
}n

j=1, see Fig. 1.1. More
importantly, let us start from the following result. It is instructive to draw attention to the fact that the iteration index
s has been dropped where convenient.

Theorem 3.1. Let ρ ≥ θ(n − 1)r and assume that

|Ci | ≤ α |εi | < αr; α = 1 + η, 0 < η < 1, θ ≥ 2k+3
+

η

n − 1
,

if
(a) λi ∈ Zi then λi ∈ Zi − Ci for i = 1(1)n
(b) λi ∈ Zi for i = 1(1)n then the inversions in (2.1) and (2.2) exist, this thus implies

(1)

0 6∈ z j − Zi + Ci and

(2)

0 6∈ H1, j = 1 −
1

hk(z j )

n∑
i=1;

i 6= j

(
INV

(
z j − Zi + Ci

))k (3.2)

(3)

0 6∈ H2, j = 1 −
1

∆k, j (z j )
Bk
(
SI1, j (Z), SI2, j (Z), . . . , SIk, j (Z)

)
(3.3)

according to the method in use from (2.1) and (2.2). The inclusion methods in (2.1) and (2.2) therefore defines a
feasible interval process. Let Z (0)

j = {z(0)
j ; r (0)

j } be the initial non-overlapping disks isolating the simple zeros, that

is λ j ∈ Z (0)
j and Z (0)

j ∩ Z (0)
i = φ(empty); i 6= j = 1(1)n respectively. If ρ(0)

≥ θ(n − 1)r (0) is the initial disk
separation, where we let

r (s)
= Max

j=1(1)n

{
r (s)

j

}
and ρ(s)

= Min
i, j=1(1)n

i 6= j

{∣∣∣z(s)
i − z(s)

j

∣∣∣− r (s)
j

}
; s = 0, 1, 2, . . . (3.4)

then the sequences of disks {Z (s)
j }

n,∞
j=1,s=0 generated by the algorithms (2.1) and (2.2) are such that

(c) λ j ∈ Z (s)
j ; j = 1(1)n, s = 1, 2, . . . and
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(d) the sequence of radii {r (s)
}
∞

s=0 → 0 as s → ∞.

This consequently implies that the enhanced methods (2.1) and (2.2) are convergent.

Proof. First is with the family of root iteration methods (2.1), to this end re-arrange this to be

Z (s+1)
i = z(s)

i −

(
1

hk(z
(s)
i )

) 1
k

∗


1

1 −
1

hk (z
(s)
i )

 n∑
j=1
j 6=i

(
INV(z(s)

i − Z (s)
j + C (s)

j )
)k



1
k

∗

. (3.5)

It is assumed that, in the kth root required above, our choice out of the k possibilities is the appropriate one, this is
indicated by the ∗. This understanding has necessitated the dropping of this indicator in our subsequent considerations.

(a) The task of proving (a) is same as proving that |zi − λi | = |εi | ≤ r implies |zi − Ci − λi | ≤ ri , see [1]. Now,
since z(s+1)

i = z(s)
i − C (s)

i and therefore zi − λi = Ci where the Ci depends on the roots, we can write therefore
that Ci = o(εi ) which is same as |Ci | ≤ α|εi | with α a positive constant. Then |εi − Ci | < η|εi | < ε ≤ ri ≤ r ,
therefore if λi ∈ Zi then λi ∈ Zi − Ci for i = 1(1)n which in fact, means that z(s)

i − C (s)
i → λi faster than z(s)

i → λi ;
s = 0, 1, 2, . . . . We have thus established by monotone inclusion that if

λ j ∈
1h(s)

k, j −

n∑
i=1
j 6=i

(
1

z(s)
j −Z (s)

i

)k
 1

k

then λ j ∈
1h(s)

k, j −

n∑
i=1
j 6=i

(
INV

(
z(s)

j − Z (s)
i + C (s)

i

))k

 1
k

s = 0, 1, 2, . . . ; k = 1, 2, . . . .

(b1) To prove (b1) we observe that for a given disk Z = {z; r} then 0 6∈ Z = {z; r} if |z| > r . To this regard

|v j i | = |z j − zi + Ci | ≥ |z j − zi | − |Ci | > ρ − (1 + η)r > r(θ(n − 1) − α) > r > r j (3.6)

then 0 6∈ {v j i ; ri } = z j − Zi + Ci .

(b2) To prove (b2) we require a bound on the absolute value of

1
hk(z j )

= (z j − λ j )
k

1 −
1

hk(z j )

n∑
i=1;i 6= j

(
1

z j − λi

)k
 . (3.7)

This can be obtained from

∣∣∣∣ 1
hk(z j )

∣∣∣∣ <
∣∣z j − λ j

∣∣k 1 +

∣∣∣∣ 1
hk(z j )

∣∣∣∣ n∑
i=1;i 6= j

∣∣∣∣ 1
z j − λi

∣∣∣∣k
 < εk

(
1 +

∣∣∣∣ 1
hk(z j )

∣∣∣∣ (n − 1
ρk

))
. (3.8)

From where∣∣∣∣ 1
hk(z j )

∣∣∣∣ <
εk(

1 −
εk (n−1)

ρk

) <
1

1 −

(
1

θk (n−1)k−1

)εk
; n ≥ 3. (3.9)

Here
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H1, j = 1 −
1

hk(z j )

n∑
i=1
i 6= j




1

v j i

(
1 −

β r2
i

|v j i |
2

) ;
ri∣∣v j i
∣∣2 − r2

i


k

; ( )−1, β = 1

{
1

v j i
;

ri∣∣v j i
∣∣ (∣∣v j i

∣∣− ri )

}k

; ( )II , β = 0{
1

v j i
;

2ri∣∣v j i
∣∣2 − r2

i

}k

; ( )I2 , β = 0

=
{
u j ; ρ j

}
. (3.10)

Now,

ρ j =
1∣∣hk, j
∣∣Rad

 n∑
i=1
i 6= j

(
INV(z j − Zi + Ci )

)k =
1∣∣hk, j
∣∣ n∑

i=1
i 6= j

Rad
((

INV(z j − Zi + Ci )
)k)

setting hk, j = hk(z j ) for convenience. So,

ρ j ≤
εk

1 −
1

θk (n−1)k−1

n∑
i=1;i 6= j

(
2ri∣∣v j i
∣∣2 − r2

i

)k

≤
εk

1 −
1

θk (n−1)k−1

∑
i 6= j

(
2ri

(ρ − (1 + η )r)2 − r2
i

)k

<
εk

1 −
1

θk (n−1)k−1

(n − 1)2krk

[(ρ − (1 + η) r)2 − r2]k
=

εk

1 −
1

θk (n−1)k−1

(n − 1)2krk

[ρ − (1 + η) r + r ]k[ρ − (1 + η) r − r ]k

<
εkθk

θk(n − 1)k−1 − 1

(n − 1)k2krk

[θ(n − 1) − (1 + η) + 1]k[θ(n − 1) − (1 + η) − 1]kr2k

=
θk

θk(n − 1)k−1 − 1

2k[
θ −

1+η
n−1 +

1
n−1

]k [
θ −

1+η
n−1 −

1
n−1

]k <
1
80

; θ ≥ 2k+3
+

1 + η

n − 1
−

1
n − 1

. (3.11)

Now, from (3.10)

u j = 1 − T1, j (β); T1, j (β) =
1

hk(z j )

n∑
i=1
i 6= j

 1

v j i

(
1 −

β r2
i

|v j i |
2

)


k

. (3.12)

So that

∣∣u j
∣∣ =

∣∣∣∣∣∣∣1 −
1

hk(z j )

n∑
i=1
i 6= j

Mid
((

INV
(
z j − Zi + Ci

))k)∣∣∣∣∣∣∣
≥ 1 −

∣∣∣∣ 1
hk(z j )

∣∣∣∣ n∑
i=1
i 6= j

∣∣∣Mid
((

INV
(
z j − Zi + Ci

))k)∣∣∣
> 1 −

εk

1 −
1

θk (n−1)k−1

n∑
i=1
i 6= j

 ∣∣v j i
∣∣∣∣∣∣∣v j i

∣∣2 − r2
i

∣∣∣
k

≥ 1 −
εk

1 −
1

θk (n−1)k−1

n∑
i=1
i 6= j

(
(ρ − (1 + η)r)

(ρ − (1 + η)r)2 − r2

)k

≥ 1 −
εk(n − 1)

1 −
1

θk (n−1)k−1

(
ρ − (1 + η)r

(ρ − (1 + η)r + r)(ρ − (1 + η)r − r)

)k

. (3.13)
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Finally,

∣∣u j
∣∣ > 1 −

θk

θk(n − 1)k−1 − 1

(
θ −

1+η
n−1

[θ −
1+η
n−1 +

1
n−1 ][θ −

1+η
n−1 −

1
n−1 ]

)k

> 1 −
3
32

=
29
32

. (3.14)

Thus 0 6∈ {u j ; ρ j } = H1, j , from which the conclusion is that (2.1) defines a feasible interval iteration method.
(c) Consider now the convergence of the class of methods (2.1), and to prove this we may let

Z j , Ẑ j , r j , r̂ j , z j , ẑ j denote Z (s)
j , Z (s+1)

j , r (s)
j , r (s+1)

j , z(s)
j , z(s+1)

j

and also set

r̂ = Max
j=1(1)n

{
r̂ j
}
; ρ̂ = Min

i, j=1(1)n
i 6= j

{∣∣ẑi − ẑ j
∣∣− r̂ j

}
when the need arises. Therefore, (2.1) is now of the form

Ẑ j = z j −

(
1

hk, j

) 1
k
(

1
H1, j

) 1
k

= z j −

(
1

hk, j

) 1
k 1{

u j ; ρ j
} 1

k

. (3.15)

This will be reposed as

Ẑ j = z j −

(
1

hk, j

) 1
k
(

1{
u j ; ρ j

}) 1
k

(3.16)

the convergence characteristics is still the same as that in (3.15) the difference is in (1.12). By this arrangement, the
method is resolved into the two components

r̂ j = Rad
(

Ẑ j

)
=

∣∣∣∣ 1
hk, j

∣∣∣∣ 1
k

 ρ j∣∣u j
∣∣2 − ρ2

j

 1

k−1∑
r=0

(
|ū j |

|u j |
2
−ρ2

j

) k−r−1
k

(
|ū j |−ρ j

|u j |−ρ2
j

) r
k

(3.17)

and

ẑ j = Mid
(

Ẑ j

)
= z j −

(
1

hk, j

) 1
k 1[

u j
(
1 − t j

)] 1
k

; t j =
ρ2

j∣∣u j
∣∣2 . (3.18)

Recalling the bounds in (3.11) and (3.14),

∣∣u j
∣∣ >

29
32

> ρ j <
1

80
;

∣∣u j
∣∣2 −

(
ρ j
)2

>

(
29
32

)2

−

(
1

80

)2

=
21 021
25 600

> 0 (3.19)

then

r̂ j <

∣∣ε j
∣∣(

1 −
1

θk (n−1)k−1

) 1
k

θk
∣∣ε j
∣∣k

θk(n − 1)k−1 − 1
QW (3.20)

where

Q =
2k(n − 1)krk

j

[θ(n − 1) − (1 + η) − 1]k[θ(n − 1) − (1 + η) + 1]kr2k
(∣∣u j

∣∣2 −
(
ρ j
)2)

W =
1

k−1∑
r=0

(
|ū j |

|u j |
2
−ρ2

j

) k−r−1
k

(
|ū j |−ρ j

|u j |
2
−ρ2

j

) r
k

.
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That is (3.20) is now

r̂ j <
∣∣ε j
∣∣ ( θ

θ − 1

)2 2(n − 1)

[θ(n − 1) − (1 + η) − 1][θ(n − 1) − (1 + η) + 1](|u j |
2 − (ρ j )2)

. (3.21)

So that,

r̂ j <
25 600(n − 1) 2r j

21 021[θ(n − 1) − (1 + η) − 1][θ(n − 1) − (1 + η) + 1]

<
51 200 r j

21 021
[
θ −

(
1+η
n−1

)
−

1
n−1

] [
θ −

1+η
n−1 +

1
n−1

] < r j
51 200

21 021 × 16 × 16
<

200
21 021

r j . (3.22)

This way, r (s)
j <

(
200

21 021

)s
r (0)

j and the generated radii from the method converges to zero. Now that λ j ∈ Ẑ j , that is

∣∣ẑ j − λ j
∣∣ < r̂ j <

200
21 021

r (3.23)

and thus∣∣(ẑ j − z j ) − (λ j − z j )
∣∣ ≤

∣∣ẑ j − z j
∣∣+ r j <

200
21 021

r + r (3.24)

is the equivalent inequality

∣∣ẑ j − z j
∣∣ <

21 221
21 021

r. (3.25)

Also

ρ̂ =
∣∣ẑ j − ẑi

∣∣− r̂k ≥
∣∣z j − zi

∣∣− ri −
(∣∣z j − ẑ j

∣∣+ ∣∣zi − ẑi
∣∣) > ρ −

42 442
21 021

r. (3.26)

By these inequalities,

r̂

ρ̂
<

(
200

21 021

)
r

ρ −

(
42 442
21 021

)
r

=

(
r

ρ

)
200

21 021 − 42 442
(

r
ρ

) <

(
r

ρ

)
640

63 023
;

r

ρ
< 1; n ≥ 3. (3.27)

Therefore the initial disk separation ρ(0)
≥ θ(n − 1)r (0) is seen to be maintained throughout the iterations in (2.1),

that is ρ(s)
≥ θ(n − 1)r (s); s = 0, 1, 2, . . .. Then λi ∈ Z (s)

i − C (s)
i ; i = 1(1)n and thus by inclusion monotonicity

λi ∈ Z (s+1)
i subsequently.

(d) From the foregoing, since λi ∈ Z (0)
i the initial iteration disk, then by induction λi ∈ Z (s)

i ; s = 0, 1, 2, . . .

Conclusively, the sequence of radii
{

r (s)
j

}∞,n

s=0, j=1
generated by the methods (2.1) tend to zero and defines the disk

contraction . . . ⊂ Z (s+1)
j ⊂ Z (s)

j ⊂ · · · ⊂ Z (1)
j ⊂ Z (0)

j , therefore (2.1) defines a feasible convergent iteration
algorithm. The case of the convergence of method (2.2) is proved analogously and we therefore do not wish to
duplicate the efforts. The proof of the theorem is concluded. �

As an example, using the corrector C (s)
i = N (s)

j from the method z(s+1)
i = z(s)

j − N (s)
j of order p = 2 when k = 1

in (2.1) and (2.2) it can be shown that |Ni | < α |εi | ≤ α r ; α =
5
4 , ρ ≥ 5(n − 1)r . Similar result can be found for

other correctors and also realise that the inequality ρ ≥ θ(n − 1)r gives the initial disk separation for the convergence
of the methods for a fixed k.
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4. The R-order of convergence of the Root and Bell’s modified methods

The R-order of convergence of the modified methods (2.1) and (2.2) will be determined as follows. Let us
commence our consideration with the case of (2.1), that of (2.2) will be highlighted. By now (2.1) has become

ẑ j − λ j = z j − λ j −

(
1

hk(z j )

) 1
k 1[(

1 − T1, j (β)
) (

1 − t j
)] 1

k

=

ε j
[(

1 − T1, j (β)
) (

1 − t j
)] 1

k −

(
1

hk (z j )

) 1
k

[(
1 − T1, j (β)

) (
1 − t j

)] 1
k

. (4.1)

This is the same as

ε̂ j =

ε j

T1, j (β)t j − t j +

 1
hk (z j )

n∑
i=1
i 6= j

(
1

z j −λi

)k
− T1, j (β)


[(

1 − T1, j (β)
) (

1 − t j
)] 1

k
k−1∑
r=0

[(1 − T1, j (β)
) (

1 − t j
)] k−r−1

k

1 −
1

hk(z j)

n∑
i=1
i 6= j

(
1

z j −λi

)k

 r
k


. (4.2)

The identities

A
1
k − B

1
k =

A − B
k−1∑
j=0

A
k− j−1

k B
j
k

and Ak
− Bk

= (A − B)

k−1∑
j=0

B j Ak− j−1
; k = 1, 2, . . . (4.3)

reduces part of the expression in the numerator of (4.2) into

T1 =
1

hk
(
z j
) n∑

i=1
i 6= j

(
1

z j − λi

)k

− T1, j (β) =
1

hk
(
z j
) n∑

i=1
j 6=i


 1

z j − λi
−

1

v j i

(
1 −

β r2
i

|v j i |
2

)
U j i (β)



=
1

hk
(
z j
) n∑

i=1
j 6=i



(
z j − zi + Ci

) (
1 −

β r2
i

|v j i |
2

)
−
(
z j − λi

)
(
z j − λi

)
v j i

(
1 −

β r2
i

|v j i |
2

)
U j i (β)


where U j i (β) is

U j i (β) =

k−1∑
r=0

( 1
z j − λi

)k−r−1

 1

v j i

(
1 −

β r2
i

|v j i |
2

)


r .

A further simplification of T1 yields the more revealing expression,

T1 =
1

hk
(
z j
) n∑

i=1,
j 6=i


 (−zi + λi + Ci ) − v j i

β r2
i

|v j i |
2(

z j − λi
)
v j i

(
1 −

β r2
i

|v j i |
2

)
Ui j (β)

 . (4.4)
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It is possible to find a constant D (> 0) such that

|T1| ≤ D

∣∣∣∣∣ 1

hk
(
z j
) ∣∣∣∣∣ .

(
|−zi + λi + Ci | +

β r2
i∣∣v j i
∣∣2
)

.

Now, by (1.13), it follows that

(
INV

(
z j − Zi + Ci

))k
=




1

vk
ji

(
1 −

β r2
i

|v j i |
2

)k ;

(∣∣v j i
∣∣+ ri

)k
−
∣∣v j i

∣∣k(∣∣v j i
∣∣2 − r2

i

)k

 ; ( )−1, β = 1

 1

vk
ji

;

(
1∣∣v j i
∣∣ +

ri∣∣v j i
∣∣ (∣∣v j i

∣∣− ri
))k

−
1∣∣v j i
∣∣k
 ; ( )II , β = 0 1

vk
ji

;

(
1∣∣v j i
∣∣ +

2ri∣∣v j i
∣∣2 − r2

i

)k

−
1∣∣v j i
∣∣k
 ; ( )I2 , β = 0.

Because of the inequalities,

(∣∣v j i
∣∣+ ri

)k
−
∣∣v j i

∣∣k < k ri
(∣∣v j i

∣∣+ ri
)k−1(

1∣∣v j i
∣∣ +

ri∣∣v j i
∣∣ (∣∣v j i

∣∣− ri
))k

−
1∣∣v j i
∣∣k < k

ri∣∣v j i
∣∣ (∣∣v j i

∣∣− ri
) ( 1∣∣v j i

∣∣ +
ri∣∣v j i

∣∣ (∣∣v j i
∣∣− ri

))k−1

(
1∣∣v j i
∣∣ +

2ri∣∣v j i
∣∣2 − r2

i

)k

−
1∣∣v j i
∣∣k < k

2ri∣∣v j i
∣∣2 − r2

i

(
1∣∣v j i
∣∣ +

2ri∣∣v j i
∣∣2 − r2

i

)k−1

then

Rad
((

INV(z j − Zi + Ci )
)k)

< k
2ri∣∣v j i
∣∣2 − r2

i

(
1∣∣v j i
∣∣ +

2ri∣∣v j i
∣∣2 − r2

i

)k−1

. (4.5)

This induces the inclusion relation,

n∑
i=1
i 6= j

(
INV(z j − Zi + Ci )

)k
⊆


n∑

i=1
j 6=i

(
1

z j − zi + Ci

)k

; 2k
n∑

i=1
i 6= j

ri∣∣v j i
∣∣2 − r2

i

(
1∣∣v j i
∣∣ +

2ri∣∣v j i
∣∣2 − r2

i

)k−1


⊂


n∑

i=1
j 6=i

1

vk
ji

;
2(n − 1)k r

(ρ − (1 + η)r)2 − r2

(
1

ρ − (1 + η)r
+

2r

(ρ − (1 + η)r)2 − r2

)k−1

 .

From this we are therefore sure of the inclusion

n∑
i=1,i 6= j

(
INV(z j − Zi + Ci )

)k
⊂


n∑

i=1
j 6=i

1

vk
ji

;
2(n − 1)k r

(ρ − mc)2

(
1
r

+
2r

(ρ − mc)2

)k−1

 (4.6)

for which now,

ρ j ≤
1

1 −

(
1

θk (n−1)k−1

) 2(n − 1)k rεk

(ρ − (1 + η)r)2 − r2

(
1

ρ − (1 + η)r
+

2r

(ρ − (1 + η)r)2 − r2

)k−1

(4.7)
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from (3.11). In the notations of [1], write, ρ j = o
(
εkr
)
. This notation suppresses the constants whose explicit

nature does not obscure the qualitative behaviour of the sequences of interest, however this is just only a matter
of convenience. Arising from the foregoing analysis so far we shall have

z j − λ j − C j = o
(
ε p)

; u j = o (1) ; v j i = o (1) ; t j = o
(
ε2k r2

)
;

T1, j (β) = o
(
εk
)

;
(
1 − T1, j (β)

) (
1 − t j

)
= o (1) ; z j − zi + Ci = o (1) ;

1
hk

= o
(
εk
)

; zi − λ j = o (1) ; Pn(z) = o (ε)

(4.8)

and which similarly

∣∣u j
∣∣2 − ρ2

j = o (1) ;

 ∣∣ū j
∣∣∣∣u j

∣∣2 − ρ2
j

 k−r−1
k

 ∣∣ū j
∣∣− ρ j∣∣u j
∣∣2 − ρ2

j

 r
k

= o (1) ; r = 0(1)k − 1

and

(
1

z j − λi

)k−r−1

 1

vi j

(
1 −

β r2
i

|vi j |
2

)


r

= o (1) , U j i (β) = o (1) .

Also

((
1 − S1, j (β)

) (
1 − t j

)) k−r−1
k

(
1 −

1
hk

n∑
i=1,i 6= j

(
1

z j − λi

)k
) r

k

= o (1) (4.9)

and more so for the other similar terms. Invoking these in

r̂ j =

(∣∣∣∣ 1
hk, j

∣∣∣∣ 1
k

ρ j

)
1∣∣u j
∣∣2 − ρ2

j

.
1

k−1∑
r=0

(
|ū j |

|u j |
2
−ρ2

j

) k−r−1
k

(
|ū j |−ρ j

|u j |
2
−ρ2

j

) r
k

from (3.17) and bearing in mind that ρ j = o
(
εkr
)
, therefore r̂ j = o

(
εk+1r

)
. For the case of the family of methods

(2.2), the re-arrangement is

Z (s+1)
j = z(s)

j −

∆k−1, j

(
z(s)

j

)
∆k, j

(
z(s)

j

)
 1

1 −
1

∆k, j

(
z(s)

j

) Bk

(
SI (s)

1, j (Z), SI (s)
2, j (Z), . . . , SI (s)

k, j (Z)
) . (4.10)

By then

Ẑ j = z j −

(
∆k−1, j (z j )

∆k, j (z j )

) (
H2, j

)−1
= z j −

(
∆k−1, j (z j )

∆k, j (z j )

)(
1{

u j ; ρ j
}) . (4.11)

Here, define similarly that

u j = 1 − T2, j ;

T2, j =
1

∆k, j

(
z(s)

j

) Bk

(
SI (s)

1, j (Z), . . . , SI (s)
k, j (Z)

)
=

1

∆k, j

(
z(s)

j

) Bk

(
SI (s)

1, j (Z; β), . . . , SI (s)
k, j (Z; β)

)

ρ j =
1∣∣∣∆k, j

(
z(s)

j

)∣∣∣ Rad
(

Bk

(
SI (s)

1, j (Z), SI (s)
2, j (Z), . . . , SI (s)

k, j (Z)
))

(4.12)
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and

SIv, j (Z; β) =

n∑
i=1
i 6= j

 1

vi j

(
1 −

β r2
i

|vi j |
2

)


v

; β = 0, 1; v = 1(1)k. (4.13)

So that (2.2) is equivalently resolved into the components

ẑ j = Mid
(

Ẑ j

)
= z j −

(
∆k−1, j (z j )

∆k, j (z j )

)
ū j∣∣u j

∣∣2 −
(
ρ j
)2 ;

r̂ j = Rad
(

Ẑ j

)
=

∣∣∣∣∆k−1, j

∆k, j

∣∣∣∣ ρ j∣∣u j
∣∣2 −

(
ρ j
)2 . (4.14)

Because

∆k−1, j

(
z(s)

j

)
∆k, j

(
z(s)

j

) = (z j − λ j )

1 −
1

∆k, j

(
z(s)

j

) Bk

(
S(s)

1, j (λ), S(s)
2, j (λ), . . . ., S(s)

k, j (λ)
) (4.15)

where

Sv, j (λ) =

n∑
i=1,i 6= j

(
1

z j − λi

)v

; v = 1(1)k (4.16)

thus

ε̂ j =

ε j

(
T2, j (β)t j − t j +

(
1

∆k, j (z)
Bk
(
S1, j (λ), S1, j (λ), . . . , Sk, j (λ)

)
− T2, j (β)

))
(
1 − T2, j (β)

) (
1 − t j

) . (4.17)

Using (1.9), establish there that 1

∆k, j

(
z(s)

j

) = o
(
εk
)

and by application of (4.3), see that

T2 =
1

∆k, j (z)
Bk
(
S1, j (λ), . . . , Sk, j (λ)

)
− T2, j (β) = o

(
ε p+k

)
+ β o

(
εkr2

)
(4.18)

in which again ρ j = O
(
εk r

)
. Finally, in both classes of the methods (2.1) and (2.2)

Tt =

o
(
ε p+k

)
; β = 0

o
(
ε p+k

)
+ o

(
r2εk

)
; β = 1

; t = 1, 2; p ≥ 2; k = 1, 2, . . . (4.19)

using (4.4) and (4.18). Conclusively, the error expressions are

r̂ j = o
(
εk+1r

)
;

ε̂ j = o
(

r2ε3k+1
)

+ o
(

r2ε2k+1
)

+

o
(
ε p+k+1

)
+ βo

(
r2εk+1

)
; β = 1

o
(
ε p+k+1

)
; β = 0

(4.20)

for both cases of the methods in (2.1) and (2.2) for a general k and a corrector of order p. Considering dominant terms,
and noting that |εi | < ε ≤ r when convergence sets in, in the long run on the iteration index s, then we can put that
ε = o (r) and thus in both classes of the methods (2.1) and (2.2) the error propagate its effects as in the error relations

r̂ j = o
(

rεk+1
)

;
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ε̂ j =


[
o
(

r2
)

+ o
(
ε p)] o

(
εk+1

)
; β = 1[

o
(

r2
)

+ o
(
ε p−k

)]
o
(
ε2k+1

)
; β = 0

(4.21)

as we have set out to show. The R-order of convergence is now found by the application of the Schmidt theorem
accordingly on the error relations in (4.21). Here is the theorem, see [5,6].

Theorem 4.1 (Schmidt). Given the error relation

ε
(s+1)
j ≤ α j

n∏
i=1

(
ε
(s)
i

)p j i
; j = 1, 2, . . . , n; s = 0, 1, 2, . . . (4.22)

where p j i ≥ 0, α j > 0; 1 ≤ i, j ≤ n. Denote the matrix of exponents which appear in (4.22) as Pn =
[

p j i
]

n×n .
If the non-negative matrix Pt has the spectral radius ρ(Pn) > 1 and a corresponding eigen-vector Xρ > 0, then all

sequences
{
ε
(s)
j

}
j=1(1)n

have the R-order of convergence at least ρ(Pn).

Consider the cases there are: for a start, the case of the exact inversion (β = 1) with the order of correction p ≥ 2,
the associated P-matrix is

P2 =

[
1 k + 1
2 k + 1

]
; p ≥ 2, β = 1 (4.23)

which gives that

ρ (P2) =
k + 2 +

√
(k + 2)2 + 4(k + 1)

2
; Xρ =

 k + 1

k +

√
(k + 2)2 + 4(k + 1)

2

 > 0.

This leads to the lower bound

OR((2.1), (2.2)) ≥ ρ (P2) =
k + 2 +

√
(k + 2)2 + 4(k + 1)

2
; p ≥ 2, β = 1 (4.24)

of the R-order of convergence with the exact inversion procedure in the methods (2.1) and (2.2); since the term r2 is
the dominating term in the expression (4.21) of the parenthesis. For the centred inversion, β = 0, by Schmidt theorem,

P2 =

[
1 k + 1
0 p + k + 1

]
; p = 2, 3, 4, . . . , k + 1; β = 0 (4.25)

from which

ρ (P2) =
p + k + 2 +

√
(p + k + 2)2 − 4(p + k + 1)

2
= k + p + 1;

Xρ =

 k + 1
p + k +

√
(p + k + 2)2 − 4(p + k + 1)

2

 =

(
k + 1
p + k

)
> 0.

This similarly leads to

OR((2.1), (2.2)) ≥ ρ (P2) =
p + k + 2 +

√
(p + k + 2)2 − 4(p + k + 1)

2
= k + p + 1;

p = 2, 3, 4, . . . , k + 1; β = 0 (4.26)

the lower bound of the R-order of convergence with the centred inversion; since the term ε p−k is the dominating term
of the parenthesis in the expression (4.21). Finally, when p ≥ k + 2, β = 0 the term r2 again is the dominating term
of the parenthesis in the expression (4.21). In the same token, the lower bound of the R-order of convergence with
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centred inversion, β = 0; is found as follows: Here

P2 =

[
1 k + 1
2 2k + 1

]
; p ≥ k + 2, β = 0. (4.27)

This gives that

ρ (P2) =
2k + 2 +

√
(2k + 2)2 + 4
2

; Xρ =

 k + 1
2k +

√
(2k + 2)2 + 4

2

 > 0;

from where we have the lower bound

OR((2.1), (2.2)) ≥ ρ (P2) =
2k + 2 +

√
(2k + 2)2 + 4
2

; p ≥ k + 2, β = 0 (4.28)

of the R-order of convergence with respect to the centred inversion formula in the methods (2.1) and (2.2). Summarily,
the lower bound of the R-order of convergence of (2.1) and (2.2) is

OR((2.1), (2.2)) ≥


k + 2 +

√
(k + 2)2 + 4(k + 1)

2
; p ≥ 2, β = 1

p + k + 1; p = 2, 3, 4, . . . , k + 1, β = 0
k + 1 +

√
(k + 1)2 + 1; p ≥ k + 2, β = 0.

(4.29)

The R-order of the resultant point methods in (2.5) and (2.6) for a fixed k, is given therefore by

OR((2.5), (2.6)) ≥

{
p + k + 1; p = 2, 3, . . . , k + 1
k + 1 +

√
(k + 1)2 + 1; p ≥ k + 2.

(4.30)

The methods in (2.5) and (2.6) are consequences of the fact that disk arithmetic is consistent with point arithmetic;
this is so when β = 0 in (1.14). It should be deduced from (4.29) and (4.30) therefore, that the greatest lower
bound of the R-order of convergence of these methods (2.1), (2.2), (2.5) and (2.6) cannot be better than Rk =

k + 1 +

√
(k + 1)2 + 1 irrespective of increasing order p of the correction, this bound occurs when the correction

is of order at least p = k + 2, which is the order of the corresponding basic method. Thus the greatest lower bound
Rk of the R-order of a corrected method occurs when the corrector is of at least the same order as the method to be
corrected. This Rk is the greatest lower bound of the R-order attainable by correction in these methods and therefore
represents an R-order barrier result. Interestingly, when the correction term C (s)

i is set to zero, it gives rise to the basic
methods in (1.2), (1.5), (1.7) and (1.10), imply p = 1 in (4.21), confirming the order of k + 2 of the basic methods
accordingly. We have in this paper improved the order k +2 of (1.2), (1.5), (1.7) and (1.10) to OR = k + p +1; k ≥ 1,
p ≥ 2 by application of the process of correction on these methods in (2.1), (2.2), (2.5) and (2.6) see (4.29) and (4.30)
for the results.

5. Efficient correctors versus correctors that lead to maximum lower bound R-order methods

When the refinement process of the correction in (2.1), (2.2), (2.5) and (2.6) is efficient which will be so if the term
C (s)

i is already computed or rather available as a term in the method in question, that is without the need to compute
it all over again for the purpose of correcting the method, it is this mode of correction we have desired to propose. On
the choice of a corrector C (s)

i , the use of the corrector term

C (s)
1,i = N (s)

i = N (z(s)
i ) =

Pn(z(s)
i )

P ′
n(z(s)

i )
; (p = 2) (5.1)

with the order of the corresponding point iteration method written beside it, for all k ≥ 1 is efficient since this term is
available in (2.1), (2.2), (2.5) and (2.6) for all k. So also is
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C (s)
2,i = H(z(s)

i ) =
1

P ′
n(z(s)

i )

Pn(z(s)
i )

−
P ′′

n (z(s)
i )

2P ′
n(z(s)

i )

; (p = 3)

for all k ≥ 2. Generally,

C (s)
l, j =

∆l−1, j (z
(s)
j )

∆l, j (z
(s)
j )

; (p = l + 1), (5.2)

is an efficient corrector for a method with fixed k such that k ≥ l. It should be mentioned that the use of

kC (s)
l, j =

∆l−1, j

(
z(s)

j

)
∆l, j

(
z(s)

j

)
− Bl

(
SC (s)

1, j (z), SC (s)
2, j (z), . . . , SC (s)

l, j (z)
) ; (p = l + 2), l ≤ k (5.3)

as a corrector is not efficient, because of the extra cost of computing sums of powers of inverses of the points

z(s)
j − z(s)

i + kC (s)
l,i in Bl

(
SC (s)

1, j (z), SC (s)
2, j (z), . . . , SC (s)

l, j (z)
)

. More so is the fact that the term kC (s)
l, j is not available

in the basic method and may become expensive to compute, therefore kC (s)
l, j may not be recommended as a corrector,

although it gives the maximum lower bound R-order of convergence when l = k as can be deduced from (4.29) and
(4.30) since the order of the arising point method z(s+1)

j = z(s)
j − kC (s)

l, j is the same as the basic method to be corrected,
in this regard therefore, their use may not completely be discouraged. For an example, the point arithmetic method
z(s+1)

j = z(s)
j − 1C (s)

1, j from setting k = 1 (= l) in (2.1), (2.2), (2.5) and (2.6) is of order three where

1C (s)
1,i =

1

1
N (s)

i

−

n∑
j=1,i 6= j

1
z(s)

i −z(s)
j

, i = 1(1)n (5.4)

and we can show that
∣∣1C1,i

∣∣ ≤
5
3 |εi | provided that ρ ≥ 5(n − 1)r . The R-order with 1C (s)

1,i as corrector in (2.1),

(2.2), (2.5) and (2.6) for k = 1 is R1 = 2 +
√

5 ≈ 4.236. This enhancement appears to be marginal when compared
to that from using the Newton’s corrector N (s)

i which gives a convergence order of four.

6. Examples of the methods and numerical experiments

In this section examples of the enhanced methods (2.1), (2.2), (2.5) and (2.6) are given along with efficient
correctors. The case of k = 1 in (2.1) and (2.2) leads to the interval method

Z (s+1)
j = z(s)

j −
1

1
N (s)

j

−

n∑
i=1,i 6= j

INV
(

z(s)
j − Z (s)

i + C (s)
i

) ; j = 1(1)n (6.1)

with R-order

OR((6.1)) ≥

2 +
√

5 = 4.2361 . . . ; p ≥ 3, β = 0
4; p = 2, β = 0
(3 +

√
17)/2 = 3.5616 . . . ; p ≥ 2, β = 1

with a correction of convergence order p. This is equivalent to that in [1] when C (s)
i = N (s)

i which is an efficient
corrector for (6.1) and the point arithmetic equivalent. The point equivalent method is in the sense of (2.5) and (2.6),
obtained by replacing the disk Z (s)

j by the point z(s)
j in (2.1) and (2.2), thus has the order

OR ≥

{
4; p = 2
2 +

√
5 = 4.2361 . . . ; p ≥ 3

(6.2)
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from (4.30). For k = 2 in (2.1) is the square root iteration method

Z (s+1)
j = z(s)

j −
1(

h2(z
(s)
j ) −

n∑
i=1, j 6=i

(
INV(z(s)

j − Z (s)
i + C (s)

i )
)2
) 1

2

; m = 1, 2 (6.3)

with efficient correctors C (s)
i = C (s)

m,i given accordingly in (5.2). That of (2.2) when k = 2 is the Halley-like method

Z (s)
i = z(s)

i −
1

1
H (s)

i

−
N (s)

i
2

 n∑
j=1, j 6=i

(
INV(T (s)

i, j,m(Z))
)2

+

(
n∑

j=1, j 6=i
INV(T (s)

i, j,m(Z))

)2
 (6.4)

where the choice of C (s)
j = C (s)

m, j are efficient correctors,

T (s)
i, j,m(Z) = z(s)

i − Z (s)
j + C (s)

m, j ; m = 1, 2 and h2(z) =

(
P ′

n(z)

Pn(z)

)2

−
P ′′

n (z)

Pn(z)
. (6.5)

The error propagates its effect the same way in both methods. Therefore, the R-order of the interval methods is
given by

OR((6.3), (6.4)) ≥


2 +

√
7 = 4.6458 . . . ; p ≥ 2, β = 1

5; p = 2, β = 0
6; p = 3, β = 0
3 +

√
10 = 6.162 . . . ; p ≥ 4, β = 0.

(6.6)

The equivalent point method has the R-order given by

OR ≥


5; p = 2
6; p = 3
3 +

√
10 = 6.162 . . . ; p ≥ 4.

(6.7)

Furthermore, the corrected cube root method

Z (s+1)
j = z(s)

j −
1(

h3(z
(s)
j ) −

n∑
i=1, j 6=i

(
INV(z(s)

j − Z (s)
i + C (s)

i )
)3
) 1

3

; t = 1, 2, 3 (6.8)

with C (s)
i = C (s)

t,i , is obtained when k = 3 in (2.1) and the enhanced Wang and Zheng interval method (2.2)

Z (s)
i = z(s)

i −

∆2, j

(
z(s)

j

)
∆3, j (z

(s)
j ) −

 1
3

n∑
j=1, j 6=i

(INV(T (s)
i, j,t (Z)))3 +

1
2 M (s)

i, j,t +
1
6

(
n∑

j=1, j 6=i
INV(T (s)

i, j,t (Z))

)3
 (6.9)
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Table 6.1
Method (6.1)—The maximum radii of inclusion disks on P[1]

( )−1, C(s)
j = 0 ( )−1, C(s)

j = N (s)
j ( )I1 , C(s)

j = N (s)
j ( )I2 , C(s)

j = N (s)
j

6.7036e–014 6.5482e–017 1.3918e–016 2.6513e–011
a(−e) = a × 10−e

where M (s)
i, j,t (Z) =

∑n
j=1, j 6=i

(
INV(T (s)

i, j,t (Z))
)2∑n

j=1, j 6=i

(
INV(T (s)

i, j,t (Z))
)

is in the same token from (2.6). They

are of the R-order OR given by

OR ≥



(
5 +

√
41
)

/2 = 5.7016 . . . ; p ≥ 2, β = 1

6; p = 2, β = 0
7; p = 3, β = 0
8; p = 4, β = 0
4 +

√
17 = 8.1231 . . . ; p ≥ 5, β = 0

(6.10)

and similarly by

OR ≥


6; p = 2
7; p = 3
8; p = 4
4 +

√
17 = 8.1231 . . . ; p ≥ 5

(6.11)

for the corresponding point method respectively. Higher-order methods are no doubt robust and are obtained from
(2.1), (2.2), (2.5) and (2.6) for higher values of k. We illustrate an application of the method (6.1) by considering the
problem of computing the zeros of the polynomials in [1]:

P[1] : P9(z) = z9
+ 3z8

− 3z7
− 9z6

+ 3z5
+ 9z4

+ 99z3
+ 297z2

− 100z − 300

with λ j = −3, ±1, ±2i, ±2 ± i and Z (0)
1 = {−3.2 + 0.2i; r}; Z (0)

2 = {−1.1 − 0.2i; r};

Z (0)
3 = {0.1 + 1.7i; r}; Z (0)

4 = {−1.9 + 1.3i; r}; Z (0)
5 = {−1.8 − 0.8i; r};

Z (0)
6 = {2.3 + 1.1i; r}; Z (0)

7 = {1.9 − 0.7i; r}; Z (0)
8 = {1.2 + 0.2i; r};

Z (0)
9 = {0.2 − 2.2i; r}; r = 0.35.

The numerical results are from codes written in MATLAB using a Dell Laptop of processor clock speed 2.7 Mhz,
RAM of 512 Mb and hard disk space of 30 Gb. The results of the maximum radii of the inclusion disks are in
Table 6.1.

The method (6.1) using the inversion ( )I2 produces disks of largest radii and similarly for the other inversion
formulae in the order implied by Z−1

⊆ Z I1 ⊆ Z I2 . However, with respect to correction, but without updating the
iterates, the methods of the inversion ( )−1 give the best results in all cases when compared to the other inversion
formulae and by far better than the corresponding basic methods which is without correction, that is when C (s)

j = 0

and the inversion is ( )−1. Observe that results in Table 6.1 compares with [1]. A follow-up report to this (Part II, III),
hopes to consider the computational complexities and acceleration of convergence of these methods by Gauss–Seidel
and Gauss–Jacobi means of updating of the generated iterates in (2.1), (2.2), (2.5) and (2.6).
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