
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 67 (2003) 772–788

Improving a fixed parameter tractability time bound for
the shadow problem

Peter Heusch, Stefan Porschen,� and Ewald Speckenmeyer

Institut für Informatik, Universität zu Köln, Pohligstr. 1, D-50969 Köln, Germany

Received 14 September 2001; revised 13 November 2002

Abstract

Consider a forest of k trees and n nodes together with a (partial) function smapping leaves of the trees to
non-root nodes of other trees. Define the shadow of a leaf c to be the subtree rooted at sðcÞ: The shadow
problem asks whether there is a set S of leaves exactly one from each tree such that none of these leaves lies
in the shadow of another leaf in S: This graph theoretical problem as shown in Franco et al. (Discrete Appl.
Math. 96 (1999) 89) is equivalent to the falsifiability problem for pure implicational Boolean formulas over
n variables with k occurences of the constant false as introduced in: Heusch J. Wiedermann, P. Hajek
(Eds.), Proceedings of the Twentieth International Symposium on Mathematical Foundations of Computer
Science (MFCS’95), Prague, Czech Republic, Lecture Notes in Computer Science, Vol. 969, Springer,
Berlin, 1995, pp. 221–226, where its NP-completeness is shown for arbitrary values of k and a time bound

of OðnkÞ for fixed k was obtained. In Franco et al. (1999) this bound is improved to Oðn2kkÞ showing the
problem’s fixed parameter tractability (Congr. Numer. 87 (1992) 161). In this paper the bound Oðn33kÞ is
achieved by dynamic programming techniques thus significantly improving the fixed parameter part.
r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Shadow independent set; Shadow pattern; Pure implicational formula; Dynamic programming; Fixed

parameter tractability

1. Introduction

The shadow independent set problem (for short shadow problem or SIS) is a graph theoretical
problem first introduced in [3]. It arises from testing the falsifiability of so-called pure
implicational formulas [7], which can be transformed into a set of formulas in disjunctive normal

ARTICLE IN PRESS

�Corresponding author.

E-mail addresses: heusch@informatik.uni-koeln.de (P. Heusch), porschen@informatik.uni-koeln.de (S. Porschen),

esp@informatik.uni-koeln.de (E. Speckenmeyer).

0022-0000/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0000(03)00079-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82128733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

form (DNF) yielding a forest whose trees are connected by directed edges. The satisfiability
problem of propositional logic which is known to have a wide range of applications (see e.g. [5])
can be transformed into a falsifiability problem of the implicational calculus. The shadow
independent set problem turns out to be a graph theoretical formulation of the falsifiability
problem for a special class of implicational formulas. For this NP-complete problem a fixed
parameter tractability [2] time bound can be achieved according to a parameterized classification
of the set of its instances. We investigate SIS, which as far as the authors know is a new problem in
algorithmic graph theory deserving interest for its own. It may be challenging to find other
relevant applications besides fasifiability resp. satisfiability testing. The present paper may be of
interest for researchers in propositional logic as well as for researchers in algorithmic graph theory
and parameterized complexity theory.
The connection between propositional logic and the shadow problem is outlined in the

following. In 1948 Lukasiewicz [9] studied the ‘‘pure’’ implicational calculus (cf. also [10]).
Roughly speaking, (pure) implicational formulas are Boolean formulas only containing
propositional variables and the Boolean junction -: The class of implicational formulas is
denoted IMP: Lukasiewicz proved that every tautology in pure implicational form can be deduced
by the following axiom being a shortest one (for a tree representation cf. Fig. 1):

L ¼ ½ðp-qÞ-r�-½ðr-pÞ-ðs-pÞ�:
For each FAIMP there is a satisfying truth assignment (assigning truth value 1 to the formula’s
right most variable). The falsifiability problem (FALS) for IMP is NP-complete, which can be
shown by reducing the satisfiability problem (SAT) for conjunctive normal form-(CNF-)formulas
to FALS for IMP: The NP-completeness of SAT for CNF is a classical result (cf. e.g. [1,4,8]).
Each instance F of CNF can be transformed in polynomial time into an instance IðFÞ of IMP in
two steps. First, transform each clause of F separately into an implicational subformula using the
following tautologies:

%a � a-z;

a3b � %a-b � ða-zÞ-b:

Here z is a variable not contained in the variable set of F having the meaning of the constant
false; and %x :¼ :x denotes the negation of the Boolean variable x: Second, compose the
subformulas via the junction - and rightmost nested implication -z to an appropriate instance
IðFÞ of IMP such that F is satisfiable if and only if IðFÞ is falsifiable. This is demonstrated by the
following

ARTICLE IN PRESS

r

p p sq r p

L:

Fig. 1. Tree representation of Lukasiewicz’s axiom.

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 773

Example. Consider the CNF formula

F ¼ ða3 %bÞ4ð %a3b3cÞ4ð %a3%cÞ ¼: C14C24C3:

Transforming each clause Ci into an equivalent implicational formula Ii ði ¼ 1; 2; 3Þ yields
I1 ¼ b-a; I2 ¼ a-ððb-zÞ-cÞ; I3 ¼ a-ðc-zÞ:

Defining I :¼ IðFÞAIMP as I ¼ ðI1-ðI2-ðI3-zÞÞÞ it is easy to see that F is satisfiable if and
only if I is falsifiable. This is illustrated by the so-called backbone tree representation. A backbone
tree representation for I in the example is shown in Fig. 2. As indicated in the figure, I can be
viewed as consisting of its backbone denoted as BBðIÞ; to which all the backbone subformulas, i.e.,
all the implicational subformulas Ii; are connected by -: The backbone tree of any such formula
I has z as its right most leaf denoted rmlðIÞ (cf. Fig. 2). Denoting the set of backbone subformulas
by BSðIÞ it follows that I is falsifiable if and only if there is a truth assignment A such that
AðrmlðIÞÞ ¼ 0 and AðI 0Þ ¼ 1;8I 0ABSðIÞ:

By the transformation demonstrated in the example, SAT for CNF can be reduced to FALS for
IMP: Testing for falsifiability in turn can be done by a recursive backtracking approach. Suppose
for example an instance IAIMP satisfies rmlðI 0Þ ¼ z ¼ rmlðIÞ for some I 0ABSðIÞ (cf. Fig. 3).
Then simultaneously requiring AðzÞ ¼ 0;AðI 0Þ ¼ 1 we have to determine I1

0ABSðI 0Þ such that
AðI10Þ ¼ 0; which according to the previous discussion results in AðIÞ ¼ 0: Consider the

substitution for I of ÎiABSðI 0Þ ði ¼ 1; 2Þ as shown in Fig. 4. Here the subformula I 0 has been
removed and rmlðIÞ has been replaced by one of the backbone subformulas of I 0: Then I is

falsifiable if and only if Î1 or Î2 is falsifiable. To handle such situations, proceed inductively by
backtracking as described until a falsifying solution is found or the search ends unsuccessfully.

ARTICLE IN PRESS

a

c z

a

b z

c

b a

I:

(a c)

F=(a b) (a b c)

z=rml(I)

BS(I)=backbone-
subformulas of I

BB(I)=backbone of I

Fig. 2. Example: Backbone-tree representation of I with right most leaf z:

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788774

In the following we are interested in a subclass hierarchy of IMP: For kAN consider the set
IMPðkÞ ¼ fIAIMP; each variable occurs at most k times in Ig: Testing the falsifiability for
IAIMPðkÞ is known to be NP-complete if kX3; otherwise this can be decided in quadratic time
[6]. There is another interesting class, which is closely related:

IMPð2; kÞ ¼ fIAIMP; each variable ðbesides zÞ occurs in I at most twice;

z occurs in I at most k timesg:

As shown in [6,7] FALS can be solved for IAIMPð2; kÞ in time OðjI jkÞ: This yields a hierarchy
such that FALS is NP-complete for an arbitrary IA

S
kAN IMPð2; kÞ: An improvement of this

result can be achieved by transforming IAIMPð2; kÞ into a set Y :¼ fY1;y;Ymg of DNF
formulas, simultaneously satisfiable if and only if I is falsifiable. The constraints for this

transformation are jI j ¼
Pm

i¼1 jYij; each variable occurs at most twice, and z occurs at most k

ARTICLE IN PRESS

=1

1=
!

1=
!

z

2 z =! 0Imp:
=1

z=0

Imp

is satisfied iff or

!

!

is falsified!
I II

I1

falsif. ?

I

II

I1

I2

1 2

I
I

Fig. 3. Subformula I 0 having the same right most leaf as I :

i2

=i 1 2,: iI

I I

I1

Fig. 4. Replacing I by Îi for I 0 iABSðI 0Þ:

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 775

times in Y: Each Yi has the form %x-ð %a4b4c?Þ3ð %d4e4f?Þ3?3ð %g4h4iÞ; where x may be
any variable or z: As proven in [3] the set Y can be transformed into a set T :¼
fT1;y;Tk0g ðk0pkÞ of trees, whose roots are labeled by :z; whereas the other nodes are labeled
by literals in some disjunct such that satisfying Y is equivalent to satisfying T in the following
sense. A single Ti may be satisfied by choosing one of its leaf nodes c and setting all literals to 1,
which label the nodes on the unique path from the root of Ti to c: Choosing an arbitrary leaf of
each Ti may yield contradictions, because of literal dependencies. Such a situation is shown in
Fig. 5: No leaf contained in the subtree of Tj rooted at node :c; a; called the shadow of the leaf u in

Ti (labeled :a; bÞ; is allowed to be chosen together with u: In this terminology, testing the
satisfiability of T means checking whether there is a choice of leaves exactly one from each tree
such that no one lies in the shadow of another.

2. Graph theoretical problem formulation

Let FkðnÞ ðn; kANÞ be a forest with n nodes consisting of k trees. For each tree TiAFkðnÞ at
least one leaf c is mapped to a non-root node vðcÞ of one of the other trees. All leaves of the
subtree rooted at vðcÞ are said to lie in the shadow svðcÞ of c: This mapping can be considered as a

(partial) function from the set of all leaves in FkðnÞ into the set of all its nodes without the trees’
roots such that no tree shadows itself.
For a formal definition let us introduce some notation: For a partial map f : A-B we denote by

Dð f ÞDA its domain. Let Ti be a tree, then Vi :¼ VðTiÞ denotes the node set, Li :¼ LðTiÞ denotes
the set of its leaves and ri :¼ rTi

its root. For a finite set U we define the index set IðUÞ :¼
f1;y;IjU j

2
mg; its powerset is denoted by 2U and ðU

p
Þ :¼ fWA2U ; jW j ¼ pg: As abbreviation we

use K :¼ f1;y; kg:

Definition 2.1. The shadow (independent set) problem (SIS) is stated as follows:
Input: ðFkðnÞ; sÞ ð2pkonÞ where FkðnÞ ¼ fTi; iAKg is a forest ðjVðFkðnÞÞj ¼ nÞ and

s :
S

iAK Li-
S

iAK Vi\frig is a partial map such that sðLiÞ-Vi ¼ |;DðsÞ-Lia|:
Output: Boolean value true (1) if there is a set S ¼ fciALi; iAKg containing exactly one leaf of

each tree such that 8ci; cjAS : cjessðciÞ; Boolean value false (0) otherwise.

A set S as defined above is called a shadow independent set (of leaves).

ARTICLE IN PRESS

T T

u v

i
j

a,b

c,a

Fig. 5. Contradiction a¼! :a¼! 1 caused by dependent leaves u; v:

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788776

By representing each Ti as a (super-)node an instance ðFkðnÞ; sÞ can be viewed as a digraph

Gk;n; the shadow digraph, with node set VðGk;nÞ ¼ K and edge set EðGk;nÞ :¼ fði; jÞAK2; (cATi :
sðcÞATjg: (For an arc ði; jÞ of G the tree Ti is its source (tree) and Tj is its sink (tree).) In

the sequel we may represent an instance ðFkðnÞ; sÞ of SIS also by the corresponding shadow
digraph Gk;n having in mind that the full information on the tree level only is contained in

ðFkðnÞ;sÞ:
Gk;n reflects the structure of s: First, consider only the number of arcs in a shadow digraph. A

‘‘simple’’ s corresponds to a shadow digraph where each node i has exactly one outgoing arc.
Following [3] we call this a shadow pattern (SP), which in general is a subdigraph P of Gk;n having

the same node set K : On the tree level a shadow pattern selects for each iAK all leaves from Li

matching the outgoing arc of Ti; i.e., the set of all leaves that are mapped by s into the sink of that
arc. In the worst case s may define a Gk;n such that each node Ti has one outgoing arc to every

other node TjaTi: In this case Gk;n is a complete shadow digraph containing ðk � 1Þk different

shadow patterns at the same time.
There is a second aspect: G :¼ Gk;n may decompose into several weakly connected components

(which are the connected components of G formed by ignoring the orientation of each arc):
G :¼ G1,?,Gj: Here we have jpk=2; because there can be no component having fewer than

two nodes. From this point of view a map s has a more complex structure than another map s0 if
the corresponding shadow digraphs satisfy jEðG0ÞjpjEðGÞj and G has fewer components than G0:
In what follows assume that G is weakly connected, otherwise treat each weakly connected
component separately.

Definition 2.2. Let ðFkðnÞ;sÞ with the corresponding G :¼ Gk;n be fixed. For a node v of the forest

denote by tðvÞ the unique tree it belongs to. Let M ¼ fciALðTiÞ-DðsÞ; iAKg be a set of leaves
containing exactly one from each tree. Then a shadow pattern PðMÞ induced by M is defined by
restricting G to the outgoing arcs of tðciÞ; 8ciAM: If S is a shadow independent set in ðFkðnÞ;sÞ; a
shadow patternP of G is consistent with S if and only if S is also a shadow independent set for the
substructure in ðFkðnÞ;sÞ corresponding to P:

There may be a variety of shadow patterns consistent with shadow independent sets containing
leaves ceDðsÞ: To incorporate such leaves carry out the following procedure:

Lemma 2.1. Let ðFkðnÞ;sÞ be an instance of SIS with shadow digraph G :¼ Gk;n; let T be a tree

in K : For each leaf cALðTÞ\DðsÞ choose exactly one arc of G outgoing from T and associate

it with c; let remain empty the shadow of c: Then the following holds: (i) The graph G has not
changed. (ii) For any set of leaves M ¼ fciALðTiÞ; iAKg there is a unique induced shadow pattern

PðMÞ: (iii) There has been no shadow independent set generated, nor has any prior one been
destroyed.

Proof. Since only for arcs of G already existing the set of matching leaves in their source trees may
have been enlarged, (i) follows. Claim (ii) obviously holds. Finally, there has been generated no
shadow independent set, because no shadow has been removed. Also no shadow has been added,
therefore no shadow independent set has been destroyed, hence (iii). &

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 777

As shown in [3] testing whether there is a shadow independent set in a fixed SP needs time

Oðn2Þ: Therefore, by separately checking each SP one obtains for SIS the worst case bound

Oðn2ðk � 1ÞkÞ: Exploiting the SP-structural properties of Gk;n our aim in the remainder of this

paper is to improve the fixed parameter part kk:

3. Structural properties of shadow patterns

Let G :¼ Gk;n ðVðGÞ ¼ KÞ be a fixed shadow digraph. For UDK let SðUÞ denote the set of all
shadow patterns in G with node set U : We have the necessary constraint jU jX2: Let us recall
some simple facts about an arbitrary SP PASðUÞ (for proofs the reader is refered to [3]):

* In general P is a digraph consisting of jAIðUÞ weakly connected components P1;y;Pj such

that U ¼
S j

i¼1 Ui;Ui :¼ VðPiÞ:We defineSjðUÞ to be the set of those shadow patterns having

node set U and consisting of exactly j weakly connected components. Then we have
SjðUÞDSðUÞ and SðUÞ ¼

S
jAIðUÞ SjðUÞ as disjoint union.

* Each PiAS1ðUiÞ is a one component shadow pattern with the same graph structure: it is a
root directed tree with exactly one further arc passing from the root to a specific node. In
other words each Pi is a directed cycle, whose nodes are the roots of root directed trees, some
or all of which may be single nodes (cf. Fig. 6). Such a tree is called Pi-tree having subtrees
whenever it consists of more than the root node (cf. Fig. 7). In a similar way we speak of thePi-
cycle.

Shadow patterns consisting of two or more components may be identical on some of them as
shown in Fig. 8. We are looking for a systematic way to take into consideration such situations in
order not to waste too much effort computing information already at hand. Having this in mind it
is reasonable to define the following:

Definition 3.1. Let ðFkðnÞ; sÞ be fixed. For each iAIðKÞ define the Boolean-valued function

Ci : 2
K{U/CiðUÞAf0; 1g by CiðUÞ ¼ 1 if and only if there is a shadow independent set SU on U

and PðSUÞASiðUÞ:

ARTICLE IN PRESS

Fig. 6. Examples for the cycle-tree-structure of shadow pattern components.

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788778

The next assertion can be viewed as the global concept:

Lemma 3.1. Let G be the shadow digraph of an instance of SIS for which the procedure in Lemma

2.1 has been carried out. There is a shadow independent set in G if and only if CðKÞ :¼W
iAIðKÞ CiðKÞ ¼ 1: Moreover, suppose the function C1 is known, then defining Wi�1ðUÞ :¼

fWCU ; 2pjW jpjU j � 2ði � 1ÞgC2U we have inductively (for fixed UA2K : jU jX2iÞ:
82piAIðUÞ: CiðUÞ ¼

_
WAWi�1ðUÞ

½C1ðWÞ4Ci�1ðU\WÞ�: ð�Þ

Proof. Let S be a shadow independent set in G; then for the unique shadow pattern induced by S
holds PðSÞASðKÞ ¼

S
iAIðKÞ SiðKÞ as disjoint union. The opposite direction is valid by

definition. For proving ð�Þ by induction on 2riAN we assume (based upon Lemma 2.1)
correctness of the values C1ðUÞ;UDK : jU jX2: Eq. (�) obviously is true for i ¼ 2 and

UA2K : jU jX4: Now let iX3 and fix U : jU jX2i: Observe that on the right-hand side of (�)
each possible i-partition of U is considered which may correspond to a shadow pattern
decomposition. Suppose U1,?,Ui is any i-partition of U : Setting W ¼ U1 we obtain by
induction that U2,?,Ui is covered by Ci�1ðU\WÞ:Moreover, for WCU there may be a single-
component shadow pattern only if jW jX2: On the other hand there may be a i � 1-component
shadow pattern for U\W only if any component has at least two elements, i.e., only if jW jpjU j �
2ði � 1Þ; in accordance with the constraint i � 1AIðU\WÞ: Hence, by restricting to Wi�1ðUÞ for
calculating CiðUÞ no choice is left. &

ARTICLE IN PRESS

T T

T

s1

Fig. 7. Subtree rooted at T of a shadow pattern tree.

II II

U U U U1 2 1 2

 2
1 : :

Fig. 8. Shadow patterns P1;P2 over U1,U2 such that P1jU1 ¼ P2jU1:

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 779

In order to be able to compute the value C1ðUÞ corresponding to a weakly connected shadow

pattern with node set U ðUA2K : jU jX2Þ; we now address the question how a weakly connected
SP itself can be composed of two weakly connected parts. As it turns out there are only a few
possible cases to separate a weakly connected subgraph H1 :¼ PjU1 (denoting the restriction)
from a SP PAS1ðUÞ such that also the subgraph of the complementary node set H2 :¼
PjU2 ðU2 ¼ U 0

1 :¼ U\U1Þ is weakly connected (cf. Fig. 9).

Definition 3.2. For U : jU jX2 let PAS1ðUÞ be fixed, then for U1DU the induced subdigraph
H1 :¼ PjU1 is called a shadow pattern part (SPP) if and only if H1 and also H1

0 :¼ PjU 0
1 are

weakly connected (then H1
0 itself is a shadow pattern part).

Lemma 3.2. A SPP H has exactly one of the following two shapes:
(i) H is a (root directed) tree (hence, each node has exactly one outgoing arc except for the root,

which has none); in this case H is called SPP of tree-type.
(ii) H contains exactly one directed cycle and therefore is itself a shadow pattern (hence, each node

has exactly one outgoing arc).

Proof. For proceeding by induction on 2pjU jAN fixPAS1ðUÞ where jU j ¼ 2: ThenP is a cycle
and each proper shadow pattern part is a single node being the root of a root directed tree thus is a
tree. Now let us assume that the Lemma is valid for 2pjU jpnAN; and consider jU j ¼ n þ 1:
Splitting P into two SPPs means: (a) Cutting out a subtree of a P-tree, if there is one, in which
case one part is a tree whose node set is a proper subset of U and by induction each of its SPPs is
of shape (i). The other part is a shadow pattern on a smaller node set and by induction each of its
SPPs is of shape (i) or (ii). (b) Removing two arcs from the cycle of P results in two trees of
smaller node sets. By induction all their SPPs are trees. Finally, any cutting procedure different
from (a), (b) produces more than two connected parts at the same time. &

ARTICLE IN PRESS

o

i

H2

1HΠ :

Fig. 9. Shadow pattern parts H1;H2 yielding a weakly connected shadow pattern P by the joining arc ðo; iÞ:

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788780

Remark. We only have to consider decompositions of a shadow pattern part into exactly two
smaller weakly connected components, because in this way, recursively, we consider all partitions
into more components.

Now we take the opposite point of view and, consistent with Lemma 3.2, call a digraph H a SPP
if and only if H is a root directed tree or a shadow pattern.

Lemma 3.3. Let H1;H2 be SPPs with disjoint non-empty node sets Ui :¼ VðHiÞ ði ¼ 1; 2Þ: There

are only the following cases possible for composing a SPP H of H1;H2 without removing any arc
such that U :¼ VðHÞ ¼ U1,U2:
(a) W.l.o.g. let H1 be a tree, H2 a shadow pattern: Plug H1 in H2 by an arc passing from the root

of H1 to any node of H2 resulting in a shadow pattern H:
(b) Both H1;H2 are trees: (i) Plug H1 in H2 by an arc passing from the root of H1 to any node of

H2 (or exchanging the roles of H1;H2Þ resulting in a larger tree H: (ii) Plug H1 in H2 by an arc
passing from the root of H1 to any node of H2; and simultaneously plug H2 in H1 by an arc passing

from the root of H2 to any node of H1 resulting in a shadow pattern H:
(c) Both H1;H2 are shadow patterns: they cannot be combined to a larger SPP.

Proof. Regarding Lemma 3.2 there are no other graph structures possible for H1;H2 than those
considered in (a)–(c). The procedures described in (a) and (b) yield the corresponding structures
for H as claimed. There are no other combination schemes, because the root of an involved tree is
the only node having no outgoing arc. Hence, any other scheme composing H would produce a
node with two outgoing arcs. Finally, the claim of (c) is true, because H has to be weakly
connected, as this is a defining property of any SPP.

The following definition summarizes the cases treated above:

Definition 3.3. Let H be a SPP with node set U ; then H is called:
SPP with out-connector Ho iff H is a tree, the root being the out-connector,

SPP with in-out-connector of the first kind H1
io iff H is a tree, the root at the same time being

both connectors,

SPP with in-out-connector of the second kind H2
io iff H is a tree, the root being the out-connector

and any other node of H being the in-connector,
SPP with in-connector Hi iff H is a SP any node being the in-connector,
SPP with empty connectors iff H is an isolated weakly connected SP.

4. A Dynamic programming approach

First we make some remarks concerning the data structures and types used in what follows:
Thinking of K as a sorted alphabet each subset UCK : jU jX2 corresponds to a unique word over

K denoted wordðUÞ or U for short. Thus 2K may be sorted by the corresponding lexicographic
order. Let indðUÞ denote the unique index of U according to this order. Suppose that for each

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 781

UDK we have a data type indexed by wordðUÞ and containing indðUÞ: Then refering to that data
type we can get access to indðUÞ in constant time making available in Oð1Þ the Boolean value

CjðUÞ for each U : For that we make use of two arrays vali ði ¼ 0; 1Þ of length N :¼
2k � ðk þ 1Þ ðk :¼ jKjÞ for storing the values CjðUÞ ðjU jX2Þ by increasing indðUÞ during the

computation. They are read and updated alternatively and are initialized by a Boolean vector 0 (of
appropriate length) at the beginning of each iteration.

Algorithm 1 (GLOBAL).

Input: Array C1 of length N of Boolean entries C1ðUÞðUDK : jU jX2Þ sorted by lexicographic

order from 1 to N; Array of subsets UA2K : jU jX2 sorted by lexicographic order; a data type
containing indðUÞ for each UDK
Output: CðKÞ :¼

W
iAIðKÞ CiðKÞ

CðKÞ’C1½indðKÞ�ð¼ C1ðKÞÞ; j’2
copy array C1 to array val0
while :ðCðKÞ ¼ 1 or j4jIðKÞjÞ do
for all UDK : jU jX2j do

valð j�1Þ mod 2’ 0

for all WAWj�1ðUÞ do
valð j�1Þ mod 2½indðUÞ�’C1½indðWÞ�4valj mod 2½indðU\WÞ�
if valð j�1Þ mod 2½indðUÞ� ¼ 1 then break fi

od ð� now: valð j�1Þ mod 2½indðUÞ� ¼ CjðUÞ�Þ
od

CðKÞ’valð j�1Þ mod 2½indðKÞ�
j’j þ 1

od

Proposition 4.1. Algorithm GLOBAL correctly computes CðKÞ; has worst case time complexity

Oðk3kÞ and space complexity Oð2kÞ:

Proof. The correctness of algorithm GLOBAL follows from Lemma 3.1. Establishing the worst
case time bound is not hard: The number of iterations of the two nested for-loops, which are
processed for each fixed jX2; is determined by considering for each UDK : jU j ¼ pX2j all

WAWj�1ðUÞC2U ; and hence has an upper bound of Oð
Pk

p¼2j ðk
p
Þ
Pp�2ð j�1Þ

i¼2 ðp
i
Þ ¼ Oð3kÞ: Here

the binomial theorem has been used twice. Observing that the while-loop terminates after OðkÞ
iterations proves that the algorithm has time complexity Oðk3kÞ: The space bound follows from

the fact that we have to store the Oð2kÞ values of C1: Storing the sorted power set 2
K together with

the data entry for any subset index also yields a space amount of Oð2kÞ: Finally, the total length of
vali ði ¼ 0; 1Þ is bounded by Oð2kÞ thus yielding the space requirement. &

Exploiting the structural features investigated in the previous section enables us to compute C1

inductively. First we define the following predicate:

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788782

Definition 4.1. Let ðFkðnÞ;sÞ be an instance of SIS. For L :¼
S

jAK LðTjÞ the set of all leaves

define Le :¼ L,feog; where eo is called empty outgoing shadow. Denoting by D :¼ DðsÞ the
domain of s let V :¼ VðsÞ :¼ sðDÞ be the set of all nodes lying in the image of s: Define Ve :¼
V,feig; where ei is called empty incoming shadow. Then the function P : 2K � Le � Ve-f0; 1g is
defined by PðU ; o; iÞ ¼ 1 if and only if the following conditions are satisfied:
(i) there is a shadow independent set SU on U inducing a SPP on U ;
(ii) tðoÞAU if oAL; tðiÞAU if iAV ;
(iii) the shadow rooted at iAV contains no element of SU ; and oAL-SU is not shadowed by

any element of SU :

The next Lemma resting on the possible composition schemes for SPPs described in Lemma 3.3
forms the base of an algorithm computing the function C1: Let UDK : jU jX2 be fixed. In the

sequel all WCU are assumed to be proper and non-empty: W 0 :¼ U\WaU ;W 0a|: By LjW are
meant the leaves of only those trees contained in W ; similar for Le;V ;Ve:

Lemma 4.1. Let ðFkðnÞ; sÞ be an instance of SIS. Supposing that the procedure described in Lemma

2.1 has been carried out for the corresponding shadow digraph G for each fixed UDK ðjU jX2Þ the
following holds:

C1ðUÞ ¼ PðU ; eo; eiÞ ¼
_

WCU

_
o;o0ALjU

PðW ; o;sðo0ÞÞ4PðW 0; o0;sðoÞÞ: ð�Þ

PðU ; o; iÞ ð|aUA2K ; ðo; iÞALjU � VejUÞ is determined inductively:
(i) initial values: 8TAK :

8ðo; iÞALjfTg � V jfTg : PðfTg; o; iÞ ¼ 13oesi

8oALjfTg : PðfTg; o; eiÞ ¼ 1:

(ii) 8UA2K : jU jX2 :

8oALjU :

PðU ; o; eiÞ ¼
_

tðoÞeWCU

_
o0ALjW :sðo0ÞAV jtðoÞ4oessðo0Þ

PðW ; o0; eiÞ4PðW 0; o; eiÞ;

8oALjU ; 8iAV jtðoÞ :

PðU ; o; iÞ ¼
1; PðU ; o; eiÞ ¼ 14oesi;

0 else

(

8oALjU ; 8iAV jU ; tðiÞatðoÞ :
PðU ; o; iÞ ¼

_
tðoÞeWCU :tðiÞAW

_
o0ALjtðiÞ

PðW ; o0; iÞ4PðW 0; o; sðo0ÞÞ:

Proof. For verifying (�) note that PðU ; eo; eiÞ corresponds by definition to a weakly connected
shadow pattern (with empty connectors) having node set U and being consistent with a shadow
independent set. Therefore by definition of C1 it is valid that C1ðUÞ ¼ PðU ; eo; eiÞ: On the right

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 783

hand side of (�) all possible shadow independent sets are considered inducing a shadow pattern
that is composed of two SPPs of tree type according to the combination scheme in Lemma 3.3(b),
(ii). Note that when no shadow independent set is found in (�), then there is no way to compose a
shadow pattern corresponding to a shadow independent set of a SPP of tree-type and a SPP
containing a cycle. So, we never have to consider predicate values PðU ; eo; iÞ corresponding to a
SPP with in-connector. Thus by induction, there only will be involved predicate values
corresponding to SPPs of tree-type, cf. Lemma 3.2. The procedure described in Lemma 2.1
ensuring that any leaf oeDðsÞ matches an outgoing arc of G and thus contributes to a weakly
connected component guarantees that all weakly connected shadow patterns yielding a shadow
independent set will be detected.
Next, we have to prove the assertions (i), (ii) of the Lemma concerning the predicate values used

in equation (�). The correctness of (i) is obvious: A single tree T can be viewed only as a SPP of

tree type Ho or H1
io which only contains a root and therefore yields the claimed shadow

independent set conditions. The first case in (ii) corresponds to a SPP with out-connector. For this
we only have to consider node subsets W not containing the root, because the complement always
contains the root. Moreover, it is sufficient to test only SPPs with out-connector (represented by
o0Þ having a maximal node subset W in the sense that it is plugged in tðoÞAW 0; then oessðo0Þ has to

be satisfied. If no such partition exhibits a shadow independent set, there is none in U with respect
to o; and if there is one it is detected by this procedure inductively. The next equation of (ii)
corresponding to a SPP with in-out-connector of the first kind is obtained from the values

PðU ; o; eiÞð8UA2K ; oALjKÞ already computed. Finally, the last equation of (ii) corresponds to a

SPP H2
io: Here we never have to consider a node subset not containing tðiÞ; because this situation

is already covered by the previous cases. Moreover, by induction it is sufficient only to consider
SPPs over node sets WCU which might be connected to a SPP over W 0 by an arc outgoing from
a leaf of tðiÞ: &

Next we state an algorithm computing all relevant values of the function C1: It uses an array P½�
storing all predicate values PðU ; o; iÞ ðUA2K ; oALe; iAVeÞ: Initially P is 0 everywhere. It is
assumed that the elements of Ve;Le are labeled from 1 to jVej; jLej respectively so that the array
entry PðU ; o; iÞ is available via the corresponding combined index ðindðUÞ; o; iÞ in constant time.

Thus P½� has bitlength Oðn22kÞ: Moreover we assume that there is a data structure allowing to
decide in constant time whether a pair ðo; iÞ of nodes satisfies oAsi or not. For convenience we set
WpðUÞ :¼ fWCU ; 1pjW jppg:

Algorithm 2 (INITIAL).

Input: weakly connected shadow digraph Gk;n

Output: Array C1 with entries C1ðUÞ;UDK : jU jp2

for all ðU ; o; iÞA2K � Le � Ve do

P½indðUÞ; o; i�’0
od

for all ðT ; o; iÞAK � LjfTg � VejfTg do
if i ¼ ei or oesi then P½indðfTgÞ; o; i�’1 fi

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788784

od

ð� main loop: �Þ
for p ¼ 2 to k do
ð� step 1: �Þ
for all ðU ; oÞAðK

p
Þ � LjU do

for all ðW ; o0ÞAWpðUÞ � LjW : sðo0ÞAtðoÞeW do

if oessðo0Þ then

P½indðUÞ; o; ei�’P½indðWÞ; o0; ei�4P½indðW 0Þ; o; ei�
fi

if P½indðUÞ; o; ei� ¼ 1 then continue to next tupel fi
od

od

ð� step 2: �Þ
for all ðU ; oÞAðK

p
Þ � LjU do

if P½indðUÞ; o; ei� ¼ 1 then
for all iAVðtðoÞÞ do
if oesi then P½indðUÞ; o; i� ¼ 1; continue to next triple fi
od

fi

od

ð� step 3: �Þ
for all ðU ; o; iÞAðK

p
Þ � LjU � V jU do

for all ðW ; o0ÞAWpðUÞ � LjtðiÞ : tðoÞeW ; tðiÞAW do

P½indðUÞ; o; i�’P½indðWÞ; o0; i�4P½indðW 0Þ; o; sðo0Þ�
if P½indðUÞ; o; i� ¼ 1 then continue to next triple fi

od

od

ð� step 4: �Þ
for all UAðK

p
Þ do

for all ðW ; o1; o2ÞAWpðUÞ � ½LjU �2 do
C1½U �’P½indðWÞ; o1;sðo2Þ�4P½indðW 0Þ; o2;sðo1Þ�
if C1½U � ¼ 1 then continue to next subset fi
od

od

od

Proposition 4.2. Algorithm INITIAL correctly computes the values C1ðUÞ;UDK : jU jX2; has

time complexity Oðn33kÞ and space complexity Oðn22kÞ:

Proof. The correctness of the algorithm follows immediately from Lemma 4.1. Initializing all
array entries P½� by 0 has been done for convenience and could be omitted by slightly rewriting the

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 785

algorithm introducing some additional branches. This step has time bound Oðn22kÞ and is

dominated by the main loop. Computing all initial predicate values takes time Oðn2kÞ; because
there are k trees each having fewer than n nodes considered as leaves or inner nodes. Step 3 of the

main loop never performs more than ðk
p
Þðn þ 1Þ2

Pp
r¼1 nðp

r
ÞAOðn3ðk

p
Þ2pÞ iterations for fixed

cardinality jU j ¼ p: In each such iteration a constant amount of time is consumed for accessing
the corresponding array entries and computing the intermediate values. The other three steps of
the main loop in algorithm INITIAL are dominated by step 3. Hence, the summation over all

values of p using the binomial theorem yields the time bound Oðn33kÞ; as has been claimed. The

space requirements are dominated by array P½� of length Oðn22kÞ:

We are ready to state our complete algorithm deciding the existence of a shadow independent
set for an arbitrary instance ðFkðnÞ;sÞ of SIS.

Algorithm 3 (SIS).

Input: ðFkðnÞ;sÞ
Output: Boolean true if there is a shadow independent set, Boolean false else
compute G :¼ Gk;n and its weakly connected components;

ð� let these be Gi :¼ Gk1;n1 ;y;Gj :¼ Gkj ;nj
; where Ki :¼ VðGiÞ; ki :¼ jKij;

K :¼
S j

i¼1 Ki; n ¼
P j

i¼1 ni; k ¼
P j

i¼1 ki:�Þ
for i ¼ 1 to j do
carry out the procedure described in Lemma 2.1;

by depth first search for each node, create a two dimensional array of n2 binary
entries storing 1 for the pair ðc; vÞ if and only if cAsv;

sort 2Ki by lexicographic order computing indðUÞ; 8UA2Ki : jU jX2;
compute C1ðKiÞ as described in algorithm INITIAL and store the intermediate
values in array C1;
compute CðKiÞ’

W
pAIðKiÞ CpðKiÞ as described in algorithm GLOBAL;

if CðKiÞ ¼ 0 return CðKiÞ
else CðKÞ’CðKÞ4CðKiÞ
fi

od

return CðKÞ

Theorem 4.1. Algorithm SIS determines the existence of a shadow independent set for an arbitrary

instance ðFkðnÞ; sÞ of SIS in time Oðn33kÞ and with space requirement Oðn22kÞ:

Proof. There is a shadow independent set of G if and only if there is one for each Gi: Hence, the
algorithm returns the correct value if each of the weakly connected components is processed
correctly, which is guaranteed by Propositions 4.1 and 4.2. Computing Gk;n and its weakly

connected components can be done in time Oðn2Þ or better. In the loop, first carrying out the

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788786

procedure described in Lemma 2.1 and constructing the two-dimensional array by depth first

search for each node needs time Oðn2Þ: Next, sorting the power set 2Ki by lexicographic order

simultaneously computing indðUÞ ð8UA2Ki : jU jX2Þ can be done in time Oðki2
kiÞ: By

Propositions 4.1 and 4.2 for each component Gi with niXki nodes the bound Oððki þ n3i Þ3kiÞ ¼
Oðn3i 3kiÞ is obtained. Summing over all components this yields Oð

P j
i¼1 ½ki2

ki þ n3i 3
ki �Þ ¼

Oð
P j

i¼1 n3i 3
kiÞ and in the case j ¼ 1 the claimed bound. For verifying the space requirements

observe that there has been used a constant number of containers, each of which stores never

more than Oðn22kÞ bits.

5. Discussion

The algorithm developed by Franco et al. in [3], called FGSSS for short, transforms formulas
of IMPð2; kÞ into instances of the shadow problem (SIS) such that an input formula is
falsifiable if and only if the corresponding instance of SIS has a solution. By the same
transformation it is possible to test falsifiability for formulas from IMPð2; kÞ via the algorithm

SIS developed in this paper. Thus falsifiability for such formulas can be tested in time Oðn33kÞ:
Note that, in contrast to FGSSS, algorithm SIS requires exponential space which is typical
for dynamic programming procedures designed for NP-complete problems. SIS always per-

forms Oðn33kÞ steps on a weakly connected shadow digraph Gk;n whereas FGSSS accidentally

may find a shadow independent set in the shadow pattern tested first and then may terminate in

time Oðn2Þ:
An interesting aspect of the computational approach presented here is its decomposition into

several nested dynamic programming algorithms. A complex process is performed to compute the
induction base for another dynamic programming algorithm. Further, it is remarkable that the
tree structure of the nodes of the input shadow digraph G is of little importance. This structure is
analyzed only in a preprocessing step for making available in constant time the information
whether a given pair ðo; iÞ of nodes satisfies oAsi: Especially the procedure presented in [3] is not

needed checking on the tree level in time Oðn2Þ whether there is a shadow independent set in a
fixed shadow pattern. It follows that algorithm SIS, slightly modified, also would work if
ðFkðnÞ;sÞ is replaced by ðDkðnÞ; sÞ: Here DkðnÞ denotes a set of k acyclic digraphs of n nodes
altogether. A shadow then is defined to be the reachability set of a node’s image with respect to s:
Since jEðDÞjAOðn2Þ; the same bound as in the case of forest is guaranteed. This version of the
problem may be the key to find applications of (generalizations of) the shadow independent set
problem beyond propositional logic. Perhaps, one might imagine it as a modeling tool for certain
traffic net questions.

Acknowledgments

The authors thank the anonymous referees for valuable comments significantly improving the
presentation of this paper.

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788 787

References

[1] S.A. Cook, The complexity of theorem proving procedures, in: Proceedings of the Third ACM Symposium on

Theory of Computing, 1971, pp. 151–158.

[2] R.G. Downey, M.R. Fellows, Fixed parameter tractability and completeness, Congressus Numerantium 87 (1992)

161–178.

[3] J. Franco, J. Goldsmith, J. Schlipf, E. Speckenmeyer, R.P. Swaminathan, An algorithm for the class of pure

implicational formulas, Discrete Appl. Math. 96 (1999) 89–106.

[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W.H. Freeman and Company, San Francisco, 1979.

[5] J. Gu, P.W. Purdom, J. Franco, B.W. Wah, Algorithms for the satisfiability (SAT) problem: a survey, in: D. Du,

J. Gu, P.M. Pardalos (Eds.), Satisfiability Problem: Theory and Applications, DIMACS Workshop, March 11–13,

1996, DIMACS Series, Vol. 35, American Mathematical Society, Providence, RI, 1997, pp. 19–151.

[6] P. Heusch, Implikationen der Implikation, Ph.D. Thesis, Mathematisches Institut, Universität Düsseldorf,

Düsseldorf, 1993.

[7] P. Heusch, The complexity of the falsifiability problem for pure implicational formulas, in: J. Wiedermann,

P. Hajek (Eds.), Proceedings of the Twentieth International Symposium on Mathematical Foundations of

Computer Science (MFCS’95), Prague, Czech Republic, Lecture Notes in Computer Science, Vol. 969, Springer,

Berlin, 1995, pp. 221–226.

[8] H. Kleine Büning, T. Lettman, Aussagenlogik: Deduktion und Algorithmen, B.G. Teubner, Stuttgart, 1994.

[9] J. Lukasiewicz, The shortest axiom of the implicational calculus of propositions, Proc. Irish Acad. A52 (1948)

25–33.

[10] J. Lukasiewicz, A. Tarski, Untersuchungen über den Aussagenkalkül, C. R. Soc. Sci. Lett. Varsovie Cl III 23

(1930) 30–50.

ARTICLE IN PRESS

P. Heusch et al. / Journal of Computer and System Sciences 67 (2003) 772–788788

	Improving a fixed parameter tractability time bound for the shadow problem
	Introduction
	Graph theoretical problem formulation
	Structural properties of shadow patterns
	A Dynamic programming approach
	GLOBAL
	INITIAL
	SIS
	Discussion
	Acknowledgements
	References

