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Abstract

For a directed graphG on vertices{0, 1, . . . , n}, aG-parking functionis ann-tuple (b1, . . . , bn)

of non-negative integers such that, for every non-empty subsetU ⊆ {1, . . . , n}, there exists a vertex
j ∈ U for which there are more thanbj edges going fromj to G − U . We construct a family of
bijective maps between the setPG of G-parking functions and the setTG of spanning trees ofG
rooted at 0, thus providing a combinatorial proof of|PG| = |TG|.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The classical parking functions are defined in the following way. There aren drivers,
labeled 1, . . . , n, andn parking spots, 0, . . . , n − 1, arranged linearly in this order. Each
driver i has a favorite parking spotbi . Drivers enter the parking area in the order in which
they are labeled. Each driver proceeds to his favorite spot and parks there if it is free, or
parks at the next available spot otherwise. The sequence(b1, . . . , bn) is called aparking
functionif every driver parks successfully by this rule. The most notable result about parking
functions is a bijective correspondence between such functions and trees onn + 1 labeled
vertices. The number of such trees is(n+ 1)n−1 by Cayley’s theorem. For more on parking
functions, see for example[9].

Postnikov and Shapiro[8] suggested the following generalization of parking functions.
LetG be a directed graph onn + 1 vertices indexed by integers from 0 ton. A G-parking
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unction is a sequence(b1, . . . , bn) of non-negative integers that satisfies the following
condition: for each subsetU ⊆ {1, 2, . . . , n} of vertices ofG, there exists a vertexj ∈ U

such that the number of edges fromj to vertices outside ofU is greater thanbj . For the
complete graphG = Kn+1, these are the classical parking functions (we viewKn+1 as the
digraph with exactly one edge(i, j) for all i 	= j ).

A spanning treeofG rooted atm is a subgraph ofG such that, for eachi ∈ {0, 1, . . . , n},
there is a unique path fromi tomalong the edges of the spanning tree. Note that these are
the spanning trees of the graph in the usual sense with each edge oriented towardsm. The
number of such trees is given by the matrix-tree theorem; see[9]. In [8], it is shown that the
number of spanning trees ofG rooted at 0 is equal to the number ofG-parking functions
for any digraphG.

An equivalent fact was originally discovered by Dhar[2], who studied the sandpile
model.The so-called recurrent states of the sandpile model are in one-to-one correspondence
withG-parking functions for certain graphsG, including all symmetric graphs. A bijection
between recurrent states and spanning trees for symmetric graphsG is mentioned in[6], and
a class of bijections is constructed in[1]. The sandpile model was also studied by Gabrielov
in [5]. This paper also contains an extensive list of references on the topic.

In this paper, we present a family of bijections betweenG-parking functions and rooted
spanning trees ofG. Given a spanning treeTofG, we establish a total order on the vertices of
Tsatisfying two conditions, and each such order gives rise to a bijection in the family. In[3]
Francon used a similar concept, which he called selection procedures, to construct a family
of bijections between parking functions and rooted trees in the classical caseG = Kn+1.
Thus our result provides a generalization of Francon’s construction.

2. A family of bijections

LetG be a directed graph on vertices{0, . . . , n}. We allowG to have multiple edges but
not loops. To distinguish between multiple edges ofG, we fix an order on the set of edges
going fromi to j for all i 	= j .

A subtreeofG rooted atm is a subgraphT ofG containingmsuch that for every vertexi
of T, there is a unique path inT from i tom. A subtree is called aspanning treeif it contains
all vertices ofG.

Let TG be the set of subtrees ofG rooted at 0, and letTG be the set of spanning trees
of G rooted at 0. Unless stated otherwise, all spanning trees in this paper are assumed to
be rooted at 0. LetPG be the set ofG-parking functions. In this section we give a bijection
betweenTG andPG.

For everyT ∈ TG, let �(T ) be a total order on the vertices ofT, and writei <�(T ) j

to denote thati is smaller thanj in this order. We call the set�(G) = {�(T ) | T ∈ TG} a
proper set of tree ordersif the following conditions hold for allT ∈ TG:

(1) if (j, i) is an edge ofT, theni <�(T ) j ;
(2) if t is a subtree ofT rooted at 0, then the order�(t) is consistent with�(T ); in other

words,i <�(t) j if and only if i <�(T ) j for i, j ∈ t .

We give several examples of proper sets of tree orders in Section3.
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For T ∈ TG and a vertexj of G, the order�(T ) induces the order on the edges going
from j to vertices ofT in which(j, i) is smaller than(j, i′) wheneveri <�(T ) i′ and which is
consistent with the previously fixed order on multiple edges. We writee <�(T ) e′ to denote
thate is smaller thane′ in this order.

Given a proper set of tree orders�(G), define the map��,G : TG → PG as follows.
For T ∈ TG and a vertexj ∈ {1, . . . , n}, let ej be the edge ofT going out of j. Set
��,G(T ) = (b1, . . . , bn), wherebj is the number of edgese going out of j such that
e <�(T ) ej . For the rest of the section, we write� instead of��,G.

Theorem 2.1. The map� is a bijection betweenTG andPG.

Proof.We begin by checking that�(T ) is aG-parking function.

Lemma 2.2. �(T ) ∈ PG for T ∈ TG.

Proof. For a subsetU ⊆ {1, . . . , n}, let j be the smallest vertex ofU in the order�(T ). Let
ej = (j, i) be the edge ofT coming out ofj. Theni <�(T ) j , soi /∈ U by choice ofj. For
each of thebj edgese = (j, i′) such thate <�(T ) ej , we havei′ ��(T )i <�(T ) j , soi′ /∈ U .
Thus there are at leastbj + 1 edges going fromj to vertices outside ofU. �

Next, we define the inverse map��,G : PG → TG. GivenP = (b1, . . . , bn) ∈ PG, we
construct the corresponding tree��,G(P ) one edge at a time. Initially, lett0 be the subtree
of G consisting of the vertex 0 alone, and putp0 = 0. For 1�m�n, we choose the vertex
pm and construct the subtreetm rooted at 0 inductively as follows. LetUm be the set of
vertices not intm−1, and letVm be the set of verticesj ∈ Um such that the number of edges
from j to tm−1 is at leastbj + 1. Note that|Vm|�1 by definition of aG-parking function.
For eachj ∈ Vm, let ej be the edge fromj to tm−1 such that exactlybj edgese from j to
tm−1 satisfye <�(tm−1) ej . Let t be the tree obtained by adjoining each vertexj ∈ Vm to
tm−1 by means of the edgeej . Setpm to be the smallest vertex ofVm in the order�(t), and
settm to be the tree obtained by adjoiningpm to tm−1 by means of the edgeepm . Obviously,
tm is a subtree ofG. In the end, set��,G(P ) = T = tn. For the rest of the section, we write
� instead of��,G.

An example of constructing�(P ) is shown in Fig.1. LetG be the graph shown in the
figure, and letP = (0, 1, 0, 1). Let � be the tree order in which vertexi is smaller than
vertexj if i is closer to the root thanj, or else ifi andj are equidistant to the root, andi < j .
Initially, U1 = {1, 2, 3, 4} andV1 = {1}, so vertex 1 is attached to the root to produce the
subtreet1. Then we haveV2 = {3, 4} with e3 = (3, 1) ande4 = (4, 1). Adjoining vertices
3 and 4 tot1 by means ofe3 ande4 places vertices 3 and 4 the same distance away from the
root, makingp2 = 3, so vertex 3 is attached by means of the edgee3 = (3, 1) to producet2.
At the next step, we haveV3 = {2, 4} with e2 = (2, 3) ande4 = (4, 1). Adjoining vertices
2 and 4 tot2 by means ofe2 ande4 makes vertex 4 closer to the root than vertex 2, so we
select vertex 4 and attach it to vertex 1 to formt3. Finally, we attach vertex 2 to 3 to form
t4 = �(P ).

Lemma 2.3. In the above construction, p0 <�(T ) · · · <�(T ) pn.
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Fig. 1. An example of constructing�(P ).

Proof. Since�(G) is a proper set of tree orders, it follows that the root 0 is the smallest
vertex ofT in the order�(T ). Hencep0 <�(T ) p1. Suppose thatp0 <�(T ) · · · <�(T ) pm

for some 1�m�n − 1. We show thatpm <�(T ) pm+1. We consider the following two
cases.
Case1: pm+1 /∈ Vm. Then the number of edges frompm+1 to tm−1 is at mostbpm+1.

Sincepm+1 ∈ Vm+1, the number of edges frompm+1 to tm is at leastbpm+1 + 1. It follows
that there is at least one edge(pm+1, pm) inG and thatpm+1 is adjoined totm by means of
such an edge. Thuspm <�(T ) pm+1 because�(G) is a proper set of tree orders.
Case2: pm+1 ∈ Vm. Let epm+1 be the edge frompm+1 to tm−1 such that exactlybpm+1

edgese from pm+1 to tm−1 satisfye <�(tm−1) epm+1. Sincepm is the largest vertex oftm in
the order�(T ) and hence in the order�(tm), andepm+1 goes frompm+1 to tm−1 = tm −pm,
it follows thate <�(tm−1) epm+1 if and only if e <�(tm) epm+1 because the order�(tm−1) is
consistent with�(tm). Therefore, exactlybpm+1 edgese from pm+1 to tm satisfye <�(tm)

epm+1, hencepm+1 is adjoined totm by means of the edgeepm+1.
Let epm be the edge ofT coming out ofpm, and lett be the tree in the construction of

T obtained by adjoining the vertices ofVm to tm−1. Let t ′ be the tree obtained fromtm−1
by adjoining the verticespm andpm+1 by means of the edgesepm andepm+1. Thent ′ is a
subtree of botht andT. By choice ofpm, we havepm <�(t) pm+1, sopm <�(t ′) pm+1 and
pm <�(T ) pm+1 because the order�(t ′) is consistent with both�(t) and�(T ). �

We now check that� and� are inverses of each other.

Lemma 2.4. �(�(P )) = P for P ∈ PG.

Proof. PutP = (b1, . . . , bn) andT = �(P ). Consider the process of constructingT. For
j ∈ {1, . . . , n}, we havej = pm for some 1�m�n. Let ej be the edge ofT coming out of
j. The edgeej goes fromj to tm−1. Since the set of vertices oftm−1 is {p0, . . . , pm−1}, it
follows from Lemma2.3that if an edgeecoming out ofj satisfiese <�(T ) ej , thenegoes
from j to tm−1. Thus,e <�(T ) ej if and only if e <�(tm−1) ej because the order�(tm−1) is
consistent with�(T ). By construction ofT, the number of edgesesatisfyinge <�(tm−1) ej
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is bj , hence the number of edgese satisfyinge <�(T ) ej is alsobj . We conclude that
�(T ) = P . �

Lemma 2.5. �(�(T ′)) = T ′ for T ′ ∈ TG.

Proof. PutP = �(T ′) = (b1, . . . , bn). Consider the process of constructingT = �(P ).
We show by induction that for 0�m�n, the treetm is a subtree ofT ′ and thatp0, . . . , pm

are the smallestm + 1 vertices in the order�(T ′). Since the root 0 is the smallest vertex in
�(T ′), the assertion is true form = 0.

Now, suppose thattm−1 is a subtree ofT ′ and thatp0, . . . , pm−1 are the smallestm
vertices in the order�(T ′). Let k be the(m + 1)th smallest vertex in the order�(T ′), and
let e′

k = (k, i) be the edge coming out ofk in T ′. Theni <�(T ′) k, soi ∈ {p0, . . . , pm−1}
andi ∈ tm−1. Hence if an edgee coming out ofk satisfiese <�(T ′) e′

k, thenegoes fromk
to tm−1. There arebk edgesesatisfyinge <�(T ′) e′

k. Thesebk edges together with the edge
e′
k givebk + 1 edges going fromk to tm−1. It follows thatk ∈ Vm.
As before, for everyj ∈ Vm, let ej be the edge fromj to tm−1 such that exactlybj edges

e from j to tm−1 satisfye <�(tm−1) ej . Since the vertices oftm−1 are the smallestmvertices
in the order�(T ′), it follows that if an edgee coming out ofj satisfiese <�(T ′) ej , then
e goes fromj to tm−1. Thus,e <�(T ′) ej if and only if e <�(tm−1) ej because the order
�(tm−1) is consistent with�(T ′). There arebj edgese satisfyinge <�(tm−1) ej , hence
there arebj edgese satisfyinge <�(T ′) ej . It follows from the choice ofbj thatej is an
edge ofT ′. Therefore, the treet obtained by adjoining the verticesj ∈ Vm by means of
the edgesej is a subtree ofT ′. Consequently, the smallest vertexpm of Vm in the order
�(t) is the smallest vertex ofVm in the order�(T ′). Sincek is the smallest vertex ofUm

in the order�(T ′) and k ∈ Vm ⊆ Um, it follows that pm = k. The induction step is
complete.

Finally, we obtainT ′ = tn = T . �

Theorem2.1follows from Lemmas2.4and2.5. �

3. Examples

In this section, we give examples of proper sets of tree orders and the resulting bijections
betweenTG andPG from the family of bijections defined in Section2.

We begin by introducing thebreadth-first search order�bf (T ) on the vertices of a tree
T ∈ TG. For a vertexi ∈ T , we define theheight hT (i) of i in T to be the number
of edges in the unique path fromi to the root 0. We seti <�bf (T ) j , or i <bf j , if
hT (i) < hT (j) or else ifhT (i) = hT (j) andi < j . It is easy to check that�bf (T ) is a total
order on the vertices ofT and that�bf (G) = {�bf (T ) | T ∈ TG} is a proper set of tree
orders.

The depth-first search order�df (T ) on the vertices of a treeT ∈ TG is defined as
follows. For a vertexi ∈ T , letT (i) denote the branch ofT rooted ati. In other words,T (i)

consists of all verticesk of T such that the unique path fromk to 0 inT containsi. If (i, �)

is an edge ofT, then we set� <�df (T ) i. Furthermore, if(j, �) is an edge ofT such that
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Θva ,G(T ) = (3, 0, 0, 0, 1, 0)

Θbf ,G(T ) = (4, 0, 0, 0, 2, 0)

Θdf ,G(T ) = (4, 0, 0, 0, 1, 0)
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Fig. 2. An example of constructing�bf,G(T ), �df,G(T ), and�va,G(T ).

i < j , then we seti′ <�df (T ) j ′ for i′ ∈ T (i) andj ′ ∈ T (j). We use the symbol<df with
the same meaning as<�df (T ). It is not hard to see that�df (G) = {�df (T ) | T ∈ TG} is a
proper set of tree orders.

Our third example is thevertex-addingorder�va(T ) on the vertices ofT ∈ TG. Construct
the sequencep0, . . . , p|T |−1 inductively as follows. Setp0 = 0, and, for 1�m� |T | − 1,
let pm be the smallest vertexj in G − {p0, . . . , pm−1} such that there is an edge inT from j
to {p0, . . . , pm−1}. Note that the sequencep0, . . . , p|T |−1 contains each vertex ofTexactly
once. Putp0 <�va(T ) · · · <�va(T ) p|T |−1, and let the symbol<va have the same meaning as
<�va(T ). Clearly,<va is a total order on the vertices ofT. Also,�va(G) = {�va(T ) | T ∈
TG} is a proper set of tree orders. Indeed, ift is a subtree ofT, then adding or not adding a
vertex ofT − t to {p0, . . . , pm−1} does not affect the order in which the vertices oft are
added.

Let �bf,G, �df,G, and�va,G be the maps��bf ,G, ��df ,G, and��va,G constructed in
Section2. Fig.2shows a sample graphGand a spanning treeT ∈ TG.To compute�bf,G(T ),
�df,G(T ), and�va,G(T ), we first determine the orders�bf (T ), �df (T ), and�va(T ). We
havehT (0) = 0, hT (2) = hT (6) = 1, hT (3) = hT (4) = 2, andhT (1) = hT (5) = 3, so

0 <bf 2 <bf 6 <bf 3 <bf 4 <bf 1 <bf 5.

Next, we determine�df (T ). Applying the depth-first search rule with� = 0, we get
0 <df {1, 2, 3, 4, 5} <df 6 becauseT (2) contains vertices 1, 2, 3, 4, and 5, andT (6)

contains a single vertex 6. Taking� = 2 we get 0<df 2 <df {3, 5} <df {1, 4} <df 6.
Finally, taking� = 3 and� = 4 we get

0 <df 2 <df 3 <df 5 <df 4 <df 1 <df 6.
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Also, the order�va(T ) is the following:

0 <va 2 <va 3 <va 4 <va 1 <va 5 <va 6.

The edge coming out of vertex 1 inT is (1, 4). The relatione <bf (1, 4) is satisfied
for e = (1, 0), (1, 2), (1, 3), (1, 6), so the first component of�bf,G(T ) is 4. Similarly,
e <df (1, 4) holds fore = (1, 0), (1, 2), (1, 3), (1, 5), so the first component of�df,G(T )

is 4. The relatione <va (1, 4) holds fore = (1, 0), (1, 2), (1, 3), so the first component
of �va,G(T ) is 3. The other components are computed in the same way. Fig.2 shows the
values of�bf,G(T ), �df,G(T ), and�va,G(T ).

Note that forG = Kn+1, the presented construction yields a family of bijections between
the classical parking functions and trees onn+1 labeled vertices. This family includes some
of the well-known bijections. For example, using the vertex-adding tree order results in the
following simple correspondence defined in terms of drivers and parking spots: given a
parking function(b1, . . . , bn), the corresponding tree is obtained by introducing the edge
(i, j) whenever driverj ended up parking in spotbi − 1, and the edge(i, 0) whenever
bi = 0.

Another bijection involving labeled Dyck paths as an intermediate object, communicated
to us by A. Postnikov, results if the right-to-left depth first search tree order is used (this
order is the same as the depth first search order described above except that larger numbers
are given priority among the children of the same vertex). Given a parking functionP, we
write numbers 1 throughn in then × n square so that all numbersj such thatbj = i appear
in the ith row in increasing order, and the numbers in a lower row appear to the left of
the numbers in a higher row. Such an arrangement defines a Dyck path from the lower-left
corner to the upper-right corner of the square, with horizontal steps labeled with integers
between 1 andn; see Fig.3. To get the spanning treeT corresponding toP, start from the
upper-right corner of the square and proceed to the lower-left corner along the Dyck path,
keeping track of the current vertex, initially set to be 0. At each horizontal step labeledi,
connect the vertexi to the current vertex, and at each vertical step, replace the current vertex
with its successor in the right-to-left depth first seach order on the tree constructed so far.
It is not hard to show that the obtained treeT is precisely�(P ) for the right-to-left depth
first search tree order.

The bijection obtained using the breadth first search tree order is discussed in Section5
in connection with the sandpile model.

4. More proper sets of tree orders

We now present a method for constructing proper sets of tree orders. Let〈�1, . . . ,��〉
denote the path consisting of the edges(��,��−1), (��−1,��−2), . . . , (�1, 0). Also, let 〈〉
denote the path consisting of the vertex 0 alone. DefineAG to be the set of paths〈�1, . . . ,��〉
in G such that�1, . . . ,�� are distinct vertices ofG − {0}, where��0. Let≺ be a partial
order onAG satisfying the following conditions:

(i) if A ∩ A′ ∈ AG for someA, A′ ∈ AG, thenA andA′ are comparable;
(ii) 〈�1, . . . ,��′ 〉 ≺ 〈�1, . . . ,��′ , . . . ,��〉 for �′ < �.
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Fig. 3. A bijection between trees and parking functions involving labeled Dyck paths.

For a treeT ∈ TG and a vertexi ∈ T , let AT (i) ∈ AG be the unique path inT from
i to 0. Introduce the order�≺(T ) on the vertices ofT in which i <�≺(T ) j whenever
AT (i) ≺ AT (j). Put�≺(G) = {�≺(T ) | T ∈ TG}.

Proposition 4.1. �≺(G) is a proper set of tree orders.

Proof. Let T ∈ TG, and leti andj be vertices ofT − {0}. SinceAT (i) andAT (j) are the
unique paths inT from i andj to 0, it follows thatAT (i) ∩ AT (j) ∈ AG. Therefore,�≺(T )

is a total order on the vertices ofT, by property (i) of≺.
If (j, i) is an edge ofT, thenAT (i) = 〈�1, . . . ,��, i〉 andAT (j) = 〈�1, . . . ,��, i, j〉,

soAT (i) ≺ AT (j), by property (ii) of≺, soi <�≺(T ) j .
If t is a subtree ofT, thenAt(i) = AT (i) for all verticesi ∈ t , so the order�≺(t) is

consistent with the order�≺(T ).
The proposition follows. �

The orders�bf (T ), �df (T ), and �va(T ) described in Section3 can be obtained as
�≺(T ) via an appropriate choice of≺. Setting≺ to be the lexicographic order on the paths
〈�1, . . . ,��〉 viewed as sequences of integers yields the order�df (T ). To obtain�bf (T ),
set〈�1, . . . ,��〉 ≺ 〈�′

1, . . . ,�
′
�′ 〉 if � < �′, or else if� = �′ and�� < �′

�′ . Finally, setting≺
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to be the order in whichA ≺ A′ wheneverA ∩ A′ ∈ AG and the largest vertex ofA\A′ is
smaller than the largest vertex ofA′\A, yields the order�va(T ).

We can obtain other proper sets of tree orders from partial orders≺ on AG satisfying
the conditions above. For example, we can setA = 〈�1, . . . ,��〉 ≺ A′ = 〈�′

1, . . . ,�
′
�′ 〉 if

� < �′, or else if� = �′ and the increasing rearrangement ofA is smaller than that ofA′
in the lexicographic order. Another example is settingA ≺ A′ if

∑
�k <

∑
�′

k, or else if∑
�k = ∑

�′
k and�� < �′

�′ .
Similar examples of partial orders onAG yielding proper sets of tree orders can be

obtained by using an arbitrary numbering of the edges ofG instead of vertex labels.
It is worth noting that not all proper sets of tree orders are induced by a partial order on

AG satisfying the above conditions. Consider the following simple example. LetG be the
graph shown in Fig.4. Let e1,2 be the two edges ofG going from vertex 3 to 1, and letf1,2
be the two edges going from vertex 4 to 2. For 1� i, j �2, letTij be the spanning tree ofG
containing edgesei andfj . Let � = {�(Tij ) | 1� i, j �2} be the proper set of tree orders
defined as follows:

0 <�(Tij ) 1 <�(Tij ) 2 <�(Tij ) 3 <�(Tij ) 4

for i 	= j , and

0 <�(Tii ) 1 <�(Tii ) 2 <�(Tii ) 4 <�(Tii ) 3.

LetAei
(resp.,Afi

) be the unique path inAG from vertex 3 (resp., 4) to the root 0 containing
the edgeei (resp.,fi). Then in order for� to be induced by some partial order≺ on AG,
we must haveAe1 ≺ Af2 so that relation 3<�(T12) 4 holds. Similarly, to achieve relations
4 <�(T22) 3, 3 <�(T21) 4, and 4<�(T11) 3, we must haveAf2 ≺ Ae2, Ae2 ≺ Af1, and
Af1 ≺ Ae1. We obtain a contradictionAe1 ≺ Ae1, hence� is not induced by a partial order
on AG.

5. G-parking functions and the sandpile model

In [1], Cori and Le Borgne construct a family of bijections between the rooted spanning
trees of a digraphG and the recurrent states of the sandpile model defined onG. It was
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shown by Gabrielov[4] that if for all vertices ofG except the root, the out-degree is
greater than or equal to the in-degree, then recurrent states coincide with the so-called
allowed configurationsof the model, which correspond toG-parking functions: ifdi is
the out-degree of vertexi, then (u1, . . . , un) is an allowed configuration if and only if
(d1 − u1, . . . , dn − un) is aG-parking function. In particular, this observation is valid for
symmetric graphs, in which the number of edges fromi to j is equal to the number of edges
from j to i for all i 	= j ; such graphs can be naturally viewed as undirected graphs. Thus for
these graphs the result of Cori and Le Borgne provides a bijective correspondence between
rooted spanning trees ofG andG-parking functions. For the rest of the section, we assume
thatG is a symmetric graph.

The construction described in[1] begins by fixing an arbitrary order on the edges ofG.
Given a spanning treeT of G, an edgee in G − T is calledexternally activewith respect
to T if in the unique cycle ofT + e, the edgee is the smallest in the chosen order. A key
property of the obtained bijection is that the sum of the values of a recurrent state is equal
to the number of externally active edges with respect to the corresponding spanning tree.
It follows that in the resulting bijection betweenG-parking functions and spanning trees,
G-parking functions with the same sum of values are mapped to spanning trees with the
same number of externally active edges.

To show that the bijections presented in this paper are substantially different from the
ones in[1], consider the caseG = Kn+1, and letP be the path obtained as follows: start
at the root vertex 0, and then append the remaining vertices one by one, so that at each
step the appended edge is the smallest, in the chosen edge order, among all edges that can
possibly be appended. There are no externally active edges with respect toP since every
edge(i, j) not inP, wherej is closer to the root inP thani, is greater than the edge(i′, j),
wherei′ is the vertex appended afterj in the construction ofP, by choice ofi′. On the other
hand, if a pathP ′ does not include the smallest edge in the chosen edge order, then this
edge is externally active with respect toP ′. Hence there is a different number of externally
active edges with respect toP andP ′. However, every bijection��,G maps bothP and
P ′ to permutations of(0, . . . , n − 1), so the sum of values of the correspondingG-parking
functions is the same. Hence forG = Kn+1, none of the bijections��,G coincides with a
bijection from the family constructed in[1].

Dhar defined theburning algorithmfor determining whether a given configuration is
allowed; see[7]. In our setting this task corresponds to the question whether a function
P : {1, . . . , n} → N is aG-parking function, and an equivalent formulation of Dhar’s
burning algorithm is the following. We mark vertices of the graph, starting with the root 0.
At each iteration of the algorithm, we mark all verticesv that have more marked neighbors
than the value of the function atv. If in the end all vertices are marked, then we have a
G-parking function, as it is not hard to see directly from definition. Conversely, for every
G-parking function, this algorithm marks all vertices.

We claim that our bijection corresponding to the breadth first search order�bf is a natural
generalization of Dhar’s algorithm. Given a parking functionP = (b1, . . . , bn), perform
the construction ofT = ��,G(P ) as described in Section3. We know thatT contains all
vertices if and only if we started with aG-parking function. Let us group the vertices ofT
by height, settingWi to be the set of vertices ofT of heighti.
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Proposition 5.1. Wi is exactly the set of vertices marked at the ith step of the burning
algorithm.

Proof. For i = 0 the claim is true because the root 0 is marked at the 0th step. We prove the
claim by induction. Suppose that fork < i, the vertices inWk are marked at thekth step of
the Dhar’s algorithm. Letej = (j, wj ) be the edge going out ofj in T. Each vertexj ∈ Wi

has more thanbj edges going to vertices not larger thanwj in �bf order. All vertices not
larger thanwj are in∪k<i Wk sincewj ∈ Wi−1. Therefore, all vertices inWi are marked at
the ith step of Dhar’s algorithm. On the other hand, every vertex marked at theith step of
the algorithm in our is to be attached inT to a vertex from∪k<i Wk since we add vertices
to T in the order�bf . Thus each such vertex is inWi . Hence, Dhar’s burning algorithm is
realized by our bijection for the breadth first search tree order.�
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