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1. INTRODUCTION 

The theory of r.e. (recursively enumerable) vector spaces was introduced in [9] 
by us. The object of study there was the lattice ~(Vo~) of r.e. subspaces of a 
countably infinite-dimensional vector space V~ such that V~ and its field of 
scalars were sufficiently effective. Inspired by this several authors have published 
interesting further results on ~q°(V~). 

In  particular we point out Kalantari-Retzlaff [8], Remmel [11], and Shore [16]. 
We were then interested in whether a similar theory could be developed for the 
lattice ~a(F~) of all r.e. algebraically closed subfields of an algebraically closed 
fild F~ of countably infinite transcendence degree such that F~ was sufficiently 
effective. The major difficulty was that a key lemma which supplied the "punch 
line" for many priority arguments in ~(~°(Voo)was simply false for oW(F~o). If  
A C V~,  let cl(A) be the subspace A spans. I f  A _CFo~, let cl(A) be the alge- 
braically closed subfield of Fo~ that A generates. Let B = {b 0 , b 1 .... } be a vector 
space basis for V~o, let V be an infinite-dimensional subspace of V~,  and let 
m ) 0  be an integer. The lemma alluded to above asserts (V (3 cl{bm, b~,+l,...}) --  
c l ~  ~ ,~', i.e., there is a nonzero v~Vc3c l{b~ ,bm+l  .... }. Now let B = 
{b 0 , b 1 ,...} be a transcendence base for Foo over its prime subfield, and let F be 
the infinite-dimensional algebraically closed subfield of F~ generated by 
{b 0 , b~ 4- bob2, b 2 4- bob 3 .... }. Then  F c3 cl{b~, b 2 .... } - -  cl ~ = ~ ,  i.e., every 
element of F c3 cl{b 1 , b 2 .... } is algebraic. So the obvious corresponding lemma 
fails for ~°(F~). (This example is due to Ash and may be verified by using 
Jacobians (see [6]).) 

In  a way this is a manifestation of the" nonmodularity of ~°(F~), in contrast 
to the modularity of ~°(V~). In  a modular lattice an element cannot have two 
distinct comparable complements. But in ~('(F.~) if we let H = cl{bl, b 2 .... }, 
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G = cl{b0}, define F as above, we see that F and G are distinct complements of H 
which are not comparable. 

With the development of new techniques which bypass such lemmas 
and work for ~(Fo~), the central role of the dependence relation became 
apparent. Indeed the operations (vector addition and scalar multiplication 
for V~,  field operations for F~o) play no direct role. Only the relation of 
dependence occurs. I t  turns out to be clearer and cleaner to develop the subject 
for abstract dependence relations as defined by Van den Waarden [17, p. 200]. 1 
Other well-known equivalents are transitive dependence relations [1, p. 254] and 
matroids. We use the fully equivalent notion of a closure operation obeying the 
Steinitz exchange principle. This  fits the arguments best. 

Let  P(U') be the power set of U. 

DEFINITION 1.1. A Steinitz closure system (U, cl) consists of a set U and an 
operation cl: P(U) -~ P(U) such that for all A, B G P(U), 

(i) A _C cl(A), 

(ii) A _C B implies cl(A) C cl(B), 

(iii) cl(cl(A)) = cl(A), 

(iv) x G cl(A) implies that there is a finite A i C A such that x G cl(Ai), 

(v) x G cl(A u {y}) - -  cl(A) implies that y E cl(A u {x}). 

Here (i)-(iv) are Moore 's  axioms for a closure operation; (v) is the Steinitz 
exchange principle. Elementary properties are developed in Cohn [1, pp. 252- 
262], and used here. For us the most important examples are (co, cl), (Vo~, cl). 
and ( F , ,  cl). (Here co = {0, 1, 2,...}, cl(A) = A for A C ~o.) We call A _C U 
closed if cl(A) = A. Every closed set has a well-defined dimension. The  key new 
notion we introduce is regularity. 

DEFINITION 1.2. A finite-dimensional closed set C _C U is regular if it is not 
the union of a finite number  of its proper closed subsets. We call (U, cl) regular 
if all its finite-dimensional closed subsets are regular. 

I t  can be verified (see Section 2) that (F~ ,  cl) is always regular, and that 
(V~ ,  cl) is regular if and only if the scalar field is not finite; while (w, cl) is 
obviously not regular. In  Section 3 we give a definition of recursively presented 
Steinitz closure systems. I t  will follow that a regular Steinitz closure system is 
recursively presented if and only if 

i The referee of Crossley-Nerode [2] asked whether Van der Waarden's dependence 
relations (familiar to algebraists) could be used for effective dimension theory instead 
of minimal formulas (familiar to logicians) as in [2]. This paper is a partial answer to 
that question. 
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(i) U is a recursive set of integers, 

(ii) for any a, b 1 ,..., b,~ in U it can be effectively determined whether or 
not a e cl(b 1 ..... bin}. 

We may use Godel numberings to regard V~ and Fo~ as having domain co and 
to regard (co, el), (V~o, el) and (F~, el) as recursively presented. 

We believe that recursion theory over infinite-dimensional, recursively 
presented regular Steinitz closure systems (U, el) is natural and has depth, and 
that virtually all results previously obtained for ~(Vo~) can be formulated and 
proved for such (U, el). We support this contention by formulating and proving 
generalizations to regular Steinitz systems of the theorems listed below which are 
from the above-mentioned papers on &q(V~o): 

(i) Maximal spaces via e-states (Metakides-Nerode [9, p. 158], Theorem 
4.1). 

(ii) Maximal spaces generated by maximal subsets of bases (Metakides- 
Nerode [9, p. 160], Theorem 4.8). 

(iii) Maximal spaces with no extendible bases (Metakides-Nerode [9, 
p. 161], Theorem 4.8; Remmel [11, Theorem 1, p. 402]). 

(iv) Supermaximal spaces (Kalantari-Retzlaff [7, p. 486], Theorem 3.1). 

(v) Dependence degrees (Shore [16, p. 19], Theorem 2.2). 

The generalizations here are respectively Theorem 4.2, 4.8, 5.1, 6.2, and 7.1 for 
(i)-(v). 

Far weaker hypotheses than regularity may be used to get any one of these 
theorems individually; a different algebraic condition for each theorem. These 
will be dealt with in a sequel by Nerode and Remmel. Classes of matroids arise 
in combinatorial theory which satisfy such weaker hypotheses, but these are very 
much less known to the working mathematician or logician than V~ or F~ .  

2. STEINITZ SYSTEMS 

Throughout this section (U, el) will be a Steinitz closure system. 

PROPOSITION 2.1. I f  B C U and clB(A) = cl(A u B), then (U, clB) is a 
Steinitz closure system. We refer to cls(A ) as the closure of A over B. 

DEFINITION 2.2. Suppose A, B, C, I C U. 

(i) A is closed (over B) if A = cls(A). 

(ii) A is independent (over B) if A :/: ~ and for all a e A, wc have 
,~ ¢ cl~(A - (a)). 
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(iii) A spans C (over B) if C C clB(A). 

(iv) I C A is a basis for A (over B) if I spans A (over B) and I is inde- 
pendent (over B). In  ease B is empty, omit the phrase "(over B) ."  

PROPOSITION 2.3. Let A be closed. Suppose I, S C A,  and I is independent and 
S spans A .  I f I  C_ S, then there is a basis X for A such that I C X C S. 

Proof. Theorem 2.4 of [1, p. 256]. 

PROPOSITION 2.4. Suppose B and A are closed, B C_ A.  Let B 1 be a basis for B. 
Let A 1 be a basis for A (over B). Then A 1 u B 1 is a basis for A.  

Proof. B 1 spans B, A x spans A (over B), so B C cl(B~), A C cl(B u A1) , or 
A _C cl(Ba u A1), or B t U AI spans A. Since B 1 is independent and B 1 u A 1 
spans A, Proposition 2.3 yields a basis X for A such that B 1C X_C A 1 u B1 • 
I t  suffices to show X" = A a u B 1 . Otherwise there would be an a in Ax,  a 6 X; 
then X C (A~ - -  {a}) w B1,  so el(X) C cl((A 1 - -  {a}) U BI). Since A 1 is inde- 
pendent over B, a ¢ cI((A a - -  {a}) U Bx), so a 6 el(X), so X does not span A, 
contrary to hypothesis. 

DEFINITION 2.5. Let  B _C A, B, A both closed. The  dimension of A (over B) 
is the cardinality of any basis of A (over B), denoted by dim[A/B]. 

PROPOSITION 2.6. Suppose X 1 LI X 2 is independent, X l  , X~ C_ U. 
cl(X'I) N cl(X2) = c l (X 1 ~ X~). 

Proof. This  is proved exactly as in Corollary 6.7 ([1, p. 28]). 

Then 

PROPOSITION 2.7. Let B, I C_ U, x ~ U. Suppose B is closed, I is independent 
(over B), and x ~ cls(I  ). Then there is a smallest finite set I '  C_ I with x e cls(I'), 
denoted as supp 1 x (over B). 

Proof. The  fourth clause in the definition of a Steinitz closure system in 
Section 1 shows a finite I '  exists. By Proposition 2.6 we may intersect all such and 
get a smallest. 

PROPOSITION 2.8. Let B, I C U, B closed, I independent (over B). 

(i) For x ~ ClB(I), J _c/, we have x c clBJ+--r suppl x (over B) C_ J. 

(ii) Let Xo, x l , . . ,  be a sequence from clB(I ). Suppose supp /x  o (over B)  
U i ~ I  s u p p l  xi (over B). Then x o ¢ ClB{Xl , X 2 .... }. 

(iii) Suppose I is infinite, F C U is finite. Then I is infinite dimensional over 
B u F .  

Proof. Note that (i) is immediate from Proposition 2.7. As for (ii), by (i) we 
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get x 0 ¢ cl B (Jill [suppzxi  (over B)]. But  c l , (Xl ,  x 2 ,...) C cl B (Ji~z [suppl  xi 
(over B)]. For  (iii) note  that  were I finite d imensional  over F u B, we would  get 
c l (G t3 F ~3 B) = c l ( I  (3 F (J B)  for a finite G __C/, and  ClB I C cl(B (J F t3 G) = 

c ln(F ~3 G). So clB(I) is conta ined in a f in i te-dimensional  closed set over B, hence 
is itself finite d imensional  over B. 

PROPOSITION 2.9. Let  V C U be finite dimensional and closed. Then V is 

regular i f  and only i f  whenever V C U 1 u "" t.) U~ with U1,. . . ,  U~ C_ U closed, we 

get that for  some i, V C_ Ui . 

Proof. I f  V is regular,  and  U C_ U 1 (3 "" u Un ,  obviously,  V 
(V  n U1)t3 "'" ~J ( V n  U~). All  terms are closed. By regularity, for some i 

V ~ V c~ Ui; so V C_ U i .  I f  conversely the condi t ion  holds, then  V---- 
U 1 ~.) ... k.J U n implies V C Ui for some i. But  U i C V,  so V = U i ,  hence V is 
regular. 

LEMMA 2.10. Let  C, D 1 ,..., Dn be subspaces of  a vector space over an infinite 

fieM. Then C C D 1 u ... u Dn implies for  some i, C C Di . 

Proof. Otherwise there exists a v i ~ C - -  D i for each i = 1 .... , n. Suppose we 
were given a set S of n- tuples  (A 1 ..... An) f rom the field of scalars and  were told 
that  for every i, S has at most  n - -  1 members  (A 1 .... , An) with Azv 1 + "'" + 
A~v n e D i . T h e n  from C C_ D z u "" k ) D  n we would conclude S has at most  
n(n - -  1) = n 2 - -  n members .  T h u s  if S is any. set of n- tuples  (A 1 .... , An) from 
the  field of scalars with at least n 2 - -  n -{- l members ,  then  for some i there are 

at least n members  (A 1 .... , A~) of S such that  AlV 1 + "" + AnY n ~ D i . Since the 
scalar field is infinite,  we can easily find a set S of n ~ - -  n + 1 n- tuples  (A 1 ..... An) 
such that  any n of them are independent .  Apply  the observat ion above and  obta in  
n n- tuples  (Ail ..... Ai~), i = 1 ..... n such that  these n- tuples  are independen t  and 

for a single i, AnVx + "" + AlnVn ~ Di ..... Xnlv 1 + "" + An~v~ ~ Di • Since D i 
is a subspace and the matr ix  is invertible,  all v~ ,..., %, are in  D~, contrary to 
hypothesis.  

PROPOSITION 2.11. A n y  (V~ , el) is regular over any infinite scalar fieM. Also 

( F . ,  el) is regular. 

Proof. T h e  regulari ty of ( V ~ ,  el) is jus t  L e m m a  2.10. For  ( F , ,  el) suppose 

C, D 1 ..... D ,  are algebraically closed subfields of F ~  and  C _C D 1 u ."  u D~ .  
Regard F~  as a vector space over its subfield of algebraic elements.  T h e n  L e m m a  
2.10 again yields the desired result. 

PROPOSITION 2.12. I f  (U, el) is regular and V C U is closed, then (U, ely) is 

regular. 

Proof. Let  C , D  1 ..... D n be finite d imensional  and closed in  (U, clv). 
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Suppose each of D1 .... , D~ is smaller than C. Then  if k = dim[C/V] ,  we know 
k > dim[D1/V], . . . ,  d im[D~/V].  Let  b 1 .... , b e be independent  over V and in C. 
Fo r  any given i, it cannot be that b 1 ,..., bk are all in D i , for then d i m [ D i / V  ] ~ k. 

So for all i, cl{b 1 .... , be} n Di C cl{b: ,..., be}. By regularity there is a y in 
cl{b:,.. . ,  bk} - -  U i = l [ c l { b l n  . . . . . .  be} n Di]. Since y G cl{b 1 .... , be} C C, we get 
y ~ C - -  ( D  1 k3 " "  k.) D~) as desired. 

PROPOSITION 2.13 (Wagner). (U, cl) is regular i f  and only i f  all closed sets o f  

dimension 2 are regular. 

Proof. Every Steinitz system is regular in dimension 0, 1. Suppose C has 
dimension t + 1 ~ 2 and D 1 , . . . ,  D ,  have dimension ~ t .  We show that 
C - -  (D 1 u -" u D , )  4: ~ .  For  this purpose a definition of Shore [16, p. 19] is 
used. Let  b o ,..., b t be a basis for C. Call z G cl{bo ,..., bt_l} t -bad for D i if z, b, are 
independent  and cl{z, bt} C Di • For  k < t, call a z G cl{b 0 ..... bk_:} k-bad for Di 

i f  there exist independent  y, w in cl{z, bk} with both y and w k + 1-bad for Di • 

LEMMA 2.14. I f  z is k-bad for  Di , then z,  b k .... , bt G Di . 

Proof. I f  z is t -bad for D i ,  then z, b t ~ c l { z ,  b t } C D i .  If  k < t  and we 
assume the lemma holds for all k + 1-bad z for D i ,  proceed as follows. Let  z be 
k-bad  for D i .  There  are independent  y,  w in cl{z, bk} both k ~ 1-bad for D i . 

By inductive hypothesis, y,  w, bk+ 1 ,..., bt are all in Di • So z, b k ~ cl{z, be) 
cl{y, w} _C Di . Thus  z,  bT~ .... , bt G Di . 

Now to conclude the proof of Proposition 2.13 we produce a sequence 
Zo ,..., z t  such that ze is not  k + 1-bad for any Di as follows. Let  z 0 be b 0 . I f  
b0 were 1-bad for Di , Lemma 2.14 shows b o ..... b t G Di  and dim Di ~ t + 1, 

contrary to supposition. So now assume ze ~ cl(b0 ..... be) has been chosen with 
z~ not k + 1 bad for any D i . 

Case 1. k < t - -  1. Since z~ is not k + 1 bad for D i , there cannot exist an 
independent  pair of elements of cl{zk, bk+:} each of which is k + 2-bad for D i .  

This  says that the following set Ti is ~ one dimensional. 
T i ~ -  cl{y G cl{zk, bk+l} l y  is k + 2-bad for Di}. But cl{zk, bk+l} is two 

dimensional. Since by hypothesis all two-dimensional closed sets are regular, 
there is a zk+l in cl{zk, b ~ + l }  - -  ( Z  1 k )  "'" t,d Z n ) .  Since zk ~ cl{b0 .... , bk} , we get 
Ze+: c cl{b 0 .... , bk+l}. Since Zk+l is chosen outside T1 ..... T,~, Zk+l is not 
k + 2-bad for any Di • 

Case 2. k ~ t - - 1 .  Then  z t_ :Gc l{b  o .... , bt_l} is not t -bad for D i ,  so 
Ti  ~ cl{zt_:,  bt} ~ Di is a closed set of dimension 4 1 .  By regularity of dimen-  
sion-two closed sets there is a zt  in 

c l { z , _ l ,  bt} - ( 7 1  v --. v T . ) .  
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Now zt e cl{bo ,..., bt} C C. Since zt • Ti and zt  E cl{zt_l,  bt}, we get zt ¢ D i .  So 

zt ~ C - -  D 1 k) "" U Dn.  
In  the lattice of closed sets of U the operations are A ^ B = A (3 B, A v B = 

cl(A w B). Then  B is a complement  of A if A v B = U, A ^ B = cl ~ .  This  
is not  useful for Steinitz systems whose lattice of closed sets fails to be modular.  
The  missing ingredient is the following definition. 

DEFINITION 2.15. Closed A,  B are independent if any independent  set in A is 

independent  over B. 
This  apparently asymmetric definition is actually symmetric,  as the following 

proposition demonstrates. 

P R O P O S I T I O N  2.16. Let A ,  B be closed sets such that A ^ B -~ cl 2~. The 

following are equivalent: 

(i) There is a basis X for A v B such that A (3 X is a basis for  A ,  B (3 X 

is a basis for  B. 

(ii) For all independent sets A 1C A,  B 1 C_ B, A 1 u B 1 is independent. 

(iii) Every basis for A is a basis for  A v B over B. 

(iv) Some basis for A is a basis for A v B over B. 

Proof. (iii) --~ (iv) is immediate;  (iv) --~ (i) is Proposition 2.4. For  (i) --~ (ii), 
suppose X is a basis for A v B, A (3 X a basis for A, B (3 X a basis for B. 
Suppose A a C A, B 1 _C B, A 1 , B 1 are independent ,  A 1 u B 1 dependent.  Without  
loss of generality assume A1,  B 1 are finite. Since A (3 X is a basis for A,  A 1 C 

t t ! t t t 
cl(A1), A x finite with m elements, A 1 C A (3 X;  similarly B x _C_C el(B1) , B 1 finite 
with n elements, B 1 _C B c~ X. By hypothesis A '  x t3 B~ _C X is independent,  
hence el(A; w Bi) is of dimension m + n. Extend A 1 to a basis ~1 for el(A;), 
Bx to a basis/~1 for el(B;), so cl(./~ u / ~ )  = cl(A i t3 B;). Now A" 1 must  have m 
elements,/~1 must  have n elements, so since -fix u /~x  spans m + n-dimensional 
el(A; u B'I) , we conclude -fix t 3 / ~  is independent  and that  A x t3 Bt  is inde- 
pendent  as required. Now to see (ii) ~ (iii). Le t  A x be a basis for A,  B 1 a basis 
for B. By (ii), A~ t3 B~ is independent  so for a ~ A x , a 6 cl(A~ k3 B 1 - -  { a } )  = 

clB(A 1 - -  {a}), so A 1 is independent  over B. 

DEFINITION 2.17. I f  A,  B are closed, then B is an independent complement  of 
A if A v B ~ U, and dim A = dim[A/B]. 

Note that an independent  complement is indeed a complement:  if A 1 is a basis 
for A, B 1 a basis for B, by Proposition 2.16, A 1U B 1 is a basis for U, so A n B 
cl(A1) (3 cl(B1) = cl(A1 (3 B1) = c l ( ~ )  by Proposition 2.6. 

Of course every closed B has an independent  complement,  namely, take any 
basis A 1 for U over B and let el(A1) = A. Finally, any two comparable inde- 
pendent  complements B, C of A are equal. Suppose B C C. Let  A 1 , B 1 be bases 
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for A,  B, and  let C x be a basis for C extending B1 • Since B, C are i ndependen t  

complements  for A,  A 1 t3 B 1 and  A 1 u C 1 are bo th  bases of U, and  A 1 U B1 _C 

A 1 U C 1 . So, A 1 U B 1 = A 1 W C1. But  A1 n B 1 ~ A 1 n C a = ~ ,  so B1 = Ca.  

3. RECURSIVE PRESENTATIONS 

DEFINITION 3.1. A Steinitz closure system (U, cl) has recursive dependence if: 

(i) U is a recursive set of integers; 

(ii) there is a un i fo rm effective procedure  which,  applied to a, b 1 ,..., b n ~ U, 

determines  in  a finite n u m b e r  of steps whether  or no t  a ~ cl(b I .... , bn}. 

PROPOSITION 3.2. Suppose (U, cl) has recursive depen&nce. Then there are 
uniform effective procedures which: 

(i) from explicit indices for finite sets A,  B determine whether or not 
cl(A) _C cl(B); 

(ii) from an explicit index of a finite set A determine whether or not A is 
independent; 

(iii) from an explicit index of a finite set A compute an explicit index for each 
subset of A which is a basis for cl(A); 

(iv) from a recursive enumeration of A yield a recursive enumeration of a 
basis for cl(A); 

(v) from an explicit index of a finite independent set A yield a recursive 
enumeration of a basis B for U which contains A; 

(vi) from a recursive enumeration of an independent set I (over finite set F), 
from an explicit index of F, and from an x E clF(I ), yields an explicit index for 
supp~ x (over F). 

Proof. An explicit  index  for a finite set is of  course one that  yields bo th  an  
effective listing of the set and a computa t ion  of its cardinality. For  (i) observe 
cl(A) _C cl(B) ~ A C cl(B) ~ for each a ~ A, we have a ~ cl(B). Th i s  can be 
de te rmined  because of recursive dependence.  

For  (ii) note  that  f rom an explicit index of A we can de termine  whether  

A = ~ ,  and if no t  whether  any a ~ A has the proper ty  that  a ~ cl(A - -  {a}) 
us ing  recursive dependence.  For  (iii) note  that  by  (i) and  (ii) we can check each 
A '  _C A for independence  and  also check cl(A')  = A. For  (iv) list A as ao,  a l  ,... 
effectively. Drop  a i f rom the list if a i ~ cl(a o .... , ai_l) us ing  recursive dependence.  
For  (v) list A as a 0 .... , a n ,  and let a o ..... a n ,  u l ,  u2 .... be a list of all of U t h a t  is 
effective, then  by  (iv) to a basis. For  (vi) observe that  since I can be enumera ted  
as i0, i 1 .... and  x ~ c l F ( I ) ,  recursive dependence  computes  an n with 
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x E clF{i 0 ..... i~}. Then  we test to find a smallest I '  C {i 0 ,..., i~} with x a clF(I'), 
and this is supp /x  (over F).  

The  definition given below for "recursively presented" is more general than 
is actually used in this paper. I t  appears to be the correct requirement for recur- 
sion-theoretic arguments in the nonregular case. 

DEFINITION 3.3. A Steinitz system (U, cl) is recursively presented if: 

(i) U is a recursive set of integers; 

(ii) there is a uniform effective procedure which, applied to explicit 
indices of finite sets A, B 1 ..... B~ _C U, determines whether or not cl(A)_C 
(cl(B1)) W "" V (cl(B,)). 

PROPOSITION 3.4. I f  (U, cl) is recursively presented, then (U, cl) has recursive 
dependence. 

Proof. a ~ cl{bl ,... , bn} +-+ el{a} C cl{b 1 ..... b,}. 

PROPOSITION 3.5. I f  (U, el) has recursive dependence and is regular, then 
(U, cl) is recursively presented. 

Proof. Let  A, B 1 ,..., B~ be finite subsets of U given by explicit indices. By 
regularity el(A) _C (el(B1)) u --" u (el(B)) if and only if el(A) _C el(B/) for some i. 
This  can be tested effectively (Proposition 3.2(i)). 

PROPOSITION 3.6. The Steinitz closure systems (co, cl), ( V , ,  cl), (F~ ,  el) are 
recursively presented. 

Proof. We do only the cases of (V~ ,  cl) with scalar field infinite and (Fo~, cl). 
By Propositions 2.11 and 3.5 we need only show recursive dependence. This  is 
classical (Row reduction for (V~ ,  cl), Jacobians for (F~ ,  cl)); see [6, p. 58; 
4, 5] for the field case. 

DEFINITION 3.7. Let  V be a closed subset of U. For h ~ 1 let D(V)~ be the 
set of all k - tup lesy  = (Yl ,-.., Yk) such t h a t y  is dependent over V. Put D(V) 
Ok~=l D(V). (Of course, if (U, cl) has recursive dependence and V is r.e., then 
D(V)k, D(V) are r.e. with r.e. Tur ing degrees d(D(V)k), d(D(V)).) 

Let ~ ( U )  be the lattice of r.e. closed subsets of U. 

PROPOSITION 3.8. Suppose (U, cl) is a Steinitz closure system with recursive 
dependence. Suppose V, W ~ &a(U), V C_ W, dim[W/V] < oo. Then d(D(V)) = 
d(D(W)). 

Proof. Let w 1 ..... w t be a basis for W over If. Then  for y ~ (Yl ..... , Yk), 
y E D(W) ~ (Yl ,...,Yk, wl ..... wt) ~ D(V), so d(D(W)) ~ d(D(V)). T o  demon- 
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strate the opposite inequality we show by induction on k that D(V)~ is recursive 
in D ( W )  uniformly. Let  v0, v 1 .... be an r.e. basis for V. 

We can find a basis for U over W, recursive in D(W) .  Since dim[W/V]  < ~ ,  
there is a finite basis of W over V which, together with the aforementioned basis 
of U over W, yields a basis Uo, ux ,... for U over V which is recursive in D(W) .  
Let  B = {Vo, v 1 .... , u 0, u 1,...}. For  k ~ 1, ,y ~- Yl ,  note that Yl e V if and 
only if  suppB y~ is a subset of {Vo, vl , . . .} .  This  can be determined recursive in 
D(W) .  Suppose the proposit ion is known for k and (Yl ..... Yk+l) is given. I f  

(Yl ..... Yk) e D(V)k , certainly (Yl ,..., Yk , Yk+~) ~ D(V)k+I . Otherwise (y l  .... ,Yk) 
is independent  over V. Look at the list y l  ,..., Yk, u0, ux ,..- • Since V is r.e., we 
may effectively drop an element from this list as soon as it is determined that it is 
in clv of the preceding elements of the list. After precisely k of the ui have been 
dropped,  we drop no more, having guaranteed a l i s t y  1 .... , ykuo, u~ .... which is a 
basis for U over V recursive in D(W) .  Note Yk+a ~ el{y1 ,.-., Yk} if and only if  
suppB Yk+l _C {yl  ..... Yk}, where B = {%, v~ ..... Yl .... , Yk, Uo, u~ .... }, and this 
can be determined recursive in D(W) .  

COROLLARY 3.9. Suppose (U, cl) is a Steinitz closure system with recursive 
dependence. 

(i) Suppose V ~ 5e(U), d im[U/V] < or. Then d(D(V)) = O. 

(ii) Suppose V ~ £ f (U) ,  dim V < ~ .  Then d(D(V))  = O. 

Proof. For  (i), d(D(V))  = d(D(U)) = 0. For  (ii), d(D(V)) = 0 because 
(U, el) has recursive dependence. 

PROPOSITION 3.10. Let (U, el) be a Steinitz 
dependence. Let V e L(U).  Then 

(i) 
(ii) 

(iii) 

Proof. 

closure system with recursive 

D(V) i  is r.e. uniformly in i > O. 

d(D(V)~) ~ d(D(V)) uniformly in i > O. 

a(D(V3) <~ a(D(V)~+l) for all i > O. 

For  (i) note (Yl  ..... Yi) e D(V) i  means one of y l  e ely ~ ,  Y2 e ely{y1}, 
Ya e ely{y1, Y2},..., Yi e clv{ya ,..., Yi-a} holds, while V is r.e. (ii) is immediate.  
For  (iii) look at two cases. 

Case 1. dim[U/V] < ~ .  By Corollary 3.9 d(D(V)) = O, d(D(V),)  = O. 

Case 2. There  exist b o , . . . ,  b i independent  over V. Then  

(Yl ,..., Yi) ~ D(V)i  +-+ for all j ,  (b3 , Yl ,..., Y~) ~ D(V)i+~ . 

One direction is obvious. For  the other suppose both that (Yl  ..... Yi) ~ D(V) i  
and for all j ,  (bj,  Yl , . . . ,  Yi) E D(V)i+x. Since Yl ..... Yi are independent  over V 
while y l  ..... Yi ,  bj is dependent  over V, we get bj e clv{y 1 ,-..,Yi} for all L Since 
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b0 .... , be are i + 1 in number and independent over V, e l v { y  I . . . .  , Ye} is ~>i + 1 
dimensional, a contradiction. 

PROPOSITION 3.11. Suppose that (U, el) is a S tdni t z  closure system of infinite 
dimension with recursive dependence. Let B = {b i [ i < ~o} be a recursive basis for U. 
Then there is a 1-1 recursive function # :  U --~ oJ such that 

(i) #b~ >~ i for all i, 

(ii) b E suppB u ~ # u  >~ # b  for all b ~ B, u ~ U. 

Proof. Let Bo, B 1 .... be a recursive list of all explicit finite subsets of B. 
Define el * Be ---- el B e - -  U(cl B '  ] B '  C Bi}. Due to Proposition 2.6, Be v L Bj 
implies el e B, n el * Bj = ~ .  We get U is the disjoint union of all el e B e . Let  
R0, R 1 .... be a recursive list of disjoint infinite recursive sets. Let # map B 1-1 
recursively to R 0 so that # b  e ~ [x ~ R 0 I x > / i ] .  Let # map (el e Be) - -  Be 1-1 
recursively to [x ~ Re+l[ for all b ~ Be, x> #b].  Then  (i) is clear; for (ii), 
b e suppB s = Bi implies # x  > # b  if x 6 Be, 

# x = # b  if x = b E B i .  

I f  V is a subset of U, let supp~ V be the union of all suppB v with v in V. 

COROLLARY 3.12. Suppose j-tuples x_ = (x 1 ,..., xj) from U are numbered 
effectively so that for all i, # x  > # x i  • Suppose V is a closed set in U and x ~ U and 
x E D(cl(V u {x})) - -  D(V).  Then for all b ~ suppn x - -  suppB V we have 
#x_ > #b. 

Proof. Since x is dependent on cl(V td (x)), it follows that (x, x) is a dependent 
sequence over V. So we have x ~ e l v { x  1 ,..., xj}. This yields suppsx  ~< 
[,)~=1 suppB x, ~3 supps V. For the b specified above we may then conclude that 
b E suppB x~ for some i. Then  Proposition 3.11 yields # x ~ / >  #b.  The  hypotheses 
# x  > #x~ then yields # x  > #b.  

DEFINITION 3.13. Suppose (U, cl) is a Steinkz closure system wkh recursive 
dependence. Then  V ~ ~('(U) is decidable if D(V) is a recursive set. 

PROPOSITION 3.14. Let (U, cl) be a Steinitz system with recursive dependence 
and V ~ £P(U). Then the following are equivalent. 

(i) V is decidable. 

(ii) V has an independent complement W e  oW(U). 

(iii) V has a basis which is a recursive subset of a recursive basis of U. 

Proof. For (i) ~ (ii), D(V)  recursive gives a procedure for taking an r.e. 
enumeration of U and omitting an element if and only if dependent over V on 
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preceding elements,  gett ing an r.e. basis Uo, u 1 .... for U over V and  by  Proposi-  

t ion  2.16 an i ndependen t  complemen t  W = cl(uo, u~ .... ) for V in  &°(U). For  
(ii) implies  (iii) let Uo, ul  ,... be an r.e. basis for W and  let Vo, v 1 .... be an r.e. 

basis for V, then  by  Proposi t ion 2.16, {u o , ul  .... , v o , v 1 .... } is an r.e. basis for U. 
Every r.e. basis for U i s  recursive (exercise), so since {Uo, ul  .... } n {Vo, v I .... } = 
we have (iii). 

We show that  (iii) impl ies  (i). By assumpt ion  there are disjoint r.e. i ndependen t  

sets Vo, v~ ,..., Uo, u~ ,... such that  Vo, v 1 ,... is a basis for V and  Vo, v~ ,..., u o , u l  ,... 
is a basis for U. Apply  the a rgument  in  the proof of Proposi t ion 3.8 (for 
d(D(V))  ~ d(D(W)))  to show d(V)  = 0 as required. 

PROPOSITION 3.15. Let (U, cl) be a Steinitz  closure system with recursive 

dependence. Then for  every infinite-dimensional V 6 ~ ( U )  there is an infinite- 
dimensional decidable W C V. 

Proof. Let u o , u 1 ,... be an effective enumera t ion  of U. Let  v 0 , v 1 ,... be an 
effective enumera t ion  of V. Define a sequence a o , a 1 ,... induct ively  as follows. 
Let  a o ~ %,, with m least such that  v m ~ cl ~ .  For  n > 0, let a2n ~-- vm with m 

least such that  v m ~ cl{a o .... , a~n-1}. For  n ~.~ 0, let a2n+l -~- u m with m least 
such that  u m ~ cl{a o ,..., a.2~}. By const ruct ion a0,  a 1 ,... is a recursive basis for U, 
while a o , a 2 , aa .... is an r.e. basis for an inf in i te -d imens ional  closed subset  of V. 
Apply  Proposi t ion 3.14(iii) to conclude that  W = cl{a0, a s ,  a 4 .... } is decidable. 

The re  are lots of V E ~5¢(U) which are recursive sets bu t  no t  decidable. See 
T h e o r e m  7.1. 

4. MAXIMAL ELEMENTS 

Metakides and Nerode [9] and Remmel  [1 l]  used e-state a rguments  to produce  
maximal  elements of ~ ( g , ) .  These  proofs used algebraic lemmas t rue for 

~,¢(V~) bu t  false for other Steinitz closure systems such as ~ ( F ~ ) .  We  give a 
proof  for the existence of maximal  elements  here which uses a new definit ion of 
e-state ent irely avoiding those lemmas (Theorem 4.2). Remmel  has subsequent ly  
used our  new  definit ion of e-state to handle  p rob lems  arising from dependence  
relations which fail to obey the exchange principle.  We  fur ther  modify  Shore 's  
a rgument  for £~(V®) to show that  a maximal  subset  of  a basis yields a maximal  
space so as to avoid the algebraic lemmas (Theo rem 4.8). T h e  theorems of this 
section depend  on (U,  cl) having recursive dependence,  bu t  do not  depend  on  
regularity. 

DEFINITION 4.1. A V ~ XC(U) is maximal if  (i) and  (ii) below hold. 

(i) dim[U/V] =- oo. 

(ii) For  any  W ~ ( U )  such that  W_D V, either dim[W/V]  < oo or 
dim[U/W] < oo. 

481/65/I-4 
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If  (U, cl) has recursive dependence we let &q(U) be the lattice of r.e. closed 
subsets of U. 

THEOREM 4.2. Suppose (U, cl) is infinite dimensional and has recursive 
dependence. Then 5fl( U) contains maximal elements V. 

Proof. Let  W0, W1 .... be a standard Kleene style recursive enumeration of 
5~(U). Let  W~ ~ be the explicit f inite-dimensional closed subset of Wk constructed 
by stage s, so Wk ° C W,  1 C ... and WT~ ~ U,  W~ 8. At  stage s we construct an 
explicit finite independent  subset M ~ of U and an infinite recursive sequence of 
distinct independent elements a0 '~, aft,.., disjoint from M ~ such that ~ I  * U 
{a0 8, aft,...} is a basis for U. Here M 0 _C M 1 _C .... V = cl(U ~ M 0. I t  will be 
clearest to use a tower of windows as a visual aid. At stage s, aft will be the 
content of the j t h  window from the bottom. At  stage s + 1, a finite number  of 
windows will have their contents removed. The  remaining window contents are 
then allowed to fall to occupy all windows. Then  =~a~ +1 is the resulting content of 
the j t h  window from the bottom. The  removed contents are added to M 8 to 
form M *+1. The  new feature is the definition of e-state below. 

DEFINITION 4.3. The  e-state of aft at stage s is the e -~ 1-tuple ~ z (% ..... ~ )  
where c~ is 1 or 0 according as to whether or not 

a~- e cl(W~ * U M ~ U {a0 ~, .... a l l ) ) .  

These  e-states are lexicographically ordered as is usual for e-states. Let  P~ be the 
requirement that if W e ~_ V, then either d im[W/V/  < oo or d im[U/W/  ~ 0% 
Let  Ne be the requirement that  lira s a0 ~ ~- a 0 ,... lim~ a~_~ z a~_ 1 exist (i.e., 

that dim[U/W/ ~ e). The  priority ordering of requirements is of course N o , 
Po ,  N1,  Pa .... which reflects itself in the lexicographic ordering of e-states. 

DEFINITION 4.4. P~ requires attention at stage s + 1 if e ~ s + 1 and there 
exists a j > e such that aj e, a J  ~ s @ 1 and the e-state of ae s is less than the 
e-state of aft. 

CONSTRUCTION. 

Stage O. Let  M ° be the empty  set. Let  ao °, al  ° .... be a recursive base b o , b 1 .... 
for U. 

Stage s + 1. I f  no e requires attention, let M s+l = M s and a~ +1 ~-- ai for all i. 
Otherwise let e(s + I) be the least e requiring attention. For  that  e : e(s + 1) 
let j (s  + 1) be the least j .  Remove the contents of windows numbered  e(s + 1), 
e(s + 1) + 1,..., j(s + 1) - -  1, add these to M s to get M 8+1, and let contents of 
remaining windows drop to form the a~ +1. More formally, M s + l :  M ' u  

s s a . s+ l  a s + l  = aS  {a,(,+l) ..... a~(,+1)_1} and _, ---- aft for i < e(s + 1) and ~ec,+l)+i j(s+l)+i 
for all i. 
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LEMMA 4.5. N e  is satisfied f o r  al l  e. 

Proof.  ao s = a o for all s, so N o is satisfied. I f  2V~ is satisfied, let s o be such that 
==a s for a l l s  ~ s  o . T h e n a e  s :# ae s + l f o r s  ~ s  o only due to ao ~ aoS, ' ' ' ,  a e - 1  e -1  

its replacement by an element of higher e-state (examine the definition of e-state 
and of requiring attention). There  are only a finite number  of e-states, 2 ~+t. 

The  final e-state of a n is the e-state of an s for large s. 

LEMMA 4.6. A l l  but  a f in i t e  number o f  a~ have  the same f i n a l  e-state. 

Proof.  Otherwise there is at least final e-state a possessed by infinitely many 
an and at least final e-state 13 > a possessed by infinitely many a,~. So there are 
j > i > e such that the final e-state of ai is ~ and the final e-state of a s is/3. 
Choose by Lemma 4.5 an s o such that for s ~ s  o , we have a~ o - -  a0 s - 
a o ,..., a~. o ~= a~ e = a s , and for all t ~ j t h e  e-state o f  at s is the final e-state o f a  t , 

and i ~ s o + l and a i ,  a~ ~ s o + 1. Then  Pe requires attention at stage s + 1. 
So e(s + l )  is defined, e(s @ 1) ~< i, Ue(s+l)--s+l @ aSe(s+l)" Since e(s @ 1) -~ i < j ,  
this contradicts the choice of s o . 

LEMMA 4.7. A l l  Pe are satisfied. 

Proof.  Let  ~ = (a0 ,..., ae) be the final e-state of all but  a finite number  of a i ,  
let k be such that for all j > k, a~. has e-state ~. We may suppose g~  D U, where 

V = c l ( U  ~ M O. 

Case 1. ~e is 1. Then  for j > k, a s ~ cl(W, ~3 O,  M~ ~9 {% ,'.., a~-_l}). So 
U : -  cl(We t3 V u {% .... , ak}) = cl(We k) {ao ,..., ak}). So d i m [ U / W , J  < oo. 

Case 2. ~ i s 0 .  For  a l l j > k ,  

a j 6 c l ( W ~ u  O s M s u ( a o  ,..., aj_l}. 

Now ak+l ,  ak+2 .... certainly span U over cl(V t3 {% ..... ak}). I f  dim[ W e / V ]  = oo, 

there would surely be a j  > k and a w ~ W e such that w ~ cl(V U (a o ,..., aj-}) - -  
cl(V t3 {% ,..., aj_l}). By the exchange principle we get 

a s ~ cl(V k) {a 0 .... , a~_l} k3 {w}) C cl(W~ LI V kd {a o .... , aj_l} ). 

This  is dontrary to the choice o f j  > k. So d i m [ W e ~ V ]  < ~ as required. 
We modify Shore 's  argument that a maximal subset of a basis generates a 

maximal space (Metakides and Nerode [9, theorem 4.7]) so that it works for 
for Steinitz closure operations. 

THEORnM 4.8. Suppose (U, cl) is infinite dimensional and  has recursive 

dependence. L e t  B be an r.e. basis f o r  U, M a m a x i m a l  subset o f  B .  Then  c1(3I) is 

max ima l  in ~q~( U). 
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Proof. Suppose to the contrary there were a W e  5¢(U), M C W, dim[W/M] -- 
dim[U/W] = oe. Let w o , w a ,... be a recursive enumeration of W. Let i be least 

with suppB w~ @ Z,  put D O = suppn wi.  Suppose D O ,..., D~ are defined. It  
cannot be that for all j, suppB wj_C D O u " - u  D,,, for then every wj is in 
cl(D 0 u '-- u Dn), W C_ cl(D o u --- u D~) and W is finite dimensional. So there 

is a least j with s u p p B w ~ D  0 U ' ' ' U D , , .  Put D~+x = suppBw~--  

(D o W -'" U D~). 
D We get suppB wj _C Ui=0 i for all j ,  since by construction U~'<J suppB w~., C 

Do t3 ..' k) D~ yields supp~ w~ _C D o u "-" t_) Dn+~ • 

Case 1. For every finite B'  _C B there is an n such that Dn --  (M u B') has 

at least two elements. Let mo, m~ ,... be an effective enumeration of M, let 
M ~ {m o ,..., m~}. Let A" be the union of M ~ with the least elements of each of 
D O --  M'~,..., Ds - -  M *, let A = U, As. By construction, A contains the least 

element of each D,, - -  M and omits the next to least if it exists. But being in 
Case 1 implies that for infinitely many n, Dn - -  M has at least two elements. 
Since the D~ are disjoint, B - -  A and £ / - -  M are both infinite. This violates the 

assumption that 21I is a maximal subset of B. 

Case 2. There is a finite B'  _C B such that for all n, D n - -  (M U B')  has at 

most one element. Let A = B n c l ( W u  B'). We show that B - -  A and A - -  M 
are both infinite, so that M is not maximal in B, a contradiction. 

Suppose B -  A were finite. Then  d im[U/Wu B'] is finite. Since B'  is 

finite, dim[U/W] must be finite, contrary to hypothesis. 
c~ 

To show that ~/ - -  M is infinite we show (i) every D o _C A, (ii) (Ui=0 D,) - -  3 I  
is infinite. For (ii) note that for all j ,  supp B wj _C U~=o D~, so W_C cl(U~= 0 Di). 
So dim[W/211] infinite implies dim[Oi~oDJM ] is infinite, which implies 
e U ~ = o D ~ ) - - M  is infinite. For (i) let e be least with D o ~ A ,  so that 

D O ..... D~_ 1 _C A~_l(this is a possi, bly empty list). Then  for some j,  Do---- 
(suppB wj) - -  Ui=0 Di. Choose B for Case 2. Then  there is at most one b in 

t C r e--1 Dr - -  (M U B ). For such a, b, suppn wj _ M t_) B u (Ui-0 D~.) u {b}; so by the 
exchange lemma b ~ cl(M u B'  k) (U~S~ Di) u {w~-}) _C cl(VV u B'). So we always 

get D e, _C cl(W k) B') or D e C_B (3 c l ( W u  B') = A as desired. 

5.  M A X I M A L  ELEMENTS W I T H  No EXTENDIBLE BASE 

In  [9], [11] maximal elements V of ~ ( V ~ )  are obtained such that no r.e. basis 
of V is extendible to an infinitely larger r.e. independent set. We obtain a corre- 

sponding result (Theorem 5.1) for recursively presented regular Steinitz closure 
systems by using the e-state definition for Theorem 4.2 and elaborating the 
requirements for Theorem 4.2. This section, unlike Section 4, requires regularity. 
The  construction can be modified to yield results not covered by Section 6 on 
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supermaximal  elements. We do not do this here. Clause (i) of the proof in [9] is 
inadequate, we substitute the clause from Remmel [11]. 2 

THEOREM 5. l .  Suppose (U, el) is recursively presented, regular, and of infinite 
dimension. Then there exist maximal V in £f(U) such that no r.e. basis of V can be 
extended to an infinitely larger r.e. independent set. 

Proof. We adopt the conventions of the proof of Theorem 4.2. In  addition, 
let I0 ,11 .... be a Kleene-style recursive enumeration of all r.e. independent  
sets of U. Let  I J  be the explicit finite subset of I enumerated by stage s, so 
I 0 C I  1 C - . .  and OsI*= I. The  requirements are as follows: 

Are: l im, a08 = a o ,..., l im, ae 8 == ae exist. 

Pel: I f  We - V and dim[We~V] == oe, then for all but a finite number  of  
e, we have 

a(, ~ c l ( M  U W e k..) {a 0 .... , ae_l} ). 

/ )2 :  I f  cl(L) _~ V and dim[cl(/~)/V] - -  0% then there is a z e M with 

(supple z) - -  V 4= ~ .  

To satisfy Ale is to obtain dim[U/V] > e -~ 1. To satisfy a l l / ) 1  is to show V 
is maximal in &°(U) (see the proof of Lemma 4.7). Why does Pe 2 imply we 
cannot have both I e n V a basis for V and Ie - -  V infinite ? Otherwise by Pe 2 
there would be a z e M C V with suppx~ z - -  V ¢ ~ .  F rom s u p p l  z ~ V get 
supp~ z Z V n I e ,  or by the definition of support  z ~ cl(V n L)  _C V. So z ~ V, 
z ~ V, a contradiction. 

We add to the apparatus for Theorem 4.2 movable markers t7o, B1 ..... At 
each stage s, a finite number  of markers Be are used to mark elements P ~  in 
( s upp l ,  z) - -  c l (M 0 for a z e M ~ n cl( /~) .  We shall say that P J  is satisfied at 
stage s if  there is at least one z in M ~ n cl(Ifl) such t h a t / ) f l  is defined and is in 
(supp~ ~ z) - -  cl(M~). The  intention is that if  l i m ~ / ) / i s  defined (i.e., for some 
s o , s /> s o implies / ) J  is defined and/~e  ~ =/ )~o) ,  then this /)e - -  l i m ~ / ) J  in 
( s u p p l  z) - -  V for a z ~ M r3 cl(le), and therefore witnesses the fact that Pe 2 
is met. Let  supp~ be the support  relative to basis M ~ U {ao ~, aft,...} of U. Le t  
G~(x) be the largest i such that i ~ supp~ x if x ~ cl(M~), G~(x) - :  - -  1 if x ~ c l (M 0. 

DEFINITION 5.2. ( i ) / ) 1  requires attention at stage 2s > 0 if e ~< 2s and there 
exists a j > e such that a~ 8-1, a~ 8-1 ~ 2s and the e-state of a2J -1 is less than the 
e-state of a~ ~-1 (as given by Definition 4.3). 

(ii) Pe 2 requires attention at stage 2s -}- 1 if (ii)(a) and (ii)(b) below hold. 

2 A change in [11, p. 404] is needed to justify g(x, 3s + 2) = g(y, 3s + 2). We in- 
corporate this change. 
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(a) p 2  is not satisfied at stage 2s -}- 1. 

(b) There exist x, y in I~ 8+: such that the uppermost window occupied by 
any element of supp2~ x is above the eth window and is below the uppermost 
window occupied by any of the elements of supp2s y. In symbols, G2S(x) > e and 
G2S(x) < G2g(y). 

CONSTRUCTION. 

Stage O. Let M ° be the empty set. Let a0 ~ be b i where b 0 , b 1 .... is a recursive 
base for U. No marker B~ is in use at stage 0. 

Stage 2s > 0. If  no p 1  requires attention at stage 2s, let M 2~ --  M 28-1 and 
28 2s-1 for all i. A marker B~ is then in use at stage 2s if and only if in use a i ~ a i 

'at stage 2s - -  1, and t h e n / ~  =/~28-1. Otherwise let e(2s) be the least e such that 
P ~  requires attention at stage 2s, letj(2s) be the leastj for that e = e(2s). Remove 

2s--1 2s from the contents of windows e(2s),...,j(2s) - -  I (i.e., remove ae(2s ) ..... a¢(2s)_ I 
their windows), add these to M 28-I to get M 2s, and  let remaining contents of 
windows drop to fill all windows and to define a~. 8 for all k. A marker B e is in use 
at stage 2s if and only if Be was in use at stage 2s - -  I and/~e 28-I ~ cl(M2s), and 
then [~2e8 ~28-1 - - e  • 

Stage 2s + 1. If  no p 2  requires attention at stage 2s q- 1, let M 2s+1 = M 28 
and let a~ s+l ~ a~ s for all i. Then  B~ is in use at stage 2s Jr 1 if and only if B~ 
was in use at stage 2s, and then/~2e8+~----/~8. Otherwise let e(2s + 1) be the least 
e such that p 2  requires attention at stage 2s -+- 1, let x(2s + 1) be the least x 
for that e ~ e(2s - /  1), and let y(2s + 1) be the least y for those e ~ e(2s q- 1) 
and x - -  x(2s + 1). Let i ~ G~8(x),j = G28(y). Since {x,y} is an independent 
set, regularity implies el{x, y} - -  el{x} - -  el(y) va ;~. Let z(2s + 1) be the least 

~8 such that z in c l { x , y } -  e l { x } -  el{y}. Remove from the windows all ak 
a~ 8 e supp2s y and i < k ~ j, and let window contents drop to fill windows and 
to define the a~ 8+1. Let M ~+1 be obtained by adding z(2s + 1) together with all 
the removed a~ 8 other than 28 Formally a j .  

M 28+1 : M 28 ~3 {z(2s + 1)} u [a~ ~ ~ supp2, y ] i < k < j]. 

A marker B e is used at stage 2s + 1 if and only if either e is e(2s + 1) (in which 
28+1 x(2s + 1)) or B,  was in use at stage 2s and/~28 ~ c1(M28+1) case we put Be(2s+a ) 

(in which case we put /~2s+1 =/~2s).  This concludes the construction. We 
would like to verify two claims, G2S(z(2s+ 1 ) ) =  G2s(y(2s+ 1)) and 
G2s+l(y(2s + 1)) ~ Gzs+a(x(2s + 1)). To see these first note that the exchange 
principle yields y(s -+- 1) ~ cl{x(s + 1), z(s -4- 1)}, so supp2~y(s -~ 1) C 
(supp28 x(2s -+- 1)) W (supp28 z(2s + 1)). 

Since G2~(x(2s + 1)) < G2s(y(2s + 1)), the first claim follows. 
Since z(2s + 1) ~ M 28+~ and y(2s + 1) is in cl{x(2s + 1), z(2s ~- 1)} we get 

supp2~+l z(2s + 1) C supp.o~+l x(2s -~- 1). This verifies the second claim. 
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LEMMA 5.3. N" e is met. 

Proof. Suppose  N e - t  is met ,  so there  is an s o such tha t  s / >  s o impl ies  a08 
ao ..... a e - t  = a~_t ,  M u {a0 .... , ae-t} independent .  W e  examine changes 
ae~8 ~ aae s+t at stages 28 > s o . By cons t ruc t ion  the least  i wi th  a i°"8 ~ aes+t-i is the 

least  i > GaS(x(2s + 1)) wi th  a~ 8 E suppasy(2s  q- 1). So s > G~8(x(2s ~- 1)). 
Also the def ini t ion of  Peas+a) requi r ing  a t ten t ion  (par t  (ii)(b)) impl ies  tha t  
G28(x(28 + 1)) > e(2s q- 1). C o m b i n i n g  these two inequal i t ies  yields  
e(2s + 1) < e. Note  tha t  z(2s + 1) e M 2~+1 n c l ( I  2"+t) and  ha ,+ t  . _-- x(2s + 1) ~" e (as+t )  

(suppj~,+~ z) - -  c l ( M  aS+t) so P~es+t) is satisfied at  stage 2s + 1. I f  P~(a~+t) were 
to become unsat isf ied at a stage s' > 2s q- 1, this  would  be because B~(2s+x ) has to 
be r emoved  as x(2s + 1) is in el(Ms') .  T h e n  supp2~ x(2s q- 1) is dependen t  over  
M 8', hence over  M .  But  e > G~8(x(2s q- 1)) says supp2s x(2s -? 1) C M o 
{ao 8, .... ae-1} and s ~ s o says supp28 x(2s q- 1) _C M w {a 0 ..... a~-t}. So the lat ter  
is dependent ,  cont ra ry  to hypothesis .  T h u s  there  are at  mos t  e values 2s > s o 
such tha t  a~ s+a C= a2J, one for each value of e(2s ~- 1) < e. So there is a stage 
s t > s o such that  for all 2s ~ s t , a2e s+t - -  a~J. On the other  hand,  looking at the 
ma x im a l  space cons t ruc t ion  of Def in i t ion  5.2(i) we see tha t  if  2s > s t , then  
a~aS C= a~ 8-1 only when the e-state of ae 28 exceeds the e-state of aaJ - t .  T h e  e-states 
are 2 e+t in number .  So l i ra ,  ae 8 = a ,  exists. 

LEMMA 5.4. Pe I is met. 

Proof. Simi lar  to L e m m a  4.7. 

LEMMA 5.5. Pe 2 is met. 

Proof. F o r  an induct ion ,  assume tha t  for all i < e , / , 2  is met .  T h e n  there  is a 
stage s o such tha t  for all 2s + 1 ~ s o , if  e(2s + 1) is defined, then  e(2s + 1) ~ e. 
Le t  supp  x be the suppor t  o f x  relative to M ,  a0,  a l  . . . . .  Le t  G(x) ---- l ims Gs(x) 
least i wi th  x ~ c l ( M  u (a  o ..... ai}) for x 6 c l (M) ,  G(x) - -  - -  1 if  x ~ c l (M).  N o w  
suppose  (to verify p a) tha t  c l (L)  D V and dim[cl( /~)/V] ----- ~ ,  where  V ---- c l (M).  
Since Ie is infinite d imens iona l  over  V = c l (M) ,  there  is an x ~ I e  wi th  x 
c l ( M  u {a o .... , a,}), so G(x) > e. F o r  the same reason there  is a y ~ L wi th  
y ¢ c l ( M  W {a o ..... ace)}),  so G(y) > G(x). T h e n  ix, y} is i ndependen t  over  M ,  
G(y)  > G(x) > e. N o w  choose an s 1 > s o such tha t  for  all s /> sa ,  

(1) a~ ---- a i  8 for  a l l i  ~ G(y), 

(2) G'(y) = G(y), G~(x) : G(x), 

(3) x , y ~ L ' .  

Suppose  Pe a were  not  satisfied at stage 2s q- 1 > s t . Cer ta in ly  we have 
a r ranged  it so tha t  Pe a will  then  requi re  a t ten t ion  at stage 28-}-1 .  Since 

2s+t 
2s + 1 > s o cer ta inly  e(2s + 1) is e, and b y  cons t ruc t ion  aGzs(y(as+l) ) :/= 

2s 
aaz~(ues+t)) . Since 2s -~ 1 > s t , this says aa(v) :# aa(v) , a contradic t ion.  So Pe a 
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is satisfied at every stage 2s q- 1 > s 1 . There  was a last stage 2s @ 1 when B e 
was introduced as a marker  and z = z(2s q- 1), y = y(2s + 1), x = x(2s @ 1) = 
p2~+1 were introduced. By construction we had / ) ~ s + l  x ~ (suppl~,+~ z ) -  e 

cl(M~). Since Be is never moved, we get x e ( s u p p i  z ) -  V. By construction 
z e M 2~+a C~ cl(I~e~+l), so z e V n cl(/~). So P ~  is met. 

6. SUPERMAXIMAL ELEMENTS 

We extend the construction of supermaximal  elements from the vector space 
case of Kalantari  and Retzlaff [8], improving the results so that the supermaximal 
element is recursive as a set. We require regularity. 

DEFINITION 6.1. A V e ~ ( U )  is supermaximal if (i) dim[U/V] ~- o% (ii) 
for all W e £ P ( U ) ,  WD__ V a n d  dim[W/V] ~- oo imply W = U. 

Note that (ii) can be replaced by (ii '): for all W e  £P(U), if 

d im[cl (W t3 V)/V] = oo, 

then c l (W u V) = U. This  is the form we use to translate (ii) into a requirement.  

THEOREM 6.2. Suppose (U, cl) is recursively presentedl of infinite dimension, 
and regular. Then there are supermaximal V ~ .~( U) which are recursive as subsets 
of U. 

(Note that in (w, cl) where cl(A) = A for all A C oJ, there are no supermaximal 
elements. Of  course (w, cl) is not regular.) 

Proof. Let  b0, bl ,... be a recursive basis for U. Let  W0, W 1 .... be a recursive 
enumeration of ~ ( U )  of the standard sort. Let  V" and W s be the explicit finite- 
dimensional subspaces of V and W, respectively, constructed by stage s. We 
keep track of an infinite recursive sequence ao s, alS,.., independent  over V ~ at 
stage s. Then  V will be 1.)~ V s and the limits ak = lim~ ak s will be an infinite 
independent  set over V to satisfy (i) of Definition 6.1. The  requirements which 
must  be met are as follows. 

R: V is a recursive subset of U. 

P(e.n>: I f  dim[el (We kJ V) : V] = 0% then b,~ E el(We W V). 
N<e,n>: lims a<e,n> ~ a<e,~> exists. 

In  the usual language, the priori ty ordering is R, No ,  Po ,  N1,  P1 ,-.. • 

DEFINITION 6.3. P<,,,> requires attention at stage s if (i) and (ii) below hold. 

(i) b,  q~ el(We s u Vs). 
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(ii) T h e r e  is an x E W J  such that  

x ¢ c l [V s t_) {ao s, .... aS<e.n>} U {bn} ]. 

CONSTRUCTION OF Y 

Stage O. Le t  V ° be {0}, let a0 s, als,. . ,  be b 0 , b 1 , . . . .  

Stage s ~/O. I f  no P<~,,> requires  a t tent ion  at stage s, let  V s+l ~ V s, let  
ai*+x = ai  * for  all i. Otherwise,  there  is a least pa i r  (e, n )  requ i r ing  at tent ion.  
F o r  tha t  pa i r  (e, n )  let  x be the least  one sat isfying Def in i t ion  6.3(ii). L i s t  all 
those u E U wi th  u < s which  are not  in P as u 1 ..... u~. By combin ing  (i) and  
(ii) in Def in i t ion  6.3 we see tha t  {x, b,} is a two-e lement  set i n d e p e n d e n t  over  V s. 
T h e  a s sumpt ion  (U,  cl) regular  and  Propos i t ion  2.12 imp ly  tha t  (U, clv,) is also 
regular .  T h e  defini t ion of regular i ty  impl ies  tha t  there  is a y (which we choose 

least) such tha t  

y ~ clw{x , b.} - -  (clv,{x } - -  clv~{b.} - -  ely,{U1} . . . . .  clv,{Ut}). 

Define V s+l as cI(V s k) {y}). I t  remains  to define the  a} "+~. Le t  a~ +1 be a,~o where  
m 0 is least such tha t  a~o 6 Vs+l. F o r  an induct ion,  define ak+ls+l as a~ s where  m is 

s . s+ l  . s + l ~  F ina l ly  we say P<,.,~> received least such tha t  a.~ s 6 c l (V s+l u ~ o  .... , -~ JJ- 
a t tent ion  at stage s (using x and y).  Th i s  comple tes  the cons t ruc t ion  of /7 .  

LEMMA 6.4. R is met. 

Proof. T o  conclude  V is a recursive subset  of U, it  suffices to show tha t  for  
all u e U, u E V impl ies  u e V~+I; for  V ° C V x C -.. and  the V s are expl ic i t ly  
given. So we mus t  show tha t  for u < s, if  u 6 Vs, then  u 6 Vs+l. Suppose  indeed  
u < s, u 6 Vs. I f  no P<e.n> receives a t ten t ion  at stage s, then  V s = V 8+1 and so 

u 6 Vs+l. I f  a P<~,~> receives a t tent ion  at stage s (using x and y) ,  by  cons t ruc t ion  
the given u is one of u 1 ..... u t .  So we mus t  show u 1 , . . . , u t 6 V s + l .  W e r e  
u~ ~ V s+l ~--- c l (V  s u {y}), then  since the choice o f y  in the cons t ruc t ion  ensures  
y ¢ V s, we m a y  app ly  the exchange pr inc ip le  and get y ~ c l (V s U (x~}) = clv,(x~}. 
Th i s  contradic ts  the choice o f y  in the  construct ion.  So ui 6 Vs+l, u 6 Vs+l, and R 
is met.  

Th i s  p roo f  has l i t t le to do wi th  supe rmax ima l i ty  and allows one to get  recurs ive  

sets satisfying many  different  k inds  of  requirements .  

LEMMA 6.5. Suppose P<,.~> receives attention at some stage s. Then P<e.~> 
is met, and P<e,~ > never receives attention at any stage s' > s. 

Proof. Suppose  P<~.n> received a t tent ion  at stage s'  (using x and y).  T h e  
zhoice of  y in the cons t ruc t ion  guarantees  that  y ff c l (V 8 u (x} k) {b~}) - -  
zl(Vst3{x}) .  A p p l y  the exchange pr inc ip le  to conclude  tha t  b ~ c l ( V s L 3  
ix} ~9 {y}). But  V s+l is c l (V s L) (y}) and x ~ We s, so bn ~ c l (V s+l u W~+a). Th i s  
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gives b~ e cl(V U W,), so P<,.,> is met.  I n  addi t ion this gives b~ e cl(V s' u W~') 

for all s' > s, so clause (i) in  Def ini t ion 6.3 is never  satisfied for s replaced by  an 

s' > s. So P<e,,~> never receives a t tent ion at any  stage s' > s. 

s+l  a s + l  _ _  LEMMA 6.6. l f  P(e ,n  > receives attention at stage s, then a o = ao*,..., ~<n,,> - -  
a s 

( n , e )  • 

Proof. T h e  defini t ion of a~ +1 shows that  we need prove only  that  ao s, .... aS<n,~> 

is i ndependen t  over V s+l = cl(V s u {y}). I f  ao%.. , a~<~.s> are supposed dependen t  
over cl(V ~ U {y}), then  certainly s , a o ,..., a<n.~ > , y  is dependen t  over V s. But  
aoS,..., a<~.~>~ is i ndependen t  over V s, so it  follows t h a t y  e cl(V s U {a0 s, .... a~,~>}). 

T h e  choice of y in  the cons t ruct ion  ensures 

y e c l (V s u { x }  u {b,~}) - -  cl(V" u {bn}).  

Apply  the exchange pr inciple  and get 

x ~ cl(V * U {y} u {b~}). 

s 8 8 s Since y e cl(V s u {a o ,..., a<,,,>}), we now get x e cl(V s u {a 0 ..... a<n,,>} U {b~}). 
T h i s  contradicts condi t ion  (ii) of Def ini t ion 6.3. 

LEMMA 6.7. N<e,n > is met. 

Proof. ao s never  changes. Suppose,  for an induct ion ,  that  for s > / s  o we have 
s+l for an  s > s o according to s ~-~ a s T h e n  aS<e,n> ~ a<e,n > do s = do , . . . ,  a<e,n)-I <e,n)--I • 

L e m m a  6.6 on ly  if a P<e',n'> receives a t tent ion at stage s and  (e ' ,  n ' )  < (e, n ) .  
By L e m m a  6.5 this happens  at most  (e, n )  t imes, at most  once for each P<d,~'> 

wi th  (e' ,  n ' )  < (e, n) .  

LI~MMA 6.8. P<~,n> is met. 

Proof. Otherwise there is a least (e, n )  such that  dim[cl(W~ U V) /V]  - -  oo 

and  b~ 6 c l (W, u V). By L e m m a  6.5 we know P<~,n> never  receives at tent ion at 
any  stage. By L e m m a  6.6 there is an s o such that  for all s >~ s o we have ao s = 

a o,...,a<*,n> = a~,,~>. By L e m m a  6.5, s o may be chosen so that  for no 
(e' ,  n ' ) <  (e, n )  does P<,,~,> receive a t tent ion at any stage s > / s  o . Since 
dim[cl(W~ u V) /V]  = oo, we get d i m [ W d V  ] ~- o% so by  Proposi t ion 2.8(iii) we 
get d i m [ W J c l ( V  u {% ,..., a<,,~>} u {b~})] = oo. All  this is to get an x E W~ such 

that  x q~ cl[V u {% ,..., a(e,n)} U {b~}]. 
Le t  s > / s  o be  chosen so that  x e W J .  Cer ta inly  by  the above bn ~ cl(W~ s u V 0 

and  x e W~ ~ and  x ~ cl[V s u {%L .... a~,~>} u {b.}]. So P<~,~> requires a t tent ion 
at stage s. By the choice of s > s o , P<~,n> receives a t tent ion at stage s, contrary to 
hypothesis.  So P<~.~> is met.  
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We show how to lift the main theorem of Shore [16] to regular Steinitz closure 
systems. This method may be used to control the dependence degree of super- 
maximal elements of the sort constructed in Section 6, but we omit such develop- 
ment here. 

THEOREM 7.1. Suppose (U, el) is recursively presented, of infinite dimension 
and regular. Let Ao , A1 .... be a sequence of sets of integers such that (i) Ai is r.e. 
uniformly in i, i > O. (ii) d(A,) <~ d(Ao) uniformly in i, i > O. (iii) d(A,) 
d(Ai+l) for i > O. Then there is a V ~ ~ ( U )  such that d(D(V)i) = d(Ai) for all 
i > o and d(D(V))  - Ao .  

Proof. Let B be an r.e. base for U. For each pair (n, k) in o~ × w, recursively 
pick an explicit finite subset Bk ~ of B, of cardinality k if k > 0 and of cardinality 
n + 1 if k ~-- 0. Do this in such a way that distinct pairs are assigned disjoint 
sets. Since (U, el) is regular and recursively presented, we can compute an 
x~" ~ cl(Bk n) - -  (3 (el B '  l B '  ~ Bk"} and put V = cl(xk • J n ~ Ak}. Now regard 
Bk ~ as a k-tuple of elements of U if k > 0, an n + 1-tuple of elements of U if 
k = 0. Even this small amount of care yields 

n E Ak e-~ Bk ~ ~ D(V)~ for k > 0, 

n E A o ~ Bo n E D ( V )  (exercise). 

So we get d(Ak) ~ d(D(Vk)) uniformly in k > O, d(Ao) ~ d(D(V)). To obtain 
the opposite inequalities a more careful choice of xk ~ is required. First, modify 
the choice of B~ ~ if necessary so that whenever b E Bfl ~, then # b  > n. Now we do 
the actual construction. Each stage s is divided into substages k, k = 1,..., s. We 
will construct a finite explicit subset I s,k of U before stage s, substage k. Let 
V s,k ~- cl(P ,k) and finally let V z [.)s.k Vs'~. Let Ak ~ be the finite subset of A~ 
enumerated by stage s, arranged so that for all k and s, we have that A s+l - -  Ak ~ 
has at most one member. Then stage s of the construction goes as follows. 

Substage 1 of Stage s. Suppose that n 1 e A~ +1 --  Aft. Let x~  be the unique 
member of B~*. Put p,2 ~ i s , 1  k.) {x~Q. 

Substage k of stage s with 1 ~ k ~ s. Suppose that n k ~ A~ +1 -- Ak s. Let 
x 1 ..... x t be thosej-tuples x such tha t j  ~ k and # x  ~ nx and x ~ D(Vs.~). Since 
x is aj- tuple it may be written (x~ ,..., x~). Let clw,, x be c l ( P  ,k t3 {x~ [ 1 .... ,j}). 
Now B~,~ is a k element set independent over V ~,k by construction. Recursive 
presentability and regularity of (U, cl) imply that we may compute an x~  in 

t 

clv..~ B~ ~ - -  U {clv~,~ B '  [ B '  ~ B~. ~} - -  (Q clw,~ ~i. 
i = l  

Finally define p,~+i = p,~ u (x~.k}. 
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Substage s of  stage s. Suppose that n s ~ Ao +1 --  Ao s. Let x~,..., xt be those 

j- tuples x with j ~< n~ and # x  ~< nx and x q~ D(Vs.O. Now B~, is an n s @ 1- 
element set independent over V s,s by construction. Recursive presentability 

and regularity of (U, cl) imply that we can compute an x~, in 

t 

clw.~Bg' - -  U {c lv , . ,B ' :  B ' 2 n " , ' ~ 0 , -  U clv ..~'- 
/=1 

Finally define is+x.~ = p .  ~ L3 {x~,}. This completes the contruction. 

LEMMA 7.2. Suppose that j ~ 1 and for all a ~ j ,  we have a ~ A~o +-~ a E A o . 
Suppose that x is a j-tuple from U. Suppose sl > So is such that for  all a < # x  and 

all i ~ j ,  we have a ~  A~.~-~ a 6  A i .  Then for all S > Sl,  we have that 
n k E A~ +1 - -  A~ s and x ¢ D ( V  ',k) imply x ~ D(cl(V s,7e k) {x~}). 

Proof. S i n c e i =  1 is a n i ~ j ,  for a l l a  < # x w e h a v e a ~ A ~ + - + a ~ A  1. 
So if s > s 1 and n 1 ~ A~ +1 - -  Aa ~ we may conclude n 1 ~ #x .  

Case 1. s > k > j .  At stage s, substage k we have x a j - tuple with j < k, 
# x  ~ n l ,  and x 6 D(Vs'k) • So x is one of x I ..... ft. By construction this implies 

% _ _ % would be a dependent x k ¢ clv,,, x. Were x in D(cl(Vs.k u {x~}) then _x, x~ 
sequence over V s,~. By assumption, _x is independent over V s,~, so we could 
conclude x~ ~ clw,, x, contrary to what was proved above. 

Case 2. s = k  > j .  The choice of s o ensures that for all a ~<j, a~A~0~-+ 
a ~ .d o . So s > s o and ns ~ Ag +1 - -  A0 s imply ns > j.  Combining this with the 

already known n~/>  # x  and the assumed x q~ D(Vs.O implies that at stage s, 
substage s, x is one of_x~,..., x *. Just as in Case 1 we can go on to conclude 

_x ¢ D(cl(V s's u {x?'}). 

Case 3. k < j .  For sl > So, for all i ~ j and all a < # x  we know a ~ Ai  s +-~ 
a E A i .  By assumption, k is an i ~ j and nk ~ A~ +1 - -  Ak s for an s > Sl, so we 

may conclude nk ~ #x .  Now if b ~ suppB x~k = B~k, the choice of numbering # 
implies # b  > nl~. Combining, we get # b  > #_x for all b ~ suppB x~.  If 
we had ~ED(c l (V  s,1~ W(x~k}), then Corollary 3.12 would imply that every 
b ~ suppB x ~  - -  suppB V *'7~ has #_x > #b.  Combining with the above, we would 

x% C V s,k. This is false since the left-hand side is B~ ,  conclude suppB ~ k - suppB 
the right-hand side is the union of certain other B~; ,  and the Bk ~ are disjoint 
and nonempty. So x ~ D(cl(V s,k u (x~k})) as required. This  concludes the proof 
of Lemma 7.2. We return to complete the proof of Theorem 7.1. Suppose a 
j / >  1 is given. How do we determine for _x a j - tuple  from U whether or not 

x_ ~ D(V)~,  recursive in Aj ? For the given j,  we may suppose s o for Lemma 7.2 

given. Now recursive in A s (since d(Ao) <~ d(A1) <~ "" <~ d(Aj)) we can compute 
s 1 > s o for Lemma 7.2. Then  ~ ~ D(V) j  ,~, x_ ~ D(Vs~+~a)~. But given s, V s*+l'~ 
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is an  explici t  f inite d i m ens i ona l  c losed set  w i th  d(D(pl+a'l))  = O. So we have  

d(D(V)j)  ~ d(Aj). T o  see t h a t  d(D(V))  ~ d(Ao), observe  t h a t  above  s a is com-  

p u t e d  f r o m  A~. un i fo rmly ,  w h i c h  can  be  c o m p u t e d  f r o m  A 0 ,  so d(D(V)j)  ~ d(Ao) 
u n i f o r m l y  in j ,  or d(D(V))  ~ d(Ao) as requi red .  
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