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1. INTRODUCTION

The theory of 1.e. (recursively enumerable) vector spaces was introduced in [9]
by us. The object of study there was the lattice £(V,) of r.e. subspaces of a
countably infinite-dimensional vector space V', such that V,, and its field of
scalars were sufficiently effective. Inspired by this several authors have published
interesting further results on Z(V,).

In particular we point out Kalantari-Retzlaff [8], Remmel [11], and Shore [16].
We were then interested in whether a similar theory could be developed for the
lattice £ (F,,) of all r.e. algebraically closed subfields of an algebraically closed
fild F,, of countably infinite transcendence degree such that F,, was sufficiently
effective. The major difficulty was that a key lemma which supplied the “punch
line” for many priority arguments in #(V,) was simply false for Z(F,). If
ACV,, let cl(4) be the subspace 4 spans. If ACF,, let cl(4) be the alge-
braically closed subfield of F, that 4 generates. Let B = {§, , b, ,...} be a vector
space basis for ¥, let V' be an infinite-dimensional subspace of V', , and let
m 220 be an integer. The lemma alluded to above asserts (V' N cl{d,, , b,,11,---}) —
cl & == &, ie., there is a nonzero veVnclb,, b, 1,..}. Now let B =
{by , by ,...} be a transcendence base for F, over its prime subfield, and let F be
the infinite-dimensional algebraically closed subfield of F, generated by
{by , by -+ byb, , by + by ,...}. Then Fclfh, , by,..} —cl @ = @, Le., every
element of F'N cl{d, , b, ,...} is algebraic. So the obvious corresponding lemma
fails for #(F,). (This example is due to Ash and may be verified by using
Jacobians (see [6]).)

In a way this is a manifestation of the nonmodularity of £(F,), in contrast
to the modularity of #(V ). In a modular lattice an element cannot have two
distinct comparable complements. But in #(F,,) if we let H = cl{b, , b, ,...},
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G = cl{b,}, define F as above, we see that F'and G are distinct complements of H
which are not comparable.

With the development of new techniques which bypass such lemmas
and work for F(F,), the central role of the dependence relation became
apparent. Indeed the operations (vector addition and scalar multiplication
for V,, field operations for F,) play no direct role. Only the relation of
dependence occurs. It turns out to be clearer and cleaner to develop the subject
for abstract dependence relations as defined by Van den Waarden [17, p. 200].1
Other well-known equivalents are transitive dependence relations [1, p. 254] and
matroids. We use the fully equivalent notion of a closure operation obeying the
Steinitz exchange principle. This fits the arguments best.

Let P(U) be the power set of U.

DEerFINITION 1.1. A Steinitz closure system (U, cl) consists of a set U and an
operation cl: P(U) — P(U) such that for all 4, Be P(U),

(iy ACc(4),
(i) A4 C B implies cl(4) C cl(B),
(iti) cl(cl(4)) = cl(4),
(iv) e cl(4)implies that there is a finite A* C 4 such that x e cl(4%),
(v) xecl(du{y}) — cl(4) implies that y e cl(4 U {x}).

Here (i)(iv) are Moore’s axioms for a closure operation; (v) is the Steinitz
exchange principle. Elementary properties are developed in Cohn [1, pp. 252~
262], and used here. For us the most important examples are (w, cl), (V, , cl).
and (F,,,cl). (Here w = {0, 1, 2,...}, cl(4) = A for ACw.) We cal ACTU
closed if cl(4) = 4. Every closed set has a well-defined dimension. The key new
notion we introduce is regularity.

DzeriNiTION 1.2. A finite-dimensional closed set C C U is regular if it 1s not
the union of a finite number of its proper closed subsets. We call (U, cl) regular
if all its finite-dimensional closed subsets are regular.

It can be verified (see Section 2) that (F,,cl) is always regular, and that
(V. ,cl) is regular if and only if the scalar field is not finite; while (w, cl) is
obviously not regular. In Section 3 we give a definition of recursively presented
Steinitz closure systems. It will follow that a regular Steinitz closure system is
recursively presented if and only if

1 The referee of Crossley—Nerode [2] asked whether Van der Waarden’s dependence
relations (familiar to algebraists) could be used for effective dimension theory instead
of minimal formulas (familiar to logicians) as in [2]. This paper is a partial answer to
that question.
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(1) Uis a recursive set of integers,

(ii) for any a, b ,..., b,, in U it can be effectively determined whether or
not a e clfd, ,..., b}

We may use Godel numberings to regard V., and F,, as having domain w and
to regard (w, cl), (V,, , cl) and (F,, , cl) as recursively presented.

We believe that recursion theory over infinite-dimensional, recursively
presented regular Steinitz closure systems (U, cl) is natural and has depth, and
that virtually all results previously obtained for #(V,,) can be formulated and
proved for such (U, cl). We support this contention by formulating and proving
generalizations to regular Steinitz systems of the theorems listed below which are
from the above-mentioned papers on £(V,):

(i) Maximal spaces via e-states (Metakides—Nerode [9, p. 158], Theorem
4.1).

(ii) Maximal spaces generated by maximal subsets of bases (Metakides—
Nerode [9, p. 160], Theorem 4.8).

(iii) Maximal spaces with no extendible bases (Metakides—Nerode [9,
p. 161], Theorem 4.8; Remmel [11, Theorem 1, p. 402]).

(iv) Supermaximal spaces (Kalantari-Retzlaff [7, p. 486], Theorem 3.1).
(v) Dependence degrees (Shore [16, p. 19], Theorem 2.2).

The generalizations here are respectively Theorem 4.2, 4.8, 5.1, 6.2, and 7.1 for
-,

Far weaker hypotheses than regularity may be used to get any one of these
theorems individually; a different algebraic condition for each theorem. These
will be dealt with in a sequel by Nerode and Remmel. Classes of matroids arise
in combinatorial theory which satisfy such weaker hypotheses, but these are very
much less known to the working mathematician or logician than V,, or F, .

2. STEINITZ SYSTEMS

Throughout this section (U, cl) will be a Steinitz closure system.

ProposiTION 2.1. If BC U and clg(A) = cl(A VY B), then (U, clp) is a
Steinitz closure system. We refer to clg(A) as the closure of A over B.
DerFinITION 2.2. Suppose 4, B, C,1C U,
(1) A4 is closed (over B) if 4 = clg(A4).

(ii) A is independent (over B) if 4 % @ and for all ac A4, we have
a ¢ cly(4 — {a}).
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(i) A4 spans C (over B)if C C clz(4).

(iv) IC A is a basis for 4 (over B) if I spans A (over B) and I is inde-
pendent (over B). In case B is empty, omit the phrase “(over B).”

PropositioN 2.3. Let A be closed. Suppose I, S C A, and I is independent and
S spans A. If 1 C S, then there is a basis X for A such that IC X C S.

Proof. 'Theorem 2.4 of [1, p. 256].

ProPOSITION 2.4. Suppose B and A are closed, B C A. Let B, be a basis for B.
Let A, be a basis for A (over B). Then 4; U B, is a basis for A.

Proof. B, spans B, A, spans A (over B), so BC cl(By), ACcl(BU 4,), or
AC (B, U A4,), or B;U 4, spans 4. Since B, is independent and B, U 4,
spans A, Proposition 2.3 yields a basis X for 4 such that B;C XC A4, U B;.
It suffices to show X = A4, U B, . Otherwise there would be an ain 4, , a ¢ X;
then X C (4, — {a}) U By, so cl(X) Ccl((4, — {a}) U B,). Since A, is inde-
pendent over B, a ¢ cl((A, — {a}) U B,), so a ¢ cl(X), so X does not span 4,
contrary to hypothesis.

DrrinrrioN 2.5. Let BC A4, B, A both closed. The dimension of 4 (over B)
is the cardinality of any basis of 4 (over B), denoted by dim[A4/B].

PrOPOSITION 2.6. Suppose X, U X, s independent, X;,X,C U. Then
cl(X7) N cl(Xy) = cl(X; N Xy).

Proof. 'This is proved exactly as in Corollary 6.7 ([1, p. 28)).

Proposrrion 2.7. Let B, IC U, x e U. Suppose B is closed, I is independent
(over B), and x € cly(I). Then there is a smallest finite set I' C I with x € clg(I'),
denoted as supp; x (over B).

Proof. 'The fourth clause in the definition of a Steinitz closure system in
Section 1 shows a finite I’ exists. By Proposition 2.6 we may intersect all such and
get a smallest.

ProrositioN 2.8. Let B,1C U, B closed, I independent (over B).

(i) Forxecly(l), ] C 1, wehave x € cly ] < supp, x (over B) C J.

(ii) Let %9, %y ,... be a sequence from clg(I). Suppose supp, x, (over B) €
Ui1supp; x; (over B). Then x, ¢ cly{x, , %, ,...}.

(iii) Suppose I is infinite, F C U is finite. Then I is infinite dimensional over
BUF.

Proof. Note that (i) is immediate from Proposition 2.7. As for (ii), by (i) we
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get %, ¢ cly Uiy [supp; x; (over B)]. But clp{wy, %, ,...} C cly Uiy [supp; #;
(over B)]. For (iii) note that were I finite dimensional over F'U B, we would get
(GUFUB)=cl(IUFUB)forafinitte GCI,and clz ICc(BUF U G) =
clz(F U G). So clp(I) is contained in a finite-dimensional closed set over B, hence
is itself finite dimensional over B.

ProposiTION 2.9. Let VC U be finite dimensional and closed. Then V is
regular if and only if whenever VC Uy U -+~ U U, with Uy ..., U, C U closed, we
get that for some 1, VC U, .

Proof. If V is regular, and VCU, U --uU U,, obviously, V =
nNnU)v- v (lVnU,) All terms are closed. By regularity, for some ¢
V=VnNnU; so VCU,. If conversely the condition holds, then V =
U,V -~ U U, implies V' C U, for some 7. But U; C V, so V = U,, hence V is
regular.

Lemma 2.10. Let C, D, ,..., D, be subspaces of a vector space over an infinite
field. Then C C Dy U --- U D, implies for some i, CC D, .

Proof. Otherwise there exists a v; € C — D, for each ¢ = 1,..., n. Suppose we
were given a set .S of n-tuples (A, ,..., A,) from the field of scalars and were told
that for every 7, S has at most  — 1 members (A, ,..., A,) with Aoy + -+
Ao, € Dy Then from CC D, U -+ U D, we would conclude S has at most
n{n — 1) = n® — n members. Thus if S is any set of #-tuples (A, ,..., A,) from
the field of scalars with at least n2 — n -~ 1 members, then for some 7 there are
at least # members (A ,..., A} of S such that Ajv; + -+ 4 A9, € D; . Since the
scalar field is infinite, we can easily find a set S of #2 — n - 1 n-tuples (A, ,..., A,))
such that any # of them are independent. Apply the observation above and obtain
n n-tuples (A;y ,..., A;), £ = 1,..., n such that these n-tuples are independent and
for a single 7, Ay 4+ - + A0, € Dy yeesy Ay + 0 4+ Ao, € D, . Since D,
is a subspace and the matrix is invertible, all #; ,..., ©,, are in D, contrary to
hypothesis.

Prorosttion 2.11.  Any (V, , cl) is regular over any infinite scalar field. Also
(F ,cl) is regular.

Proof. The regularity of (V,, cl) is just Lemma 2.10. For (F,,, cl} suppose
C, D,,..., D, are algebraically closed subfields of F,, and CC D, U U D, .
Regard F, as a vector space over its subfield of algebraic elements. Then Lemma
2.10 again yields the desired result.

ProrosiTioN 2.12. If (U, cl) is regular and V C U is closed, then (U, cly) is
regular.

Proof. Let C,D,,...,D, be finite dimensional and closed in (U, cl}).
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Suppose each of D ,..., D, is smaller than C. Then if £ = dim[C/V], we know
k > dim[D,/V],..., dim[D,/V]. Let b, ,..., b; be independent over V and in C.
For any given ¢, it cannot be that b, ,..., b, are all in D, , for then dim[D,/V] = k.
So for all 7, cl{b,,..., 0,3 " D; C cl{b,,..., b,}. By regularity there is a y in
by ..., by — Upea[clfdy »..., by N D;]. Since yeclfd,,..., 53 CC, we get
yeC — (D,V -+ U D,) as desired.

ProposiTioN 2.13 (Wagner). (U, cl) is regular if and only if all closed sets of
dimension 2 are regular.

Proof. Every Steinitz system is regular in dimension 0, 1. Suppose C has
dimension ¢+ 1 > 2 and D,,..., D, have dimension <. We show that
C— (Dyv-+uUD,) # &. For this purpose a definition of Shore [16, p. 19] is
used. Let b, ,..., b, be a basis for C. Call z € cl{b, ,..., b,_;} #-bad for D, if 2, b; are
independent and cl{z, b,} C D, . For k << ¢, call a z € cl{b ,..., b;,_,} k-bad for D,
if there exist independent ¥, w in cl{z, b,} with both y and w £ 4- 1-bad for D, .

Levma 2.14. If z is k-bad for D, , then z, by, ..., b, D; .

Proof. If z is t-bad for D;, then 2z, byecl{z, b} CD,. If & <<t and we
assume the lemma holds for all 2 -- 1-bad = for D, , proceed as follows. Let z be
k-bad for D, . There are independent y, w in cl{z, ,} both 2 4 1-bad for D;.
By inductive hypothesis, y, w, by, ,..., b, are all in D, . So %, b, ecliz, b} =
iy, w}CD,;. Thus 2, by, ,..., b, D, .

Now to conclude the proof of Proposition 2.13 we produce a sequence
2y ,---, % such that g, is not & 4 I-bad for any D; as follows. Let 2, be b, . If
b, were 1-bad for D;, Lemma 2.14 shows b,,..., b, € D; and dim D; > ¢ + 1,
contrary to supposition. So now assume zj, € cl{b; ,..., b;} has been chosen with
2z, not &+ 1 bad for any D, .

Case 1. k <t — 1. Since 2, is not 2 + 1 bad for D;, there cannot exist an
independent pair of elements of cl{z, , b,,,} each of which is 2 + 2-bad for D, .
This says that the following set 7 is <{ one dimensional.

T, = c{yecl{z, b1}y is &+ 2-bad for D;}. But ci{z,, by} is two
dimensional. Since by hypothesis all two-dimensional closed sets are regular,
there is a 25,4 in cl{2y, by} — (T3 U - U T7). Since 2, € cl{by ,..., b}, we get
Zpe €cl{by ..., by 4}. Since 2,y is chosen outside Ty,...,T,, z,,, is not

k + 2-bad for any D, .

Case2. k=1t—1. Then 2, ;ecl{b,,..., b} is not t-bad for D;, so
T, = cl{z;_;, b N D, is a closed set of dimension <{1. By regularity of dimen-
sion-two closed sets there is a z; in

iz g, b — (Ty V- UT,).
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Now z; € cl{b, ..., b} C C. Since 2, ¢ T; and z, € cl{z;_,, b}, we get 2, ¢ D, . So
z2,eC—DyU-UD,.

In the lattice of closed sets of U the operationsare A A B=ANB,Av B =
cl(4 U B). Then Bis a complement of 4if Av B = U, AA B =cl &. This
is not useful for Steinitz systems whose lattice of closed sets fails to be modular.
The missing ingredient is the following definition.

DeriniTION 2.15. Closed A, B are independent if any independent set in 4 is
independent over B.

This apparently asymmetric definition is actually symmetric, as the following
proposition demonstrates.

ProrosiTION 2.16. Let A, B be closed sets such that A A B = cl . The
following are equivalent:

(1) Thereis a basis X for A v B such that A N X is a basis for A, BN X
is a basis for B.

(i) For all independent sets A, C A, B, C B, A, U B, is independent.
(iii) Ewvery basis for A is a basis for A v B over B.
(iv) Some basis for A is a basis for A v B over B.

Proof. (iil) — (iv) is immediate; (iv) — (i) is Proposition 2.4. For (i) — (ii),
suppose X is a basis for 4 v B, AN X a basis for 4, BN X a basis for B.
Suppose 4, C 4, B, C B, A, , B, are independent, A; U B; dependent. Without
loss of generality assume A, , B, are finite. Since 4 N X is a basis for 4, 4, C
cl(4,), 4, finite with m elements, 4; C A N X; similarly B; C cl(B;), B; finite
with # elements, B; CB N X. By hypothesis 4; U B; C X is independent,
hence cl(4] U B)) is of dimension m -+ n. Extend 4, to a basis 4; for cl(4y),
B, to a basis B, for cl(By), so cl(4;, U B,) = cl(A U B)). Now 4, must have m
elements, B, must have # elements, so since 4, U B, spans m -+ n-dimensional
cl(4; U B}), we conclude 4, U B, is independent and that 4, U B, is inde-
pendent as required. Now to see (ii) — (iii). Let 4; be a basis for 4, B, a basis
for B. By (ii), 4, U B, is independent so for ac 4, ,a ¢ cl(4; U B, — {a}) =
clp(4, — {a}), so A, is independent over B.

DeFiNtTION 2.17. If 4, B are closed, then B is an independent complement of
Aif Av B = U,and dim 4 = dim[4/B].

Note that an independent complement is indeed a complement: if 4, is a basis
for A, B, a basis for B, by Proposition 2.16, 4, U By is a basis for U,so A N B =
cl(4,) N cl(By) = cl(4, N B,) = cl( ) by Proposition 2.6.

Of course every closed B has an independent complement, namely, take any
basis 4, for U over B and let cl(4,) = 4. Finally, any two comparable inde-
pendent complements B, C of 4 are equal. Suppose B C C. Let 4, , B, be bases
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for A, B, and let C be a basis for C extending B; . Since B, C are independent
complements for 4, A, U B; and 4, U C, are both bases of U, and 4, U B, C
A, UC;.80,4,UB;, =4, UC, .ButA,NnB;,=A4A,NnC,=g,50B;, =C;.

3. RECURSIVE PRESENTATIONS

DrrIntTION 3.1. A Steinitz closure system (U, cl) has recursive dependence if:

(i) U is arecursive set of integers;

(ii) there is a uniform effective procedure which, applied to @, b, ,..., b, € U,
determines in a finite number of steps whether or not a € cl{b, ,..., b,}.

ProrostTioN 3.2. Suppose (U, cl) has recursive dependence. Then there are
uniform effective procedures which:

(1) from explicit indices for finite sets A, B determine whether or not
c(A4) C ci(B);
(ii) from an explicit index of a finite set A determine whether or not A is
independent;
(i) from an explicit index of a finite set A compute an explicit index for each
subset of A which is a basis for cl(4);

(iv) from a recursive enumeration of A yield a recursive enumeration of a
basis for cl(A);

(V) from an explicit index of a finite independent set A yield a recursive
enumeration of a basis B for U which contains A4;

(vi) from a recursive enumeration of an independent set I (over finite set ),
Jrom an explicit index of F, and from an x c clg(I), yields an explicit index for
supp; x (over F).

Proof. An explicit index for a finite set is of course one that yields both an
effective listing of the set and a computation of its cardinality. For (i) observe
cl(A4) Ccl(B)«> A Ccl(B) > for each ac 4, we have aecl(B). This can be
determined because of recursive dependence.

For (ii) note that from an explicit index of 4 we can determine whether
A = ¢, and if not whether any a € 4 has the property that a € cl(4 — {a})
using recursive dependence. For (iii) note that by (i) and (ii) we can check each
A’ C A4 for independence and also check cl(4') = A. For (iv) list A as a;, a, ,...
effectively. Drop a;, from the list if a; € cl(ay ,..., @;_,) using recursive dependence.
For (v)list A as a,,..., a, , and let ay ,..., @, , U, , Uy ,... be alist of all of U that is
effective, then by (iv) to a basis. For (vi) observe that since I can be enumerated
as 7y, 4,. and xecly(l), recursive dependence computes an 7z with
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x € clp{dy 5., i} Then we test to find a smallest I' C {7, ,..., 2,,} with x € cl(I"),
and this is supp; x (over F).

The definition given below for “recursively presented” is more general than
is actually used in this paper. It appears to be the correct requirement for recur-
sion-theoretic arguments in the nonregular case.

DEerFiNITION 3.3. A Steinitz system (U, cl) is recursively presented if:

(i) U is a recursive set of integers;

(if) there is a uniform effective procedure which, applied to explicit
indices of finite sets 4, By ,.... B, C U, determines whether or not cl(4) C
(cA(B) U - U (cl(By))-

ProrositionN 3.4. If (U, cl) is recursively presented, then (U, cl) has recursive
dependence.

Proof. aceclh,,..., b,} > cl{a} Cclib, ,..., b,}.

PropositionN 3.5. If (U, cl) has recursive dependence and is regular, then
(U, cl) is recursively presented.

Proof. Let A4, B, ,..., B, be finite subsets of U given by explicit indices. By
regularity cl(4) C (cl(B;)) U -+ U (cl(B)) if and only if cl(4) C cl(B;) for some i.
This can be tested effectively (Proposition 3.2(1)).

PropositiON 3.6. The Steinitz closure systems (w, cl), (Vo , cl), (F,, ,cl) are
recursively presented.

Proof. We do only the cases of (V,, , cl) with scalar field infinite and (¥, , cl).
By Propositions 2.11 and 3.5 we need only show recursive dependence. This is
classical (Row reduction for (V. , cl), Jacobians for (F, , cl)); see [6, p. 58;
4, 5] for the field case.

DEerNiTION 3.7. Let V be a closed subset of U. For & 2= 1 let D(17),, be the
set of all k-tuples y = (y; ,..., ¥) such that y is dependent over V. Put D(V) =
User D(V). (Of course, if (U, cl) has recursive dependence and V is r.e., then
DV, D(V) are r.e. with r.e. Turing degrees d(D(V),), d(D(V)).)

Let Z(U) be the lattice of r.e. closed subsets of U.

ProrosiTiON 3.8. Suppose (U, cl) is a Steinitz closure system with recursive
dependence. Suppose V, We L(U), VC W, dim[W|V] < co. Then d(D(V)) =
d(D(W)).

Proof. Let wy,..., w; be a basis for W over V. Then for y = (¥, ,..., Y1),
YEDW ) (P15e0s Vi s Wy yeees W) € D(V), 50 d(D(W)) < d(D(V)). To demon-
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strate the opposite inequality we show by induction on & that D(V'),, is recursive
in D{W) uniformly. Let v, , 9y ,... be an r.e. basis for V.

We can find a basis for U over W, recursive in D(W). Since dim[W/V] <C oo,
there is a finite basis of W over V which, together with the aforementioned basis
of U over W, yields a basis u, , u, ,... for U over V which is recursive in D(W).
Let B = {2y, v1 ..., 4y, %1 ,...}. For k =1, y = y,, note that y,; € V if and
only if suppp y; is a subset of {9y, vy ,...}. This can be determined recursive in
D(W). Suppose the proposition is known for k& and (¥q,..., ¥541) Is given. If
(Y15 v8) € DV, , certainly (94 4o, Vi, Virs) € D(V )iyq - Otherwise (yy ..., ¥y)
is independent over V. Look at the list ¥; ,..., ¥4 , %, , %; ... . Since V'is r.e., we
may effectively drop an element from this list as soon as it is determined that it is
in cly of the preceding elements of the list. After precisely % of the u; have been
dropped, we drop no more, having guaranteed a list y, ,..., Vg , % »... which is a
basis for U over V recursive in D(W). Note y;,, € cl{y, ,..., 3} if and only if

SUPPp Vi1 © {¥1 5ees Vief, Where B = {0y, 01 yeee, V1 yeees Vi » Ug » Uy »---}, and this
can be determined recursive in D(I¥).

CoroLLARY 3.9. Suppose (U, cl) is a Steinitz closure system with recursive
dependence.
() Suppose Ve Z(U), dim[U/V] < co. Then d(D(V)) = 0.
(i1) Suppose Ve L(U), dim V << 0. Then d(D(V)) = 0.

Proof. For (i), d(D(V)) = d(D(U)) = 0. For (ii), d(D(V)) = 0 because
(U, cl) has recursive dependence.

PropositionN 3.10. Let (U, cl) be a Steinitz closure system with recursive
dependence. Let V € L(U). Then
(1) D(V);is r.e. uniformly ini > 0.
(i) dAD(V);) < d(D(V)) uniformly ini > 0.
(i) d(D(V))) < d(D(V)yyy) for all i > 0.
Proof. For (i) note (¥, ,..., ¥;) € D(V); means one of y, e cl,, &, y, €l {3},
ys€ch{ys, Yobreoos ¥: € lyp{¥y oy ¥iq} holds, while V is r.e. (ii) is immediate.
For (iii) look at two cases.

Case 1. dim[U/V] < 0. By Corollary 3.9 d(D(V)) = 0, d(D(V),) = 0.

Case 2. 'There exist b, ,..., b; independent over V. Then

(y1,53) e DV); > for all 7, (b; , ¥y 50y ) € D(V )41 -

One direction is obvious. For the other suppose both that (¥ ,..., y,) ¢ D(V);
and for all j, (b;, 3y ,..., ) € D(V);44 - Since yy ,..., ¥; are independent over V'
while y, ,..., ¥;, b; is dependent over V, we get b, € clp{y, ,..., y;} for all 7. Since
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by 5..., by are £ 4+ 1 in pumber and independent over V, cl,{y, ,..., y;} is =i + 1
dimensional, a contradiction.

ProposiTiON 3.11.  Suppose that (U, cl) is a Steinitz closure system of infinite
dimension with recursive dependence. Let B = {b, | i < w} be a recursive basis for U.
Then there is a 1-1 recursive function #:U — w such that

(i) #b, =i for all i,
(i) besuppgu— Hu = #bforallbe B,uec U.

Proof. Let By, B, ,... be a recursive list of all explicit finite subsets of B.
Define cl* B, = cl B; — J{cI B’ | B’ C B;}. Due to Proposition 2.6, B, == B;
implies cl* B; N cl* B; = @. We get U is the disjoint union of all cl* B, . Let
Ry, R, ,... be a recursive list of disjoint infinite recursive sets. Let # map B 1-1
recursively to Ry so that #b,e[xe R, | x > ¢]. Let # map (cl* B;,) — B, 1-1
recursively to [x€ R, | for all be B;, x> #b]. Then (i) is clear; for (ii),
besuppy s = B; implies #x > #bif x ¢ B,,

H#x=#b if x=0bebhB;.
If Vis a subset of U, let suppp V be the union of all suppy v with v in V.

CoROLLARY 3.12. Suppose j-tuples x = (%y,..., %;) from U are numbered

effectively so that for alli, #x > #x, . Suppose V is a closed set in U and x € U and
2e DV U {x})) — D(V). Then for all besuppgx - suppg V we have
#Hx > #b.

Proof. Since xis dependent on cl(V U {x}), it follows that (x, x) is a dependent
sequence over V. So we have xecly{x,,.., %} This yields suppsx <
Ui1 suppp #; U supp V. For the b specified above we may then conclude that
b € suppy «; for some 7. Then Proposition 3.11 yields #x; > #b. The hypotheses
#Hax > #x; then yields #x > #b.

Drrinrrion 3.13. Suppose (U, cl) is a Steinitz closure system with recursive
dependence. Then V € £(U) is decidable if D(1') is a recursive set.

ProrosiTiON 3.14. Let (U, cl) be a Steinitz system with recursive dependence
and V € L(U). Then the following are equivalent.
(i) V is decidable.
(ii) V has an independent complement W e Z(U).

(i) V has a basis which is a recursive subset of a recursive basis of U.

Proof. For (i) — (ii), D(V) recursive gives a procedure for taking an r.e.
enumeration of U and omitting an element if and only if dependent over ¥ on
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preceding elements, getting an r.e. basis #, , %, ,... for U over V and by Proposi-
tion 2.16 an independent complement W = cl(u, , #, ,...) for V in Z(U). For
(ii) implies (iii) let %, , %, ,... be an r.e. basis for W and let v, , v; ,... be an r.e.
basis for V, then by Proposition 2.16, {u, , #1 ..., vy , ¥y ,...} I8 an r.e. basis for U.
Every r.e. basis for U is recursive (exercise), so since {#, #;,...} N {0y, 01,0} = &
we have (iii).

We show that (jii) implies (i). By assumption there are disjoint r.e. independent
sets ¥y, Uy ,..., ty , ¥y ,... sUch that oy, vy ,... is a basis for V and vy, 2y ,..., % , 8y 5.
is a basis for U. Apply the argument in the proof of Proposition 3.8 (for
d(D(V)) < d(D(W))) to show d(V) = 0 as required.

ProrosiTiON 3.15. Let (U, cl) be a Steinitz closure system with recursive
dependence. Then for every infinite-dimensional V e £(U) there is an infinite-
dimensional decidable W C V.

Proof. Let uy,u;,... be an effective enumeration of U. Let v, v, ,... be an
effective enumeration of V. Define a sequence a,, 4 ,... inductively as follows.
Let ay = v, with m least such that v,, ¢ ¢l @. For n > 0, let a,, = v,, with m
least such that v, ¢ cl{a, ,..., @4,_4}. For n > 0, let a5,y = u,, with m least
such that u,, ¢ cl{ay ,..., @5,}. By construction a,, , & ,... is a recursive basis for U,
while @, , a, , a4 ,... is an r.e. basis for an infinite-dimensional closed subset of V.
Apply Proposition 3.14(iii) to conclude that W = cl{a,, a5, 4, ...} is decidable.

There are lots of 7€ .Z(U) which are recursive sets but not decidable. See
Theorem 7.1.

4., Maximal ELEMENTS

Metakides and Nerode [9] and Remmel [11] used e-state arguments to produce
maximal clements of £(V,). These proofs used algebraic lemmas true for
Z(V ) but false for other Steinitz closure systems such as #(F,). We give 2
proof for the existence of maximal elements here which uses a new definition of
e-state entirely avoiding those lemmas (Theorem 4.2). Remmel has subsequently
used our new definition of e-state to handle problems arising from dependence
relations which fail to obey the exchange principle. We further modify Shore’s
argument for (V) to show that a maximal subset of a basis yields 2 maximal
space so as to avoid the algebraic lemmas (Theorem 4.8). The theorems of this
section depend on (U, cl) having recursive dependence, but do not depend on
regularity.

DerinitioN 4.1. A Ve £(U) is maximal if (i) and (ii) below hold.
(1) dim[U/V] = oo.

(ii) For any We L(U) such that WDV, either dim[W/V] < o or
dim[U/W] < co.

481/65/1-4
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If (U, cl) has recursive dependence we let £(U) be the lattice of r.e. closed
subsets of U.

THEOREM 4.2.  Suppose (U, cl) is infinite dimensional and has recursive
dependence. Then £ (U) contains maximal elements V.

Proof. Let W, W, ,... be a standard Kleene style recursive enumeration of
Z(U). Let Wy be the explicit finite-dimensional closed subset of W), constructed
by stage s, so WP C W, C -+ and W, = ), W,*. At stage s we construct an
explicit finite independent subset M¢ of U and an infinite recursive sequence of
distinct independent elements a,, a%... disjoint from M* such that Ms U
{ay®, a;5,...} is a basis for U. Here MOC MIC ..., V = cl(Us M#). It will be
clearest to use a tower of windows as a visual aid. At stage s, a;® will be the
content of the jth window from the bottom. At stage s 4 1, a finite number of
windows will have their contents removed. The remaining window contents are
then allowed to fall to occupy all windows. Then a$*! is the resulting content of
the jth window from the bottom. The removed contents are added to M* to
form M**1. The new feature is the definition of e-state below.

DrrFINITION 4.3. The e-state of 4;° at stage sis the e -+ 1-tuple & = (a ..., @)
where w, is 1 or 0 according as to whether or not

a; € Cl(WnS V) Ms U {aosy"'y a?——l})'

These e-states are lexicographically ordered as is usual for e-states. Let P, be the
requirement that if W, 2 V, then either dim[IW/V] < oo or dim[U/W] < o,
Let N, be the requirement that lim, a)* = q,,... lim, e’ ; = a,_, exist (i.e.,
that dim[U[/W] > e). The priority ordering of requirements is of course Ny,
Py, Ny, Py,... which reflects itself in the lexicographic ordering of e-states.

DerFINITION 4.4. P, requires attention at stage s + 1 if e < s + 1 and there
exists a j > e such that 4,%, a,* <s -+ 1 and the e-state of a,° is less than the
e-state of a,°.

CONSTRUCTION.,

Stage 0. Let M° be the empty set. Let a0, a,°,... be a recursive base by, by e
for U.

Stage s + 1. If no e requires attention, let M+ = M¢and a]*! = a,foralls.
Otherwise let e(s + 1) be the least e requiring attention. For that ¢ — e(s + 1)
let j(s + 1) be the least j. Remove the contents of windows numbered e(s + 1),
e(s + 1) + 1,..., j(s 4+ 1) — 1, add these to M? to get M**, and let contents of
remaining windows drop to form the ait'. More formally, M = M=y
{8561 5es Gisi1} and @™ =g for § < é(s -+ 1) and a:&.l)ﬂ = @i(s11)4s
for all 4.
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Lemma 4.5. N, is satisfied for all e.

Proof. a,® = a, for all s, so N, is satisfied. If N, is satisfied, let s, be such that
@y = ay%,-.., @,y = @_y for all s > 5, . Then a,* % a®™ for s > s, only due to
its replacement by an element of higher e-state (examine the definition of e-state
and of requiring attention). There are only a finite number of e-states, 2¢1,

The final e-state of a,, is the e-state of a,,° for large s.

Lemma 4.6.  All but a finite number of a,, have the same final e-state.

Proof. Otherwise there is at least final e-state o possessed by infinitely many
a, and at least final e-state B > « possessed by infinitely many a,, . So there are
Jj > i > e such that the final e-state of a; is « and the final e-state of a; is S.
Choose by Lemma 4.5 an s, such that for s > s5,, we have ag® = q,° =
g 5., G50 == a;° = a; , and for all ¢ < j the e-state of a,* is the final e-state of a,,
and i < sy + 1 and a;, a; < sy + 1. Then P, requires attention at stage s +- 1.
So (s + 1) is defined, e(s + 1) <4, aff},y) # af(sp - Since e(s + 1) < i < j,
this contradicts the choice of s, .

Lemma 4.7.  All P, are satisfied.

Proof. Leta = (ay,..., ®,) be the final e-state of all but a finite number of g, ,
let % be such that for all j > &, a; has e-state «. We may suppose W, D V, where
V = (U, M?).

Case 1. «, is 1. Then for j >k, a;e (W, U Y, M* U {ay ..., a;_1}). So
U=cW,uVulay,..,a}) = (W,U{ay,..., a;}). So dim[U/W,] < 0.

Case 2. &,1s 0. For all j > &,

a;¢cd(W,u Y, MU {ay,..., a; 1}

Now ay.q , @ypg »--. certainly span U over cl(V U {a, ..., a3}). If dim[W,[/V] = o0,
there would surely be aj > kand a w e W, such that we cl(V U {gy ,..., a;}) —
c(V Uay,..., a;_1}). By the exchange principle we get

aecd(VUiay, ..,y Viw}) Ccd(W,u VUia,..., a;_1})

This is contrary to the choice of j > &. So dim[W,/V] < o0 as required.

We modify Shore’s argument that a maximal subset of a basis generates a
maximal space (Metakides and Nerode [9, theorem 4.7]) so that it works for
for Steinitz closure operations.

THeoreM 4.8.  Suppose (U, cl) is infinite dimensional and has recursive
dependence. Let B be an r.e. basis for U, M a maximal subset of B. Then cl(M) is
maximal in L(U).
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Proof. Suppose to the contrary there were a We L(U), M CW, dim[ W/M] =
dim[U/W] = 0. Let w, , @, ... be a recursive enumeration of W. Let ¢ be least
with suppp w; # @, put Dy = suppg w; . Suppose Dy ,..., D,, are defined. It
cannot be that for all j, suppp w; C Dy U -~ U D, , for then every w; is in
c(Dy U U D), WCcl(DyL -~ U D,) and W is finite dimensional. So there
is a least j with suppgw; L Dyu ~—-UD,. Put D, , = suppy w; —
Dy -V D,).

We get suppp w; C ;o D; for all j, since by construction {J;«; supps wy C
Dy U D, yields suppp w; C Dy U - U D, .

Case 1. For every finite B’ C B there is an # such that D, — (3 U B’) has
at least two elements. Let m,, m,,... be an effective enumeration of M, let
Ms = {m,..., m;}. Let A% be the union of M* with the least elements of each of
D, — M>,..., D, — M>, let A = {), A%. By construction, A contains the least
element of each D, — M and omits the next to least if it exists. But being in
Case 1 implies that for infinitely many n, D, — M has at least two clements.
Since the D, are disjoint, B — A and A — M are both infinite. This violates the
assumption that }/ is a maximal subset of B.

Case 2. 'There is a finite B’ C B such that for all n, D, — (M U B’) has at
most one element. Let 4 = BN (WU B'). We show that B — 4 and 4 — M
are both infinite, so that M is not maximal in B, a contradiction.

Suppose B — A were finite. Then dim[U/W U B’] is finite. Since B’ is
finite, dim[U/W] must be finite, contrary to hypothesis.

To show that 4 — M is infinite we show (i) every D, C A4, (i) (Uro D;) — M
is infinite. For (ii) note that for all j, suppg w; C Uio Dy, s0 W C cl(Ur o D))
So dim[W/M] infinite implies dim[{J;, D;/M] is infinite, which implies
€U0 D;) — M is infinite. For (i) let e be least with D, L A4, so that
Dy,...,D,_;CA (this is a possibly empty list). Then for some j, D, =
(suppp w;) — Uf;; D, . Choose B’ for Case 2. Then there is at most one b in
D, — (Mu B'). Forsuch a, b, suppy w; CM U B' U (U:(:,l D,) U {b}; so by the
exchange lemma b e cl(M U B’ U ((_):,;l D)) U {w,;}) C (W U B’). So we always
get D,Ccl(WuUB)or D,CBN (WU B') = A as desired.

5. MaxiMaL EreMeNTs WITH No EXTENDIBLE BASE

In [9], [11] maximal elements V" of #(V,) are obtained such that no r.e. basis
of V is extendible to an infinitely larger r.e. independent set. We obtain a corre-
sponding result (Theorem 3.1) for recursively presented regular Steinitz closure
systems by using the e-state definition for Theorem 4.2 and elaborating the
requirements for Theorem 4.2. This section, unlike Section 4, requires regularity.
The construction can be modified to yield results not covered by Section 6 on
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supermaximal elements. We do not do this here. Clause (i) of the proof in [9] is
inadequate, we substitute the clause from Remmel [11].2

THEOREM 5.1.  Suppose (U, cl) is recursively presented, regular, and of infinite
dimension. Then there exist maximal V in L(U) such that no r.e. basts of V can be
extended to an infinitely larger r.e. inidependent set.

Proof. We adopt the conventions of the proof of Theorem 4.2. In addition,
let 1,1, ,... be a Kleene-style recursive enumeration of all r.e. independent
sets of U. Let 1,° be the explicit finite subset of J enumerated by stage s, so
I°CIPC - and {J,I* = I. The requirements are as follows:

N,:lim, a,® = a, ,..., lim, a,* = a, exist.

P If W,2 V and dim[W,/V] = oo, then for all but a finite number of

e, we have
a,ecl(MU W,U{a,.., a,_1})
P2:If cl(I,) 2 V and dim[cl(/,)/ V] = oo, then there is a = € M with

(supps, 2) — V o 2.

To satisfy N, is to obtain dim[U/V] > e -+ 1. To satisfy all P, is to show V'
is maximal in Z(U) (see the proof of Lemma 4.7). Why does P2 imply we
cannot have both I, N V" a basis for V and I, — V infinite ? Otherwise by P,?
there would be a 2 M C V with supp; ¥ — V 5 . From supp;, gLV get
supp; 2 ¥ L VN1, or by the definition of support z ¢ cl(VN1I,)C V.SozeV,
zé V, a contradlctlon

We add to the apparatus for Theorem 4.2 movable markers B, , B ,... . At
each stage s, a finite number of markers B, are used to mark elements B,* in
(supp; s 2) — cl(M?) for a € M* N cl(1,7). We shall say that P,° is satisfied at
stage § if there is at least one z in M* N cl(Z,?) such that B,* is defined and is in
(supp, s 5) — cl(M s) The intention is that if lim, B, is defined (i.e., for some
So» § > s implies B,* is defined and B,* = B%), then this B, — hm Bsin
(supp; 2) — V for a ze M N cl(l,), and therefore witnesses the fact that P2
is met. Let supp, be the support relative to basis M* U {4,%, a,5,...} of U. Let
G*(x) be the largest ¢ such that ¢ € supp, x if » ¢ cl(M?®), G¥(x) = —1 if x & cl(M*).

DEerIntTION 5.2, (i) P! requires attention at stage 2s > 0if e <{ 2s and there
exists a j > e such that azs“l @21 < 25 and the e-state of a?*1 is less than the
e-state of a>** (as given by Definition 4.3).

(iiy P,* requires attention at stage 2s + 1 if (it)(a) and (ii)(b) below hold.

2 A change in [11, p. 404] is needed to justify g(x, 3s + 2) = g( ¥, 3s - 2). We in-
corporate this change.
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(a) P, is not satisfied at stage 2s + 1.
(b) There exist x, ¥ in I2**! such that the uppermost window occupied by
any element of supp,, x is above the eth window and is below the uppermost

window occupied by any of the elements of supp,, ¥. In symbols, G**(x) > e and
G¥(x) < G¥(y).

CONSTRUCTION.

Stage 0. Let MO be the empty set. Let a, be b, where b, , b, ,... is a recursive
base for U. No marker B, is in use at stage 0.

Stage 2s > 0. If no P, requires attention at stage 2s, let M** = AM** 1 and
a?* = a®*7 for all i. A marker B, is then in use at stage 2s if and only if in use
‘at stage 25 — 1, and then B2 = B!, Otherwise let e(2s) be the least ¢ such that
P! requires attention at stage 2s, let j(2s) be the least j for that ¢ = e(2s). Remove
the contents of windows ¢(2s),...,j(25) — 1 (i.e., remove aiz ,..., d3is9_; from
their windows), add these to M2~ to get M?5, and let remaining contents of
windows drop to fill all windows and to define a2® for all k. A marker B, is in use
at stage 2s if and only if B, was in use at stage 25 — 1 and B2 ¢ cl(M?s), and
then B — B2-1,

Stage 2s + 1. If no P,? requires attention at stage 2s + 1, let M35+t = M3
and let a?**! = @Z* for alli. Then B, is in use at stage 25 + 1 if and only if B,
was in use at stage 2s, and then B*+! — B2%. Otherwise let &(2s -+ 1) be the least
e such that P,? requires attention at stage 2s - 1, let x(2s -+ 1) be the least x
for that e = ¢(2s + 1), and let y(2s -} 1) be the least y for those e = e(2s + 1)
and ¥ = »(2s + 1). Let i = G?%(x), j = G?%(y). Since {x, ¥} is an independent
set, regularity implies cl{x, y} — cl{x} — cl(y) % &. Let 2(2s -+ 1) be the least
z in cl{x, ¥} — cl{x} — cl{y}. Remove from the windows all &2° such that
a¥ e supp,, y and i < k < j, and let window contents drop to fill windows and
to define the a3***. Let M25+1 be obtained by adding 2(2s + 1) together with all

the removed @}’ other than &%. Formally
M> = M> U {2(2s + 1)} U [aF e suppy, v | £ < kB < j].

A marker B, is used at stage 25 4 1 if and only if either e is ¢(2s + 1) (in which
case we put BE3L |y = x(2s -I- 1)) or B, was in use at stage 2s and B% ¢ cl(M2+1)
(in which case we put B2+! = B%). This concludes the construction. We
would like to verify two claims, G*(2(2s + 1)) = G*(¥(2s + 1)) and
G2 y(2s -+ 1)) < G2(x(2s + 1)). To see these first note that the exchange
principle yields (s + 1) < clfw(s + 1), 2(s + 1)}, so suppy,y(s + 1) C
(suppa, #(2s -+ 1)) U (supps, 2(2s + 1)).

Since G*(x(2s + 1)) < G**(¥(2s 4 1)), the first claim follows.

Since 2(2s + 1) e M?** and y(2s + 1) is in cl{x(2s + 1), 2(2s + 1)} we get
SUppysi1 2(2s + 1) C suppys,y #(25 + 1). This verifies the second claim.
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Levma 5.3. N, is met.

Proof. Suppose N,_, is met, so there is an s, such that s > s, implies ¢,* =
Ay seers Qoy = a5, MU{ay,...,a,_,} independent. We examine changes
a®® # a®*** at stages 2s > s, . By construction the least ¢ with a5° # a}**!is the
least 7 > G25(x(2s -+ 1)) with a2 € supp,, y(2s + 1). So s > G?(x(2s + 1)).
Also the definition of P, requiring attention (part (ii)(b)) implies that
G?5(x(2s + 1)) > e(2s + 1). Combining these two inequalities yields
e(2s + 1) < e. Note that 2(2s + 1) € M21 N cl(I%*+!) and BESL ) = x(2s + 1) €
(suppj2+ 8) — cl(M?st1) so P2, ,) is satisfied at stage 2s + 1. If P2, ) were
to become unsatisfied at 2 stage s’ > 2s - 1, this would be because B, y,, 1) has to
be removed as x(2s + 1) 1s in cl(M?'). Then supp,, #(2s + 1) is dependent over
M, hence over M. But e > G*(x(2s + 1)) says suppys%(2s 4 1) & M U
{a,’,..., @,1} and 5 = s, says suppy, #(2s + 1) C M U {ay,..., a_;}. So the latter
is dependent, contrary to hypothesis. Thus there are at most e values 2s > s,
such that @t £ 4%, one for each value of ¢(2s |- 1) << e. So there is a stage
§; > $o such that for all 25 > s5; , @®+! == @%. On the other hand, looking at the
maximal space construction of Definition 5.2(i) we see that if 2s > s, , then
a®® # a®* only when the e-state of a2° exceeds the e-state of a>*. The e-states
are 2¢1 in number. So lim, a,° = a, exists.

Lemma 54. P, is met.

Proof. Similar to Lemma 4.7.

LemMa 5.5. P2 is met.

Proof. For an induction, assume that for all 7 < e, P;? is met. Then thereis a
stage s, such that for all 25 - 1 > s, , if ¢(2s + 1) is defined, then (25 + 1) > e.
Let supp « be the support of x relative to M, aq , a4y ,... . Let G(x) = lim, G%(x) =
least 7 with x € cI(M U {ay ,..., a;}) for x ¢ cl(M), G(x) = —1 if x € cl(M). Now
suppose (to verify P,2) that cl(1,) 2 I and dim[cl(Z,)/V] = oo, where I = cl(M).
Since I, is infinite dimensional over V = cl(M), there is an x eI, with x¢
(MU {ay,..., a,}), so G(x) > e. For the same reason there is a y eI, with
yécl(MU{ay,..., agw}), so G(y) > G(x). Then {x, y} is independent over M,
G(y) > G(x) > e. Now choose an s; > s, such that for all s > s, ,

(1) a; = a;*foralli < G(y),
2 G(y) = G(3), G(x) = G(x),
(3) wyels’.
Suppose P,2 were not satisfied at stage 2s + 1 > s, . Certainly we have
arranged it so that P2 will then require attention at stage 2s —i— 1. Since

2s + 1 > s, certainly ¢(2s + 1) is e, and by construction ans(y(zsﬂ)) =
ans(y(zq 1)) - Since 2s -~ 1 > s, , this says ag(,) ¥ agy,) , 2 contradiction. So P>
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is satisfied at every stage 25 + 1 > s; . There was a last stage 25 - 1 when B,
was introduced as a marker and 2 = 2(2s + 1),y = y(2s -+ 1), & = x(2s + 1) =
B+ were introduced. By construction we had B2+l = ye (supp2e+t 2) —
cl(M?). Since B, is never moved, we get x € (supp; 2) — V. By construction
ze M2t n cl(Izs“Ll) so ze V N cl(Z,). So P2 is met.

6. SUPERMAXIMAL ELEMENTS

We extend the construction of supermaximal elements from the vector space
case of Kalantari and Retzlaff [8], improving the results so that the supermaximal
element is recursive as a set. We require regularity.

DeriniTioN 6.1. A Ve £(U) is supermaximal if (i) dim[U/V] = oo, (ii)
forall We Z(U), W2 V and dim[W/|V] = o0 imply W = U.
Note that (ii) can be replaced by (ii'): for all We Z(U), if

dim{cl(W U V)[V] = o0,
then cl(W' U V) = U. This is the form we use to translate (ii) into a requirement.

THeOREM 6.2.  Suppose (U, cl) is recursively presented, of infinite dimension,
and regular. Then there are supermaximal V € £ (U) which are recursive as subsets
of U.

(Note that in (w, cl) where cl(A) = A for all A C w, there are no supermaximal
elements. Of course (w, cl) is not regular.)

Proof. Letby, b, ,... be arecursive basis for U. Let W, , W, ,... be a recursive
enumeration of #(U) of the standard sort. Let ¥* and W?* be the explicit finite-
dimensional subspaces of V' and W, respectively, constructed by stage s. We
keep track of an infinite recursive sequence a,’, ;... independent over V* at
stage s. Then ¥ will be (J; V* and the limits a; = lim, @, will be an infinite
independent set over ¥ to satisfy (i) of Definition 6.1. The requirements which
must be met are as follows.

R: V is a recursive subset of U.
P,y If dim[cl (W, U V) : V] = oo, then b, € (W, U V).
Neony: img ago ny = @,y exists.

In the usual language, the priority ordering is R, Ny, Py, Ny, Py ,....

DErFINITION 6.3. P, . requires attention at stage s if (i) and (ii) below hold.

(i) by, ¢ (W5 U ),
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(ii) 'There is an x € W,® such that
x ¢ CI[VS U {aos""! aie,m} % {bn}]
CONSTRUCTION OF V'

Stage 0. Let V0be {0}, let a,%, a;%,... be by, by ... .

Stage s > 0. If no P, ,, requires attention at stage s, let Vsl = Vs, let
ai™' = q,* for all i. Otherwise, there is a least pair {e, n) requiring attention,
For that pair <{e, n) let x be the least one satisfying Definition 6.3(ii). List all
those u € U with # << s which are not in V% as %, ,..., #; . By combining (i} and
(ii) in Definition 6.3 we see that {x, b,} is a two-element set independent over V%,
The assumption (U, cl) regular and Proposition 2.12 imply that (U, clys) is also
regular. The definition of regularity implies that there is a y (which we choose
least) such that

yecl,fx, by} — (clfa} — clpu{ba} — el fu) — o — clyu).

Define ¥* as cl(V* U {3}). It remains to define the a;**. Let ag** be a;, where
m, is least such that afno ¢ V1. For an induction, define a;1] as a,,° where m is
least such that a,*¢ cl(Vs U {ag*,..., ajt*}). Finally we say P, ,, received

attention at stage s (using x and y). This completes the construction of V.

LevMa 6.4. R is met.

Proof. 'To conclude V is a recursive subset of U, it suffices to show that for
all ue U, ue V implies u e V**%; for VO C V1 C -+ and the V* are explicitly
given. So we must show that for u <Cs, if u ¢ V7, then u ¢ V**L. Suppose indeed
u < s, u¢ Ve If no P, receives attention at stage s, then V* = V** and so
u¢ Vet If a P, ,, receives attention at stage s (using « and ), by construction
the given # is one of #,...,u4;. So we must show ug,..., u; ¢ I'*t1. Were
u; € Vst = cl(V* U {3}), then since the choice of y in the construction ensures
¥ ¢ V, we may apply the exchange principle and get y € cl(V* U {x.}) = clyo{x;}.
"This contradicts the choice of y in the construction. So #; ¢ V51, u ¢ I/**1, and R
is met.

This proof has little to do with supermaximality and allows one to get recursive
sets satisfying many different kinds of requirements.

LemMA 6.5. Suppose P, ., receives attention at some stage s. Then P,
is met, and P, .., never recetves attention at any stage s' > s.

Proof. Suppose P, . received attention at stage s’ (using x and y). The
choice of y in the construction guarantees that yecl(V*U {x} U {b,}) —
A(Ve U {x}). Apply the exchange principle to conclude that b, ecl(V*U
x} U {y}). But Vsl is cl(V* U {y}) and x € W3, so0 b, € cl(V* U WitY). This
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gives b, € cl(V U W,), so P, ,, is met. In addition this gives b, € (V> U W)
for all s > s, so clause (i) in Definition 6.3 is never satisfied for s replaced by an
s’ > 5. S0 P, ., never receives attention at any stage s’ > s.

LemMA 6.6. If P, ., receives attention at stage s, then ag™ = ag®,..., a%ht,, =

s
Aney -

Proof. The definition of a;* shows that we need prove only that a°,..., @, .
is independent over Vet = cl(Ve U {y}). If ay’,..., afy, sy are supposed dependent
over cl(V*U {y}), then certainly a,..., a, .,y is dependent over V/*. But
y’s-.-, Ay, is independent over V%, so it follows that y € cl(V* U {ay?,..., an,er})-
The choice of y in the construction ensures

yec(Veu{x} U b)) — (VU {b,}).
Apply the exchange principle and get
xec(Veu {y} U {b,})-

Since y € cl(V* U {ay%,..., a%y,05}), We now get x € cl(V° U {ag’,..., 4%y, 05} Y {b2}).
This contradicts condition (ii) of Definition 6.3.

Lemma 6.7. N, is met.

Proof. a,® never changes. Suppose, for an induction, that for s > s, we have
Ay® = @y 5oy Bgmy_1 = o my_1 - Then ag, ,, 7 aith,, forans > s, according to
Lemma 6.6 only if a P, -, receives attention at stage s and (¢, n") < (e, n).
By Lemma 6.5 this happens at most <e, #) times, at most once for each P, ',
with (&', n'> < <e, n).

LevMma 6.8. P, ,y s met.

Proof. Otherwise there is a least {e, n) such that dim[c(W, U V)/V] = o
and b, ¢ (W, U V). By Lemma 6.5 we know P, ,, never receives attention at
any stage. By Lemma 6.6 there is an s, such that for all s > s, we have a* =
Qg 5oy Oeony == Alepy - By Lemma 6.5, 5, may be chosen so that for no
e'yn"y < <e,ny does P, receive attention at any stage s > s5,. Since
dim[cl(W, U V)[V] = oo, we get dim[W,/V] = 0, so by Proposition 2.8(iii) we
get im[W,[c(V U {ay ,..., @¢o.ny} Y {b,})] = 00. All this is to get an x € W, such
that x ¢ cl[V U {ag ,..., @o.n3} Y {Ba}]-

Let s 2= s, be chosen so that x € W,*. Certainly by the above b, ¢ cl(W,* U V*)
and x € W% and x ¢ cl[V* U {a,’,..., @Z4, 0>} U {b,)]- So P, ,, requires attention
at stage s. By the choice of s > s, , P, ., receives attention at stage s, contrary to
hypothesis. So P, ,; is met.
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We show how to lift the main theorem of Shore [16] to regular Steinitz closure
systems. This method may be used to control the dependence degree of super-
maximal elements of the sort constructed in Section 6, but we omit such develop-
ment here.

THEOREM 7.1. Suppose (U, cl) is recursively presented, of infinite dimension
and regular. Let Ay, A ,... be a sequence of sets of integers such that (1) A; is r.e.
uniformly in i, i > 0. (ii) d(4,) < d(4y) uniformly in i, 1 > 0. (iii) d(4,) <
d(A4;,,) for i > 0. Then there is a V e L(U) such that d(ID(V),) = d(4,) for all
i >0and d(D(V)) = 4,.

Proof. Let Bbe an r.e. base for U. For each pair (n, R) in w X w, recursively
pick an explicit finite subset B," of B, of cardinality % if & > 0 and of cardinality
n + 1 if £ = 0. Do this in such a way that distinct pairs are assigned disjoint
sets. Since (U, cl) is regular and recursively presented, we can compute an
wtecl(By®) — U{cl B | B'{ B;*} and put V = cl{a;" | n € A;}. Now regard
By* as a k-tuple of elements of U if 2 > 0, an n - 1-tuple of elements of U if
k = 0. Even this small amount of care yields

nedy> BreDWV), for k>0,
ne Ay« Byre D(V) (exercise).

So we get d(A4;) < d(D(V)) uniformly in & > 0, d(4y) < d(D(V)). To obtain
the opposite inequalities a more careful choice of x,” is required. First, modify
the choice of B," if necessary so that whenever b € B, then #b > n. Now we do
the actual construction. Each stage s is divided into substages &, 2 = 1,..., s. We
will construct a finite explicit subset I5* of U before stage s, substage k. Let
Vsk = cl(15*) and finally let V = (J, , V**. Let 4;° be the finite subset of 4,
enumerated by stage s, arranged so that for all k and s, we have that 45*1 — 4,3
has at most one member. Then stage s of the construction goes as follows.

Substage 1 of Stage s. Suppose that n; € 477 — 4,5 Let x1 be the unique
member of Byt Put 152 = [51 U {x]1}.

Substage k of stage s with 1 <<k <s. Suppose that n, € A;™ — A;*. Let
x1,..., xt be those j-tuples x such that j << % and #x < n; and x ¢ D(V**). Since
% is a j-tuple it may be written (¥, ,..., #;). Let clysx x be (V=5 U {x, | 1,..., j}).
Now Bj* is a k clement set independent over V%% by construction. Recursive
presentability and regularity of (U, cl) imply that we may compute an x%* in

i
clyue BY — U {clyun B[ B'C B — ) ol 5.

i=1

Finally define I5#+1 = [5:F (U {a7*}.
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Substage s of stage s. Suppose that n,e Ag™ — Ay*. Let al,..., x* be those
j-tuples x with j <{ n, and #x < n, and x ¢ D(V**). Now Bgs is an n, + 1-
element set independent over V*$ by construction. Recursive presentability
and regularity of (U, cl) imply that we can compute an x3s in

. 12
clyes By — \J{cl, e B : B C By — ) clyos ¥

i=1

Finally define I3+ = I35 U {«%+}. This completes the contruction.

Lemma 7.2. Suppose thatj > 1 and for all a < j, we haveae Agpp <> ae 4.
Suppose that x is a j-tuple from U. Suppose s, > s is such that for all a < #x and
all i <j, we have ac Ajx«>ac A;. Then for all s >s,, we have that
ny€ ALYt — A,¢ and x ¢ D(VSF) imply x ¢ D(cl(V** U {a7%}).

Proof. Sincei = 11isani <, for all a < #/x we have ac Aj1 <> ac A4, .
So if s > s; and n; € A — A4,° we may conclude #, > #x.

Case 1. s > k > j. At stage s, substage & we have x a j-tuple with j < &,
#x < ny, and x ¢ D(V>%). So x is one of &,..., x*. By construction this implies
xpe ¢ clysr x. Were x in D(cl(V** U {«}#}) then x, x3* would be a dependent
sequence over V*% By assumption, x is independent over V%%, so we could
conclude x}* € clys, %, contrary to what was proved above.

Case 2. s = k > j. The choice of s, ensures that for all a <Cj, ae Aj <>
acA,.Sos > syand n,e A5 — A, imply n, > j. Combining this with the
already known n, > #x and the assumed x ¢ D(V**) implies that at stage s,
substage s, x is one of &%,..., x*. Just as in Case 1 we can go on to conclude

2 ¢ D(l(V** U {a5}).

Case3. k <j. Fors; > sy, foralli < jandalla << #x weknowaec 4,
ac A, . By assumption, kis an ¢ < j and n, e Aj7t — A, forans > 5, , so we
may conclude 7, >> #x. Now if b € suppp xj» = By*, the choice of numbering #
implies #b > n;,. Combining, we get #b > #x for all besuppyapr. If
we had xe D(c(V** U {x*}), then Corollary 3.12 would imply that every
b € suppp x7x — suppp V*" has #x > #b. Combining with the above, we would
conclude suppy x4 C suppy V**. This is false since the left-hand side is By,
the right-hand side is the union of certain other B}, , and the B;” are disjoint
and nonempty. So x ¢ D{cl(V** U {x7#})) as required. This concludes the proof
of Lemma 7.2. We return to complete the proof of Theorem 7.1. Suppose a
7 =1 is given. How do we determine for x a j-tuple from U whether or not
x € D(V);, recursive in A;? For the given j, we may suppose s, for Lemma 7.2
given. Now recursive in 4; (since d(4,) < d(4,) < -+ < d(4;)) we can compute
5; > s, for Lemma 7.2, Then x € D(V); <> x € D(Vsrt1.1); | But given s, Vsr#1:!
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an explicit finite dimensional closed set with d(D(V*171:1)) = 0. So we have

d(D(V);) < d(4;). To see that d(D(V)) < d(A4,), observe that above s, is com-
puted from A; uniformly, which can be computed from 4, so d(D(V);) << d(A4,)
uniformly in j, or d(D(V)) < d(4,) as required.

—
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