TREATMENT OF HYPERKALEMIA WITH ZS-9, A SELECTIVE NONABSORBED CATION EXCHANGE RESIN, DOES NOT LEAD TO HYPMAGNESEMA: RESULTS FROM TWO MULTICENTER, RANDOMIZED, DOUBLE BLIND, PLACEBO-CONTROLLED PHASE 3 TRIALS

Poster Contributions
Poster Hall B1
Saturday, March 14, 2015, 10:00 a.m.-10:45 a.m.

Session Title: Many Faces of Heart Failure
Abstract Category: 14. Heart Failure and Cardiomyopathies: Clinical
Presentation Number: 1113-225

Authors: Mohamed A. El-Shahawy, Henrik S. Rasmussen, Philip T. Lavin, Alex Yang, Wajeh Qunibi, Academic Medical Research Institute, Los Angeles, CA, USA

Background: Hyperkalemia (HK) limits optimal use of cardioprotective RAAS inhibitors. Treatment of HK with the non-selective cation exchanger sodium polystyrene sulfonate (SPS) has limited efficacy and is associated with adverse effects such as hypocalcemia, hypomagnesemia and colonic necrosis, which are associated with cardiac arrhythmia and possible death. Sodium zirconium cyclosilicate (ZS-9) is a selective nonabsorbed cation exchanger that traps K+ in the gut with >25-fold selectivity for K+ over Ca2+ and Mg2+. ZS-9 restored and maintained K+ levels in HK pts in 2 Phase 3 trials. Here we report the effects of ZS-9 on serum Mg2+.

Methods: In one trial, HK patients were randomized to ZS-9 (1.25, 2.5, 5 or 10g) or placebo (PBO) TID for 48h after which pts achieving K+ 3.5-5.0 mEq/L were re-randomized to the same ZS-9 dose or PBO QD on Days 3-15. In the 2nd trial, pts were randomized to ZS-9 (10g) or PBO TID for 48h, followed by re-randomization of pts with K+ 3.5-5.0 mEq/L to ZS-9 (5, 10, 15g) or PBO QD for 28d. Serum Mg2+ was measured on Days 1, 3, 9, 15 and 21 in the 1st study and Days 1, 15 and 29 in the 2nd study.

Results: Baseline serum Mg2+ was similar across treatment groups in both studies (1.95-2.02 mg/dL). Repeated Mg2+measurements showed no significant changes between treatment groups at any time point in either study (Figure).

Conclusion: Unlike non-selective resins (SPS), ZS-9 effectively reduced K+ in pts (Ash et al. 2013) without causing hypomagnesemia, demonstrating the selectivity of ZS-9 for K+ over Mg2+.