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Abstract

The forms of coupling of the scalar field with gravity, appearing in the induced theory of gravity, and that of the potential
are found in the Kantowski–Sachs model under the assumption that the Lagrangian admits Noether symmetry. The form thus
obtained makes the Lagrangian degenerate. The constrained dynamics thus evolved due to such degeneracy has been analysed
and a solution has also been presented which is inflationary in behaviour. It has further been shown that there exists other
technique to explore the dynamical symmetries of the Lagrangian simply by inspecting the field equations. Through this
method Noether along with some other dynamical symmetries are found which do not make the Lagrangian degenerate.
 2002 Published by Elsevier Science B.V.
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1. Introduction

The theory of induced gravity has been intro-
duced [1] in an attempt to construct a theory of gravity
consistent with quantum field theory in curved space
time. Later it was found to be a strong candidate in
several unified theories [2]. There, in the weak en-
ergy limit, the Einstein–Hilbert action appears as an
effective action induced by the quantum properties
of the vacuum state of the matter field. The beauty
of the theory lies in the fact that it identifies the in-
flaton with the scalar field inducing the Newtonian
gravitational constant (GN) and the cosmological con-
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stant (Λ). On the other hand in the context of non-
minimally coupled scalar field theory, it has been ob-
served [3] that inflation is impossible for large posi-
tive coupling constant ξ . Further It has been found to
overcome the shortcomings of the old inflationary the-
ory viz., the graceful exit problem [4] and the long-
standing problem of density perturbation [5]. For this
ξ is allowed to take arbitrarily large negative value
keeping the Newton’s gravitational constant positive
all along the evolution of the universe. The theory has
also been found [6] to preserve the generic features of
Vilenkin [7] and Hartle–Hawking [8] wave functions.
Finally, it has also been shown that [9,10] the theory
admits wormhole solutions both for real and imaginary
fields. Kalara et al. [11] have shown that the action for
a nonminimally coupled theory can generate the the-
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ory of induced gravity (along with the R2 theory of
gravity and the Brans–Dicke theory) under a confor-
mal transformation.

The action for the induced theory of gravity and
that of nonminimally coupled theory can be written
together in the following form.

(1)A =
∫

d4X
√−g

[
f (φ)R − 1

2φ,µ φ,µ − V (φ)
]
.

For induced theory f (φ) is usually chosen to be εφ2
while the usual choice is (1 − ξφ2) for nonmini-
mal coupling. Despite such a wide range of success-
ful applications of both the theories, the actual form
of coupling of the matter field with gravity (f (φ))

is not known a priori. The above choices are rather
ad hoc. Capozziello et al. [12] made an attempt to find
the form of such coupling under the assumption that
the Lagrangian admits Noether symmetry. However, it
further restricts the form of the potential for the scalar
field. In the Robertson–Walker model they have ob-
served that [12] k �= 0 imposes strong constraints in
the form of coupling and the potential. The form of
coupling thus obtained makes the Lagrangian degen-
erate and the Newton’s gravitational constant negative.
Further the form of the potential was found to be sixth
order in the scalar field φ, for which only trivial solu-
tion is admissible.

When the Hessian determinant

W =
∑∣∣∣∣ ∂2L

∂q̇i∂q̇j

∣∣∣∣
vanishes the Lagrangian becomes degenerate. It im-
poses a constraint in the sense that the Legendre trans-
formation does not exist and hence the Hamiltonian of
the system cannot be defined unless such constraints
are analysed properly. In the domain of Lagrangian
dynamics the constraint implies more number of de-
grees of freedom than the number of field equations.
This means that one has to make certain assumptions
to obtain exact solutions. However, such degeneracy
does not in any case lead to trivial solutions. In a
recent communication [13], it has been shown that
the existence of ‘only trivial solutions’ is not due to
the presence of degeneracy in the Lagrangian, rather
it is due to the existence of a potential in the form
V (φ) = Λφ6 (obtained under the assumption that the
Lagrangian admits Noether symmetry) that does not
satisfy the field equations. This is a striking feature

and perhaps not been encountered earlier. The fact that
the Noether symmetry of the Lagrangian restricts the
form of the potential in such a manner that it does
not satisfy the field equations, is yet to be explained.
However, for a particular choice of the coupling pa-
rameter in the usual form of the induced theory of
gravity, viz., f (φ) = εφ2, Lagrangian remains non-
degenerate for ε �= −1/12 and the Newton’s gravi-
tational constant is positive for ε > 0. This choice
along with a quartic form of the potential leads to
[13] certain dynamical symmetries of the Lagrangian
along with a conserved current, which are not Noether
symmetries. We like to emphasize that the symmetry
thus obtained cannot be explored by the standard tech-
nique of finding dynamical symmetries via Noether
theorem. Rather, it is found simply from a combina-
tion of the field equations. This is in sharp construct
with the longstanding claim that all the dynamical
symmetries of a physical system are Noether symme-
tries.

Motivated by the above result, our attempt is now to
find the form of coupling f (φ) in anisotropic mod-
els, under the same assumption that the Lagrangian
admits Noether symmetry. In the present Letter the
Kantowski–Sachs metric has been taken under con-
sideration. In this model, once again, we observe
that Noether symmetry exists at the cost of impos-
ing degeneracy in the Lagrangian. Further the New-
ton’s gravitational constant becomes negative which of
course is not a desirable feature of any theory. How-
ever, the potential this time turns out to be quartic
in the scalar field φ which satisfies the field equa-
tions, in contrast to the Robertson–Walker model [13].
It has been pointed out that the nonminimal form of
coupling does not admit Noether’s theorem. The con-
straint imposed by the degeneracy has been analysed
in the domain of Lagrangian dynamics, which has
been found to yield an excess number of the degrees
of freedom to the field equations. The most interest-
ing aspect of the present work is that, instead of go-
ing through the detailed lengthy calculation of find-
ing Noether symmetry, it has been shown to obtain
the same, just by inspecting the field equations. In this
second method the coupling parameter has been cho-
sen in the usual form f (φ) = εφ2 of induced grav-
ity as in the Robertson–Walker model [13]. It has
been observed that the quartic form of the poten-
tial yields Noether symmetry for ε = −1/12. How-
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ever, for any other arbitrary ε there exists yet an-
other symmetry along with a conserved current, which
keeps the Lagrangian nondegenerate. This is surpris-
ing that such an inherent symmetry of the system
cannot be explored via Noether theorem. Hence we
conclude that there exists dynamical symmetries of
a system other than Noether symmetry. It has fur-
ther been emphasized that even if one chooses the
form of the coupling as that of nonminimally coupled
scalar fields viz., (1 − ξf (φ))R the result is the same,
i.e., Noether symmetry leads to identical form of cou-
pling in both the cases. In a nutshell, Noether sym-
metry transforms a nonminimally coupled theory to
Induced theory of gravity that makes the Lagrangian
degenerate and Newton’s gravitational constant nega-
tive.

This Letter is organised as follows. In Section 2, the
field equations are obtained from the action principle
and the condition for which the Hessian determinant
vanishes yielding a degenerate Lagrangian has been
found. The form of coupling f (φ), the potential V (φ)

and the conserved current are then obtained by study-
ing the Noether symmetry. It has been found that for
the existence of such symmetry, the Lagrangian turns
out to be degenerate. It has also been noticed that so-
lution in the form corresponding to the nonminimally
coupled scalar fields viz.,

f (φ)= 1 − ξφ2

is not admissible by the Noether symmetry. In Sec-
tion 3, the constraint imposed by the degenerate sys-
tem is analysed in the domain of Lagrangian dynam-
ics, whose outcome is a pair of field equations in first
order for three degrees of freedom. This implies that
one has to make one physically reasonable assump-
tion to obtain nontrivial solutions. A solution has also
been presented at the end of this section. In Section 4,
it has been shown that the above mentioned symme-
try could have been obtained quite easily just by in-
specting the field equations. Further it has also been
found that some other dynamical symmetry for the
system still exists, that cannot be obtained by apply-
ing the Noether theorem and that does not make the
Lagrangian degenerate. Thus it is confirmed that not
all the dynamical symmetries hidden in a Lagrangian
could be obtained by the application of Noether’s the-
orem. Concluding remarks are presented in Section 5.

2. Noether symmetry in Kantowski–Sachs model

We start with the action (1), which for the Kantows-
ki–Sachs metric

(2)ds 2 = −dt 2 + a2dr 2 + b2(dθ 2 + sin 2θ dφ 2)

reduces to

A= 4π
∫ [−4f ′abḃφ̇ − 2f ′b2ȧφ̇ − 4f bȧḃ − 2f aḃ2

+2f a + 1
2ab2φ̇2 − ab2V (φ)

]
dt

(3)+ surface term.

Field equations are

2
b̈

b
+ f ′

f
φ̈ + f ′′

f
φ̇2 + 2

f ′

f

ḃ

b
φ̇ + ḃ2

b2
+ φ̇2

4f
+ 1

b2

(4)− V (φ)

2f
= 0,

ä

a
+ b̈

b
+ f ′

f
φ̈ + ȧḃ

ab
+ f ′ȧ

f a
φ̇ + f ′ḃ

f b
φ̇ + f ′′

f
φ̇2

(5)+ φ̇2

4f
− V (φ)

2f
= 0,

ä

a
+ 2

b̈

b
+ 2

ȧḃ

ab
+ ḃ2

b2
− φ̈

2f ′ −
(
ȧ

a
+ 2

ḃ

b

)
φ̇

2f ′

(6)+ 1
b2

− V ′(φ)
2f ′ = 0,

ḃ2

b2
+ f ′ȧ

f a
φ̇ + 2

f ′ḃ
f b

φ̇ − φ̇2

4f
+ 2

ȧḃ

ab
+ 1

b2
− V (φ)

2f
(7)= 0,

where overdot and prime represent derivatives with
respect to time and φ, respectively. The Hessian
determinant,

W =
∑∣∣∣∣ ∂2L

∂q̇i∂q̇j

∣∣∣∣
turns out to be,

(8)W = −16πfab4
(
3f ′2 + f

)
.

Hence, for 3f ′2 + f = 0, whose exact solution is

(9)f = − 1
12

(φ − φ0)2

the Hessian determinant vanishes and the Lagran-
gian (3) becomes degenerate as in the Robertson–
Walker case [12] and [13].
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Let us now turn our attention to find the condition
under which the Lagrangian (3) would admit Noether
symmetry. In the Lagrangian under consideration the
configuration space is Q = (a, b,φ), whose tangent
space is TQ = (a, b,φ, ȧ, ḃ, φ̇). Hence the infinites-
imal generator of the Noether symmetry is

X = α
∂

∂a
+ β

∂

∂b
+ γ

∂

∂φ
+ α̇

∂

∂ȧ
+ β̇

∂

∂ḃ

(10)+ γ̇
∂

∂φ̇
.

The existence of Noether symmetry implies the exis-
tence of a vector field X such that the Lie derivative
of the Lagrangian with respect to the vector field van-
ishes, i.e.,

(11)£XL= 0.

This yields an expression which is second degree in
a, b and φ and whose coefficients are functions of a, b
and φ only. Thus to satisfy equation (11), we obtain
following the set of equations,

(12)2f
∂β

∂a
+ f ′b ∂γ

∂a
= 0,

(13)α + 2b
∂α

∂b
+ 2a

∂β

∂b
+ a

f ′

f

(
γ + 2b

∂γ

∂b

)
= 0,

(14)
bα + 2aβ + 2ab

∂γ

∂φ
− 4f ′

(
b
∂α

∂φ
+ 2a

∂β

∂φ

)
= 0,

β + b
∂α

∂a
+ a

∂β

∂a
+ b

∂β

∂b
+ b

f ′

f

(
γ + a

∂γ

∂a
+ b

2
∂γ

∂b

)

(15)= 0,

f

(
b
∂α

∂φ
+ a

∂β

∂φ

)

+ f ′
(
bα + aβ + b2

2
∂α

∂b
+ ab

∂β

∂b
+ ab

∂γ

∂φ

)

(16)+ f ′′abγ − ab2
4

∂γ

∂b
= 0,

f
∂β

∂φ
+ f ′

(
β + b

2
∂α

∂a
+ a

∂β

∂a
+ b

2
∂γ

∂φ

)
+ f ′′bγ

2

(17)− ab

4
∂γ

∂a
= 0,

(18)α + f ′

f
aγ − ab2

2

[
V

(
α

a
+ 2

β

b

)
+ V ′γ

]
= 0.

The above set of differential equations can essentially
be solved by the method of separation of variables

which finally yields a differential equation in f viz.,

(19)3f ′2 + f = 0

whose solution is already given in Eq. (9). In addition
α,β, γ and V are also obtained in the process as

α = 2l
ab(φ + φ0)3

, β = l

a2(φ + φ0)3
,

(20)γ = − l

a2b(φ + φ0)2
, V = λ(φ + φ0)4,

where l, λ and φ0 are constants of integrations. So
the Lagrangian (3) admits Noether symmetry under
the condition that f should have the form given
by (9) while V should be quartic in the scalar field φ.
However, it is to be noted that the form of f given
by (9) makes the Lagrangian degenerate. Thus a
constraint has been imposed on the Lagrangian in
order that it admits Noether symmetry.

Now for Cartan one form

(21)θL = ∂L

∂ȧ
da + ∂L

∂ḃ
db + ∂L

∂φ̇
dφ,

the constant of motion iXθL is obtained as,

(22)F =
d
dt

[b(φ + φ0)]
a(φ + φ0)2

=
d
dt
(bφ)

aφ2
(for φ0 = 0).

At this stage we would like to point out the fact that a
solution in the form f (φ) = 1 − ξφ2 does not satisfy
Eq. (19), implying that nonminimal coupling is not
admissible by Noether symmetry. The Noether sym-
metry thus obtained does not yield a physically desir-
able feature in the sense that Newton’s gravitational
constant turns out to be negative. Further nonminimal
coupling which has wonderful features as discussed
in the introduction, is not admissible. Still we carry
out analysing the constraint imposed by the solution
of f (φ) to show that degeneracy does not yield trivial
solution, as mentioned in [12].

3. Analysing the constraint and presenting a
solution

The degeneracy in the Lagrangian imposed by the
claim that it should have Noether symmetry, leads
to constrained dynamics as mentioned in the intro-
duction. This gives rise to underdetermined situation
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where the number of the true degrees of freedom ex-
ceeds the number of the field equations. To apprehend
the situation, let us substitute f,f ′, f ′′ from Eq. (9)
and V,V ′ from Eq. (20) in the field Eqs. (4)–(7) to
obtain

(23)
2
b̈

b
+ 2

φ̈

φ
+ ḃ2

b2
− φ̇2

φ2
+ 4

ḃφ̇

bφ
+ 1

b2
+ 6λφ2 = 0,

ä

a
+ b̈

b
+ 2

φ̈

φ
+ ȧḃ

ab
+ 2

ȧφ̇

aφ
+ 2

ḃφ̇

bφ
− φ̇2

φ2
+ 6λφ2

(24)= 0,
ä

a
+ 2

b̈

b
+ 3

φ̈

φ
+ 2

ȧḃ

ab
+ 3

ȧφ̇

aφ
+ 6

ḃφ̇

bφ
+ ḃ2

b2
+ 1

b2
(25)+ 12λφ2 = 0,

ḃ2

b2
+ 3

φ̇2

φ2
+ 2

ȧφ̇

aφ
+ 2

ȧḃ

ab
+ 4

ḃφ̇

bφ
+ 1

b2
+ 6λb2

(26)= 0.

In addition we have yet another equation viz., Eq. (22),
which is actually the constraint that has to be satisfied
by the field Eqs. (23)–(26). To check if any new
constraint arises from these field equations we have
to take time derivative of Eq. (22) and eliminate
acceleration terms [14] between the equation thus
obtained and the field Eqs. (22)–(26). Time derivative
of Eq. (22) is (using the same equation in it)

(27)
b̈

b
+ φ̈

φ
= 2

φ̇2

φ2
+ F

ȧφ

b
.

Now eliminating acceleration terms between
Eqs. (23) and (27) one gets back the Hamiltonian con-
straint equation (26). Hence Eq. (13) is no longer an
independent equation. In view of Eqs. (22) and (26),
one can obtain yet another constraint equation, viz.,

(28)
d

dt
(aφ)= −1 + F2a2φ2

2Fb
− 3λφ2b

F

which can be used instead of Eq. (26). Differentiating
equation (28) with respect to time and using the same
equation once again in it, one obtains,

ä

a
+ φ̈

φ
= −2

ȧφ̇

aφ
+ 1 + F2a2φ2

2Fab2φ
ḃ − 3λφ

Fa
ḃ − 6λb

Fa
φ̇

(29)+ 1 + F2a2φ2
2b2

+ 3λφ2.

In view of Eqs. (27) and (29) one can now easily
observe that Eqs. (24) and (25) are trivially satisfied.

Hence at this stage we are left with a pair of Eqs. (22)
and (28) with three degrees of freedom viz., a, b

and φ, leading to an underdetermined situation. This
is the outcome of a degenerate Lagrangian. In order
to obtain solution, one is now free to impose ‘one’
condition that would lead to physically acceptable
solution. We are presenting here one such solution
under the assumption,

(30)aφ = kb,

where k is a constant and let it be positive definite
(k > 0). In view of Eqs. (30), (22) can immediately
be integrated to yield,

(31)bφ = n exp(Fkt),

where n is a constant of integration and considered
to be positive definite (n > 0) too. Further for λ = 0,
Eq. (28) can also be integrated in view of Eq. (30). The
result is

(32)b = − 1
Fk

[
m exp(−Fkt)− 1

]1/2
,

where the overall negative sign has been chosen to
reveal physically acceptable solution and m is yet
another constant of integration which is considered
to be greater than one (m > 1) for the same reason.
Hence φ and a can also be obtained via Eqs. (30), (31)
and (32) as,

φ = −nFk
exp(Fkt)

[m exp(−Fkt)− 1]1/2 ,

(33)a = exp(−Fkt)

nkF2
[m exp (−Fkt)− 1].

Now if one chooses F = −c2, then the solutions (32)
and (33) take the following form,

a = exp(c2kt)
nkc4

[
m exp(c2kt)− 1

]
,

(34)b = 1
kc2

[
m exp(c2kt)− 1

]1/2
,

ab2 = exp(c2kt)
nk3c8

[
m exp(c2kt)− 1

]2
,

(35)φ = nkc2
exp(−c2kt)[

m exp(c2kt)− 1
]1/2 .

The above solution reveals that the universe admits
inflation starting from a finite proper volume, under
the choice of the constants already made viz., k > 0,
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n > 0 and m > 1. The scalar field at the initial epoch
is finite and it falls off exponentially as the universe
expands. The solution is singularity free although
there is no question of graceful exit from inflation. The
big-bang singularity is pushed back to the infinite past.

4. Some other symmetries in Kantowski–Sachs
model

In this section we shall first show that the whole
laborious job that has been carried out in the preceding
section (i.e., to find the set of Eqs. (12) to (18)
and to solve them by the method of the separation
of variables to obtain conditions under which the
Lagrangian (3) admits Noether symmetry) is not at all
required. Rather we can construct a pair of equations
from the set of field equations (4) to (7). One of this
pair can immediately extract the conditions for which
the Lagrangian admits dynamical symmetry and the
other can find the corresponding conserved current.
We shall further show that one of the dynamical
symmetries obtained in the process is of Noether class.
Finally, we shall extract dynamical symmetries of
some other type that we did not obtain by applying
Noether’s theorem in the preceding section.

The first one of this pair is the continuity equation.
This equation is obtained by eliminating ä and b̈

from the field equations (4) to (6) and then comparing
it with the Hamiltonian constraint equation (7). The
equation thus formed is,

2
(
3f ′ 2 + f

)(
φ̈ + ȧ

a
φ̇ + 2

ḃ

b
φ̇

)
+ f ′(6f ′′ + 1

)
φ̇2

(36)+ 2
(
f V ′ − 2Vf ′) = 0.

All dynamical symmetries are hidden in this equation.
To find Noether symmetry one has to choose f and
V in such a way that Eq. (36) is satisfied identically.
The choice is quite trivial viz., the coefficients of the
derivatives of φ,a and b should vanish separately. This
implies 3f ′ 2 + f = 0 i.e., f = − 1

12φ2 and as such
6f ′′ + 1 = 0 too. f 2 and hence is in the form V =
λφ4. These results are already obtained in Eqs. (19)
and (20) of the preceding section. To obtain the
conserved current we construct yet another equation
and that is done simply by eliminating terms in the
field equations which are free from time derivatives

viz., 1
b2 ,V (φ) and V ′(φ) in the present context. This

is done by taking the difference of Eqs. (1) and (4),
which yields,

(37)
2
b̈

b
+ f ′

f
φ̈ +

(
2f ′′ + 1

2f

)
φ̇2 − f ′ȧ

f a
φ̇ − 2

ȧḃ

ab
= 0.

This equation in view of the solution of f obtained
from Eq. (36), reads

(38)
b̈

b
+ φ̈

φ
− 2

φ̇2

φ2
− ȧφ̇

aφ
− ȧḃ

ab
= 0,

whose first integral yields the conserved current ob-
tained in Eq. (22). Thus, we have shown that the
Noether symmetry can even be obtained in view of the
continuity Eq. (36) and the corresponding conserved
current from Eq. (37), without invoking Eqs. (11)
and (21).

Let us now proceed to find some other type of
dynamical symmetry that we did not find in the
preceding section, for which we choose f in the form

(39)f = εφ2.

Further we choose the potential in the form

(40)V = λφ4

then Eq. (36) can be written as

(41)(12ε + 1)
(
φ̈ + ȧ

a
φ̇ + 2

ḃ

b
φ̇ + φ̇2

φ

)
= 0.

For ε = −1/12, we regain Noether symmetry. How-
ever, for any arbitrary ε other than zero or (−1/12),
Eq. (41) leads to

(42)
φ̈

φ
+ ȧφ̇

aφ
+ 2

ḃφ̇

bφ
+ φ̇2

φ2
= 0

whose first integral is

(43)ab2φφ̇ = constant.

Thus we obtain yet another dynamical symmetry of
the system for arbitrary value of ε, for which the
conserved current is given by Eq (43). It is to be
noted that the existence of this dynamical symmetry
does not make the Lagrangian degenerate, since the
Hessian determinant given by Eq. (8) does not turn out
to be zero. Since this symmetry has not been obtained
by the application of Noether’s theorem, therefore,
we conclude that not all the dynamical symmetries
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of a Lagrangian are of Noether class. The dynamical
symmetry thus obtained here is of the same form
that we have already seen in connection with the
Robertson–Walker metric [13]. Let us now consider an
action deliberately for nonminimally coupled theory in
the form

A=
∫

d4X
√−g

(44)× [(
1 − ξf (φ)

)
R − 1

2φ,µ φ,µ − V (φ)
]

instead of (1). Proceeding as before, it is found to yield
an equation,(

1
ξf ′ + 3ξf ′

1 − ξf

)(
φ̈ + ȧφ̇

a
+ 2ḃφ̇

b

)

(45)+
(

3ξf ′′ − 1/2
1 − ξf

)
φ̇2 + V ′

ξf ′ + 2V
1 − ξf

= 0

instead of Eq. (36). It is not difficult to see that
Noether symmetry in this case would again lead to
the same results viz., V (φ) = λφ4 and (1 − ξf ) =
−φ2/12. This again confirms that Noether symmetry
does not admit nonminimal coupling in the theory.
This further implies that the attempt to find the
form of the coupling f (φ) and that of the potential
V (φ) using Noether’s theorem, leads to negative
Newton’s gravitational constant. In addition the theory
of nonminimal coupling along with its all pleasant
features is found not to admit Noether symmetry.
On the other hand the symmetry, other than Noether
symmetry, that we have obtained for induced theory
of gravity is good enough in the sense that Newton’s
gravitational constant remains positive. Finally, we
observe that nonminimally coupled theory does not
admit symmetry in any form.

5. Concluding remarks

In a recent communication [13] we have come
across an important and wonderful result, while re-
viewing the works of Capozziello et al. [12] in con-
nection with the Noether symmetry in the Robertson–
Walker metric. The result is that, even if there exists
certain forms of f (φ) and V (φ) and hence a vector
field X such that £XL = 0; the form of V (φ) might not
satisfy the field equations. We have not come across
such a result earlier and as such do not know the rea-
son as yet. However, we have observed that only one,

viz., the continuity equation suffices to check whether
the field equations are satisfied or not. In the context
of the induced theory of gravity, this equation turned
out to be a very important one to explore all sorts of
existing dynamical symmetries of a Lagrangian.

In the present Letter, we have shown that the
Noether symmetry of the induced theory of gravity in
the Kantowski–Sachs model can also be found from
the continuity equation. Instead of using the Cartan’s
one form, the conserved current can simply be ob-
tained from Eqs. (37) or (38), which is obtained from
yet another combination of the field equations. The
Noether symmetry makes the Lagrangian degenerate
that introduces a constraint reducing the number of in-
dependent field equations to the number of true de-
grees of freedom by one, causing underdeterminacy.
However, the field equations are found to admit in-
flationary solution under a suitable assumption. This
result definitely proves that the conclusion made by
Capozziello et al. [12], viz., degeneracy leads to triv-
ial solutions, is wrong. However, Noether symmetry
yields one very undesirable feature. It makes New-
ton’s gravitational constant negative. Further it has
been observed that nonminimal coupling does not ad-
mit Noether symmetry.

It has been further observed that all sorts of dy-
namical symmetries of a Lagrangian can be explored
from the continuity equation only, at least in induced
theory of gravity. In view of this equation one can
obtain dynamical symmetries of a Lagrangian other
than Noether symmetry. These symmetries are good
enough in the sense that it does not make Newton’s
gravitational constant negative. This confirms that not
all the dynamical symmetries of a system belong to
the Noether class. It has also been noticed that non-
minimally coupled theory does not have symmetry in
any form.
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