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A b s t r a c t

Diabetic nephropathy (DN) is a leading cause of mortality and morbidity in patients
with diabetes. This complication reflects a complex pathophysiology, whereby
various genetic and environmental factors determine susceptibility and progression
to end-stage renal disease. DN should be considered in patients with type 1 diabetes
for at least 10 years who have microalbuminuria and diabetic retinopathy, as well as
in patients with type 1 or type 2 diabetes with macroalbuminuria in whom other
causes for proteinuria are absent. DN may also present as a falling estimated
glomerular filtration rate with albuminuria as a minor presenting feature, especially
in patients taking renin–angiotensin–aldosterone system inhibitors (RAASi). The
pathological characteristic features of disease are three major lesions: diffuse
mesangial expansion, diffuse thickened glomerular basement membrane, and
hyalinosis of arterioles. Functionally, however, the pathophysiology is reflected in
dysfunction of the mesangium, the glomerular capillary wall, the tubulointersti-
tium, and the vasculature. For all diabetic patients, a comprehensive approach to
management including glycemic and hypertensive control with RAASi combined
with lipid control, dietary salt restriction, lowering of protein intake, increased
physical activity, weight reduction, and smoking cessation can reduce the rate of
progression of nephropathy and minimize the risk for cardiovascular events. This
review focuses on the latest published data dealing with the mechanisms, diagnosis,
and current treatment of DN.

& 2014. The Korean Society of Nephrology. Published by Elsevier. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

End-stage renal disease (ESRD) due to diabetes has been
estimated to be 30–47% of all incident cases worldwide [1].
Disparities in the incidence of ESRD from diabetes among ethnic
groups have existed for many years, but the magnitude has
been increasing. Diabetic nephropathy (DN) develops along
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with generalized microvascular disease, most often concomi-
tant with macrovascular disease including cardiovascular, cere-
brovascular, and peripheral arterial diseases. Patients with DN
have a higher risk of mortality, mostly from cardiovascular
complications, than diabetic patients without nephropathy [2].
Risk factors

The epidemiology of DN has been best studied in patients
with type 1 diabetes, because the time of clinical onset is
usually known. The onset of overt nephropathy in type 1 dia-
betes is typically between 10 and 15 years after the onset of the
shed by Elsevier. This is an open access article under the CC BY-NC-ND

https://core.ac.uk/display/82128633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.krcp-ksn.com
http://www.krcp-ksn.com
http://dx.doi.org/10.1016/j.krcp.2014.08.001
http://dx.doi.org/10.1016/j.krcp.2014.08.001
http://dx.doi.org/10.1016/j.krcp.2014.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.krcp.2014.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.krcp.2014.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.krcp.2014.08.001&domain=pdf
mailto:sadler@labiomed.org
http://dx.doi.org/10.1016/j.krcp.2014.08.001


Kidney Res Clin Pract 33 (2014) 121–131122
disease. Both environmental and genetic factors have been
postulated as DN risk factors. Poor glycemic control, long
duration of diabetes, insulin resistance, high blood pressure
(BP), advanced age, smoking, race, and genetic predisposition
are the main risk factors for the development of DN. Many
genes have been implicated as conferring DN risk [3].

DN is a classic complex trait, whose development in a given
individual likely reflects contributions from multiple genes
whose expression is modulated by environmental factors.
Numerous genetic strategies have been used to identify
common disease risk loci and genes, including candidate gene
analyses, family-based linkage analysis and transmission dis-
equilibrium testing, population-based admixture mapping,
and genome-wide association studies (GWAS) [4]. Candidate
gene-based association has been the most common approach
used to identify susceptibility genes for DN. Genes encoding
for angiotensin-converting enzyme, angiotensin II (Ang II)
receptor, various aspects of glucose metabolism, lipid meta-
bolism (apolipoprotein E gene polymorphism), extracellular
matrix, and inflammatory cytokines have been selected to test
for an association with DN based on the pathogenesis of
disease [5,6]. Genome-wide linkage analysis facilitates the
identification of previously unsuspected genes as risk factors.
It is most powerful when the frequency of the polymorphism
is low but the effect size is high. An early family-based
genome-wide linkage analysis from the Family Investigation
of Nephropathy and Diabetes (FIND) research group identified
chromosomal loci for susceptibility genes, including 1q, 7q,
and 18q linked to estimated glomerular filtration rate (GFR), in
a multiethnic collection of families ascertained by a proband
with type 2 diabetes and DN [7]. Using linkage analysis and the
identification of positional candidate genes under the linkage
peaks, others identified polymorphisms in the carnosinase
1 gene on chromosome 18q [8], the adiponectin gene on 3q
[9], and the engulfment and cell motility (ELMO1) gene on 7p
[10] as DN risk genes. GWAS have greater power than linkage
analysis to identify polymorphisms when the gene effect
size is low, but the frequency of the polymorphism in the
population is high. GWAS identified several novel risk loci
including—but not limited to—SLC12A3 [11]; ELMO1 [12];
4.1 protein ezrin, radixin, moesin domain containing 3
(FRMD3) [13]; and SAM and SH3 domain containing 1 (SASH1)
gene [14]. Collaboration among many genetic research groups
around the world with thousands of samples and clinical
databases continue to seek replicable genetic polymorphisms
that confer DN risk.

Reflecting an appreciation for genetic–environmental inter-
actions in DN development, an emerging science has evolved
defining contributions of epigenetics to the development of
DN. A growing number of pathogenetically important micro-
RNAs (miRs) have been identified in DN [15], representing
opportunities for risk assessment and therapeutic targeting.
Clinical staging

Renal disease in diabetic patients had been clinically char-
acterized by increasing rates of urinary albumin excretion and
decreasing renal function, with at-risk patients marching
through the stages of normoalbuminuria, microalbuminuria,
overt proteinuria, and finally ESRD. However, with treatment,
not only can progression be slowed, but there is also some
plasticity in this staging, and regression from a more severe to a
less severe stage can sometimes be achieved. In the susceptible,
normoalbuminuria progresses to microalbuminuria, macroalbu-
minuria, and eventually to ESRD. Persistent albumin excretion
between 30 mg/d and 300 mg/d is defined as microalbumi-
nuria. Regression from microalbuminuria to normoalbuminuria
occurs spontaneously in a substantial proportion of diabetic
patients [16]. Nevertheless, patients with persistent microalbu-
minuria are at high risk of progressing to overt nephropathy
and developing cardiovascular disease [17]. Albuminuria in
excess of 300 mg/d represents overt nephropathy. Once overt
proteinuria occurs, there is concomitant loss of GFR in both type
1 and type 2 diabetes. Hypertension exacerbates GFR loss.
Historically, studies dealing with the natural history of DN
demonstrated a relentless, often linear but highly variable rate
of decline in GFR ranging from 2 mL/min/y to 20 mL/min/y
(mean 12 mL/min/y) [18]. However, the rate of decline may be
substantially less with tight BP and blood glucose control. In a
recent study, the rate of GFR decline ranged from 0 mL/min/y to
4 mL/min/y [19]. Thus, many patients who are well treated may
achieve stable renal function for long periods.
Pathogenesis

Hyperglycemia-induced metabolic and hemodynamic stimuli
are mediators of kidney injury [20,21]. These activate inflamma-
tory, pro-oxidant, ischemic, and fibrotic pathways leading to
mesangial matrix accumulation; podocyte effacement and loss;
glomerular basement membrane (GBM) thickening; endothelial
dysfunction; tubular atrophy, fibrosis, and dropout; tubulointer-
stitial inflammation, and renal arteriolar hyalinosis [20].

Hemodynamic factors

The hemodynamic factors contributing to DN involve
increased systemic and intraglomerular pressure and activa-
tion of various vasoactive hormones, including the intrarenal
renin–angiotensin–aldosterone system (RAAS), nitric oxide,
vascular endothelial growth factor (VEGF), and endothelin.
Hemodynamic changes play an important role, being present
early in the disease, exacerbating albumin passage across
glomerular capillaries, and contributing to mesangial matrix
expansion, podocyte injury, and nephron loss [22].

Metabolic factors

Hyperglycemia accelerates the development of renal disease
by increasing intracellular glucose availability. The facilitative
glucose transporter, GLUT1 mediates mesangial cell glucose flux,
which leads to the activation of signaling cascades favoring
glomerulosclerosis, including pathways mediated by transform-
ing growth factor β (TGF-β), advanced glycosylation end pro-
ducts (AGEs), protein kinase C, and various cytokines and
growth factors [23]. In addition, decreased phosphorylated p38
(pp38) mitogen-activated protein kinase (MAPK) after chronic
glycemic stress may contribute to podocyte cytoskeletal altera-
tions and albuminuria [24].

In chronic hyperglycemia, glucose combines with free
amino groups on circulating or tissue proteins. This none-
nzymatic process initially forms reversible early glycosylation
products and later irreversible AGEs. AGEs activate specific
receptors, inducing cellular dysfunction and injury. AGEs
contribute to the accumulation of glomerular extracellular
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matrix proteins, associated with a concomitant depression in
collagenase activity. An AGE-related functional defect in the
permselective properties of the podocyte slit membrane may
contribute to the development of albuminuria [25].

Oxidative stress/inflammation

Traditionally, hyperglycemia-induced overproduction of
reactive oxygen species (ROS) in diabetes has been implicated
in the pathogenesis of diabetic complications [26]. Some have
recently challenged the hypothesis that increased cellular
superoxide production underlies DN. In experimental models,
Dugan et al [27] show that DN may well be characterized by
low mitochondrial superoxide production, and that increased
mitochondrial superoxide production may attenuate DN. There-
fore, in addition to glycemic and BP control, restoration of
mitochondrial structure, function, and signaling may be novel
ways to improve DN and prevent the decline in organ function.

Metabolic pathways are the major mediators of DN. They
promulgate activation of the immune system and chronic
inflammation. Several studies suggest that the small increment
in monocytes/macrophages observed in glomeruli contribute
significantly to the evolution of DN. Intrinsic renal cells,
including mesangial, glomerular endothelial, dendritic, and
renal tubular cells, are able to produce inflammatory cytokines
and growth factors, mainly VEGF, TGF-β, interleukin 1 (IL-1),
IL-6, and IL-18, as well as tumor necrosis factor a (TNF-a),
which have all been implicated in DN progression [28].

Matrix protein accumulation is a major determinant of
progressive renal injury in DN. It can result from increased
synthesis and/or decreased degradation of matrix proteins [29].
Recently discovered noncoding RNAs such as miRs usually act as
inhibitors of mRNA translation. A growing number of miRs have
been implicated in the development of DN, including—but not
limited to—192, 21, 29c, 93, 141, 216a, 377, and the 200 family
[30,31]. These have been implicated in mediating inflammation
and fibrosis in DN [32,33]. miRs are undergoing intense scrutiny
for their value in elucidating the pathogenesis of DN and for
their potential as therapeutic targets.
Diagnostic criteria

The following recommendations are based on the clinical
practice guidelines for diabetic kidney disease outlined by the
Kidney Disease Outcomes Quality Initiative (KDOQI), which
were last updated in 2012 [34]. Screening for albuminuria
should begin at 5 years’ diabetes duration in patients with
type 1 diabetes and at the time of diagnosis in patients with
type 2 diabetes. The preferred screening test is a urine
Table 1. Diabetic glomerular pathological classification

Class Patholo

I Near-normal light microscopy and glomerular basement mem
and 4430 nm in males)

IIa Mild mesangial expansion in 425% of the observed mesangiu
IIb Severe mesangial expansion in 425% of the observed mesang
III Nodular sclerosis in at least one glomerulus
IV Advanced global glomerulosclerosis in 450% of glomeruli

Note. From Tervaert et al [36]. Modifed with permission.
GBM, glomerular basement membrane
albumin/creatinine ratio with a first-morning void spot collec-
tion. If microalbuminuria is present, the test should be con-
firmed for persistence with two of three positive repeat
measurements within 6 months. DN is likely in patients with
diabetes, persistent microalbuminuria or overt proteinuria, a
duration of diabetes of at least 10 years and/or diabetic
retinopathy, and in the absence of other clinical and/or
historical factors suggesting additional or alternative causes
for abnormal albuminuria. A renal biopsy may be necessary to
confirm the clinical diagnosis if atypical features are present,
including the appearance of nephropathy earlier than antici-
pated, the presence of a nephritic sediment, a more rapid loss
of renal function than anticipated, or the presence of serolo-
gical abnormalities obtained during screening. The presence of
retinopathy evaluated through a routine ophthalmologic exam
was thought to predict nephropathy. Retinopathy correlates
well with overt nephropathy and declining GFR o30–60 mL/
min/1.73 m2. However, the association is not as strong in early
diabetes [35] and is less predictive in type 2 diabetes than type
1 diabetes.
Renal pathology

The histopathological lesions of DN have recently been
classified (Table 1) [36]. Renal pathological changes are present
in patients with long-standing diabetes prior to the onset of
microalbuminuria [37]. The characteristic light microscopic
features of DN comprise three major lesions: thickened
GBM and tubular basement membranes, diffuse mesangial
expansion, and hyalinosis of afferent and efferent arterioles
(Fig. 1). In the new classification, Class I consists of electron
microscopy-confirmed thickening of the GBM, adjusted for
gender and age. Class II consists of mild (IIA) to severe (IIB)
mesangial expansion. GBM thickening and mesangial matrix
accumulation are the first changes that may occur at 2–5 years
of diabetes. The degree of mesangial expansion correlates
inversely within the capillary filtration surface area, which
contributes to the progression from hyperfiltration to reduced
GFR [38]. Class III consists of nodular glomerulosclerosis, a
lesion first described by Kimmelstiel and Wilson in 1936.
Finally, Class IV consists of advanced DN, comprising 450%
global glomerulosclerosis along with additional lesions of
Classes I, II, or III. Tubulointerstitial inflammation and atrophy
and vascular lesions are scored separately in scales of 0–3 or
0–2. Arteriolar hyalinosis, arteriosclerosis, glomerular capillary
subendothelial hyaline (hyaline caps), and capsular drops
along the epithelial parietal surface of the Bowman capsule
(e.g., the so-called exudative lesions of DN) may also be
present. The classification uses electron microscopy only to
gical findings

brane thickness by electron microscopy (GBM 4395 nm in females

m
ium



Typical diabetic nephropathy 
• Nodular mesangial expansion
• Thickened GBM
• Arteriolar hyalinosis

Atypical patterns of renal injury 
• Tubular atrophy
• Thickened tubular BM
• Interstitial fibrosis/inflammation
• Advanced arteriolar hyalinosis

Figure 1. Renal pathological findings in diabetic nephropathy. BM, basement membrane; GBM, glomerular basement membrane.

Table 2. Therapeutic strategy in diabetic nephropathy

Intervention Therapeutic goal

Renoprotective therapy
Antihypertensive agents BP r130/80 mmHg for albuminuria Z30 mg/d

BP r140/90 mmHg for albuminuria o30 mg/d
ACEi or ARB (avoid combining ACEi and ARB) Urine protein o0.5–1.0 g/d

GFR decline o2 mL/min/y
Glycemic control HbA1c �7%
Dietary protein restriction 0.8 g/kg/d in GFR o30 mL/min/1.73 m2

Adjunctive cardiorenal protective therapy
Dietary salt restriction o5 g/d
Lipid-lowering agents (statins) LDL-C o70–100 mg/dL
Antiplatelet therapy Thrombosis prophylaxis
Physical activity Compatible with cardiovascular health and tolerance (aiming for at least 30 min, 5 times/wk)
Weight control Ideal body weight
Smoking cessation Abstinence

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; BP, blood pressure; GFR, glomerular filtration rate; HbA1c,
hemoglobin A1c; LDL-C, low density lipoprotein-cholesterol.
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measure GBM thickness; it does not include podocyte changes,
nor has it been tested for its predictive value for clinical or
research utility. Numerous relationships between tubulointer-
stitial change and functional outcomes have been reported.
Interstitial fibrosis is often proportional to tubular atrophy and
a strong predictor of the rate of progression from moderate to
severe reduction in GFR [39,40]. Urinary biomarker data in
human beings support the view that tubule injury contributes
in a primary way, rather than in a secondary manner, to the
development of early DN [41].
Therapeutic interventions

General measures for prevention and treatment of DN, and
protection against cardiovascular morbidity and mortality
include rigorous BP control with RAAS inhibitors (RAASi),
glycemic control, treatment of dyslipidemia, as well as diet
and lifestyle modifications, including physical activity, appro-
priate weight reduction, and smoking cessation (Table 2).

Glycemic control

Glycemic control prevents and improves microvascular
complications [42,43]. The efficacy of glycemic control as a
renoprotective strategy depends in part on the stage at which it
is begun and the degree of normalization of glucose metabo-
lism. Glycemic control can partially reverse early glomerular
hyperfiltration and new-onset microalbuminuria [43–45].
Glycemic control can also stabilize and/or retard progression
in diabetic patients with overt nephropathy [46]. However,
few studies address intensive glycemic control in patients
with advanced DN, in whom it may be difficult to show a
benefit.
Type 1 diabetes
The Diabetes Control and Complications Trial (DCCT) com-

pared the effects of intensive glucose control with conven-
tional treatment on the development and progression of long-
term complications of type 1 diabetes. During a 9-year period,
patients receiving intensive therapy [mean hemoglobin A1c
(HbA1c) 7%] had a 35–45% lower risk for development of
microalbuminuria compared with the control group (mean
HbA1c 9%) [45]. More recently, the Epidemiology of Diabetes
Interventions and Complications (EDIC) trial data indicated
that the long-term risk of an impaired GFR was 50% lower in
patients treated for an average of 12 years with the DCCT-
intensive glucose control regimen compared to those treated
with conventional therapy. This effect was not evident until
more than 10 years after randomization, beyond the period of
the DCCT treatment intervention [47]. This indicates that early
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and long-term control of hyperglycemia significantly amelio-
rates DN and that the beneficial effect persists even when
glucose control is relaxed.

Moreover, the benefits of glycemic control after pancreas
transplantation in patients with type 1 diabetes were observed
in that mesangial matrix volume, thickening of glomerular and
tubular basement membranes, and nodular glomerular lesions
were significantly reduced or returned to normal. However,
histologic remodeling was a slow process, taking approxi-
mately 10 years after transplantation [48,49].

Type 2 diabetes
The Kumamoto study reported a 60% reduction in micro-

albuminuria in young type 2 diabetic patients achieving an
HbA1c of 7.0% [50]. In the United Kingdom Prospective
Diabetes Study (UKPDS) trial, newly diagnosed patients with
type 2 diabetes were randomly assigned to intensive manage-
ment (HbA1c 7.0%) with a sulfonylurea or insulin or to
conventional management (HbA1c 7.9%) with diet alone.
After 9 years of treatment, tight glycemic control reduced
the incidence of microalbuminuria by 24% [43]. Moreover,
after termination of the UKPDS study, patients with type
2 diabetes randomized to the lower HbA1c target continued
to experience risk reduction for myocardial infarction and
death from any cause up to 10 years after the original
randomized assignment, in some cases despite higher subse-
quent HbA1c after the study’s conclusion [51]. This phenom-
enon of ongoing beneficial effects on diabetic complications
after a period of improved glycemic control even if followed by
a return to less intensive metabolic control has been described
as a “legacy effect” by the UKPDS investigators. This observa-
tion underlies the importance of early glycemic control before
complications develop.

More recent studies, including the Action to Control Cardi-
ovascular Risk in Diabetes (ACCORD) trial, Action in Diabetes
and Vascular Disease, Perindopril and Indapamide Controlled
Evaluation (ADVANCE) trial, and the Veterans Affairs Diabetes
Trial (VADT), which targeted lower HbA1c goals (o6–6.5%),
failed to show that extremely tight glycemic control protects
against macrovascular complications in patients with rela-
tively advanced age and long duration of type 2 diabetes.
Although some benefit for albuminuria may have been
achieved [52–54], in the ACCORD trial, very tight glycemic
control was associated with a 22% increase in mortality from
any cause [52]. Thus, the effects of intensive glycemic control
on the prevention of macrovascular complications are less
certain, particularly in patients with long disease duration. A
recent systematic review revealed that intensive glucose con-
trol reduced the risk for microalbuminuria and macroalbumi-
nuria, but evidence is lacking that intensive glycemic control
reduces the risk for doubling of creatinine, ESRD, or death [55].
Table 3. Individualizing glycemic goal setting

Favors intensive therapy: HbA1c o6.5–7%

Highly motivated, adherent, excellent self-care capability
Low risks potentially associated with hypoglycemia
Newly diagnosed diabetes
Long life expectancy
Absent comorbidities
Absent established vascular complications (cardiovascular disease,

stroke, advanced chronic kidney disease)

HbA1c, hemoglobin A1c.
Decreasing insulin requirements and frequent hypoglycemia
occur in advanced chronic kidney disease (CKD) and in patients
on dialysis. Impaired insulin sensitivity and deficient gluconeo-
genesis—along with malnutrition, chronic inflammation, deficient
catecholamine release, and impaired renal insulin degradation
and clearance—can contribute to low blood glucose levels in
patients with CKD and ESRD [56–58]. Therefore, aggressive
glycemic control cannot be routinely recommended for all DN
patients for the purpose of reducing mortality risk. Glucose-
lowering treatment must be individualized in DN patients.

Both KDOQI and Kidney Disease Improving Global Out-
comes (KDIGO) recommended a target HbA1c of o7% or �7%,
respectively, regardless of the presence or absence of CKD, a
goal that is in line with diabetes management in the general
population [59]. However, these recommendations are not
strongly evidence-based, because few studies address the
benefits and risks of intensive glycemic control in late stages
of CKD or ESRD [60,61]. Patients likely to benefit the most from
tight glycemic control include those with short diabetes
duration, long life expectancy, and no significant cardiovascu-
lar disease. Less-stringent HbA1c goals (such as o8%) may be
appropriate for patients with a higher risk of hypoglycemia,
difficult glycemic control, those with hypoglycemia unaware-
ness, limited life expectancy, extensive comorbid conditions,
and/or advanced microvascular and macrovascular complica-
tions, including advanced CKD [61] (Table 3). Many hypogly-
cemic agents are renally excreted, requiring dosage
adjustment in CKD (Table 4).

Glycemic monitoring in CKD
Currently, HbA1c remains the most accurate method to

assess chronic glycemic control [43]. HbA1c underestimates
glycemic control in advanced CKD and ESRD because of shorter
erythrocyte life span, iron deficiency anemia, recent transfusion,
and erythropoietin treatment [62]. Despite the limitations of
HbA1c in advanced CKD and ESRD, HbA1c is still considered a
reasonable measure of chronic glycemic control in this group.
Glycated albumin and fructosamine have also been tested
[63,64], although each of these is also beset by confounding
factors. Thus, for patients prone to glycemic variability (espe-
cially type 1 diabetes patients, or type 2 diabetes patients with
severe insulin deficiency), glycemic control is probably still best
assessed by a combination of the results of self-monitoring of
blood glucose testing and the HbA1c [61].

BP control

BP target
In both type 1 and type 2 diabetic patients, early treatment of

hypertension is critical for DN prevention and treatment. However,
the optimal lower limit for BP control in DN remains unclear.
Favors less intensive therapy: HbA1c o8%

Less motivated, nonadherent, poor self-care capability
High risks potentially associated with hypoglycemia
Long-standing diabetes
Short life expectancy
Severe comorbidities
Severe established vascular complications (cardiovascular disease,

stroke, advanced chronic kidney disease)



Table 4. Antiglycemic agents in diabetic patients with CKD

Class Drugs Dosing recommendation
CKD stages 3 and 4

Dosing recommendation
CKD stage 5 and dialysis

Complication

Sulfonylureas Glipizide No dose adjustment No dose adjustment Hypoglycemia
Gliclazide No dose adjustment No dose adjustment
Glyburide Avoid Avoid
Glimepiride Initiate at low dose, 1 mg daily Avoid

a-Glucosidase inhibitors Acarbose Not recommended in patients with
serum creatinine 42 mg/dL

Avoid Possible hepatic
toxicity

Biguanides Metformin Avoid when GFR o30 mL/min/1.73m2 Avoid Lactic acidosis
Probably safe when GFR Z45 ml/min/
1.73m2

Meglitinides Repaglinide No dose adjustment No dose adjustment Hypoglycemia
Nateglinide Initiate at low dose, 60 mg before each

meal
Avoid

Thiazolidinediones Pioglitazone No dose adjustment No dose adjustment Fluid retention and
bone fracture

Incretin mimetic Exenatide Not recommended in patients with GFR
o30 mL/min/1.73m2

Avoid Possible
pancreatitis

DPP-4 inhibitor Sitagliptin Reduce dose by 50–75% except no dose
adjustment in linagliptin

Reduce dose by 50–75%
except no dose adjustment in linagliptinVildagliptin

Saxagliptin
Alogliptin
Linagliptin

CKD, chronic kidney disease; DPP-4, dipeptidyl peptidase 4; GFR, glomerular filtration rate.
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Major guidelines published prior to the ACCORD BP trial suggested
that the target BP in diabetic patients should be o130/80 mmHg
[59]. However, ACCORD challenged this BP target. Among diabetic
patients with high cardiovascular risk randomized to a goal
systolic BP o120 mmHg versus standard therapy with a goal
o140 mmHg, there was no difference in the risks of composite
major cardiovascular events; but increased rates of hyperkalemia
and renal dysfunction were observed when targeting a systolic BP
of o120 mmHg [65]. In a secondary analysis of the Irbesartan
Diabetic Nephropathy Trial (IDNT), progressive lowering of systolic
BP to 120 mmHg was associated with improved renal and patient
survival, an effect independent of baseline renal function [66].
Thus, given the lack of strong evidence of benefit from reducing
systolic BP to below 130 mmHg, some may target o140/90
mmHg as a BP goal for diabetic patients. A target of 130/80 mmHg
or less can be pursued in patients with DN or CKD, younger
patients, patients who tolerate their antihypertensives well, and
patients at high risk for stroke. The KDIGO clinical practice
guideline for the management of BP in CKD recommended
thresholds to initiate treatment to lower BP of 130/80 mmHg
and 140/90 mmHg for diabetic patients with and without urine
albumin excretion >30 mg/d, respectively [67]. In addition, KDIGO
recommended individualized BP targets and agents according to
age, coexistent cardiovascular disease and other comorbidities, risk
of progression of CKD, presence or absence of retinopathy, and
tolerance of treatment.
RAASi
The RAAS has key regulatory functions for BP and sodium

homeostasis. In particular, Ang II, the main effector of the RAAS,
enhances the vascular tone of both afferent and efferent glomer-
ular arterioles by interacting with angiotensin type 1 and type
2 receptors (AT1, AT2), thereby modulating intraglomerular pres-
sure. Besides the hemodynamic effects, activation of AT1 receptors
triggers the expression and release of a range of proinflammatory
and profibrotic mediators implicated in DN progression [68]. In
hypertensive diabetic patients, angiotensin-converting enzyme
inhibitors (ACEi) or angiotensin receptor blockers (ARBs) are
effective first-line antihypertensive agents and reduce DN disease
progression [69].

RAASi in type 1 diabetes. In type 1 diabetes with persistent
microalbuminuria and overt nephropathy, several studies
showed that ACEi lower albuminuria and decrease the risk of
renal progression [70,71]. The first study was published more
than 20 years ago. In the landmark randomized, controlled
trial comparing captopril with a placebo in patients with type
1 diabetes in whom urinary protein excretion was 4500 mg/d
and the serum creatinine concentration was r2.5 mg/dL,
captopril treatment attenuated renal functional decline and
reduced the risk of the composite end point of death, dialysis,
and doubling of serum creatinine [72]. Subsequent meta-
analyses have since confirmed this finding [73]. There are no
large long-term clinical trials to demonstrate the efficacy of
ARBs in type 1 diabetes with DN. Nevertheless, based on the
shared properties of ACEi and ARBs, there is reason to believe
that both are effective in the treatment of type 1 DN.

In patients with normotensive and normoalbuminuric
type 1 diabetes, most—but not all—clinical trials show no
benefit of RAASi on nephropathy progression [74–76]. The
KDOQI 2012 Diabetes Guideline recommended not using
an ACEi or ARB for the primary prevention of DN in
normotensive normoalbuminuric patients with diabetes
[34].

RAASi in type 2 diabetes. In hypertensive normoalbuminuric
type 2 diabetic patients, olmesartan reduced the incidence of
microalbuminuria from 9.8% to 8.2% even though BP control in
treatment and control groups were excellent according to
current standards. Of concern was a higher rate of fatal
cardiovascular events with this ARB among patients known to
have preexisting coronary heart disease, especially those with
lower BP [77]. The Bergamo Nephrologic Diabetes Compli-
cations Trial (BENEDICT), which randomized hyperten-
sive normoalbuminuric type 2 diabetic patients to placebo,
verapamil, trandolapril, or a combination of verapamil plus
trandolapril, showed less progression to microalbuminuria in
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patients receiving trandolapril either alone or with verapamil
[74]. Overall, the risks appear to exceed the benefit in using
RAASi prophylactically to prevent microalbuminuria.

In the stage of microalbuminuria, the Irbesartan in
Patients with Type 2 Diabetes Microalbuminuria (IRMA 2)
study showed that the ARB reduced progression to overt
nephropathy by 70% in hypertensive type 2 diabetic
patients during a 2-year follow-up period [78]. In the
MicroAlbuminuria Reduction With VALsartan (MARVAL)
study, the ARB produced a greater reduction in albumi-
nuria compared with amlodipine with the same degree of
BP reduction, suggesting that the antiproteinuric effect of
the ARB is BP-independent [79]. RAASi are recommended
to slow the progression from microalbuminuria to overt
proteinuria.

Two landmark trials now more than a decade old
showed clear benefit for ARBs in the treatment of type
2 diabetes with overt nephropathy. In the IDNT study, 1,715
hypertensive patients with nephropathy due to type 2 dia-
betes were randomly treated to irbesartan, amlodipine, or
placebo. Treatment with irbesartan showed a relative risk
reduction of the primary composite end point (doubling of
the plasma creatinine, development of ESRD, or death from
any cause) in the irbesartan group [80]. In the Reduction of
End point in NIDDM with the Angiotensin II Antagonist
Losartan (RENAAL) trial, 1,513 patients with DN were
randomly assigned to losartan or placebo, both in addition
to conventional antihypertensive therapy. At 3.4 years,
losartan reduced the same composite end point by 16%.
Losartan reduced the incidence of serum creatinine dou-
bling by 25% and the risk of ESRD by 28% [81]. Both studies
showed that the benefit of ARBs exceeded that attributable
to changes in BP alone.

Compared with ARBs, data on the efficacy of ACEi in
type 2 DN are less strong, largely because the studies were
underpowered or follow-up was short. Nevertheless, some
studies did show that ACEi use results in a greater reduc-
tion in albuminuria and a slower decrement in renal
functional decline compared with other antihypertensive
agents. In addition, the Diabetics Exposed to Telmisartan
and Enalapril (DETAIL) trial was a randomized controlled
trial that compared enalapril to telmisartan in 250 patients
with early nephropathy [82]. At 5 years, both groups had
similar findings for decline in the GFR, BP, serum creati-
nine, urinary albumin excretion, ESRD, cardiovascular
events, and mortality. The results support the clinical
equivalence of ARBs and ACEi in type 2 diabetic patients
with nephropathy.
RAASi combinations. On theoretical grounds, a dual blockade
of the RAAS with both an ACEi and an ARB should have been
superior to monotherapy in treating DN [83]. In the Ongoing
Global Endpoint Trial (ONTARGET), combination therapy
reduced proteinuria in patients with high cardiovascular risk
and prevented new onset of micro- and macroalbuminuria to a
greater extent than monotherapy. However, RAASi
combination was associated with more end points including
the need for acute dialysis, doubling of serum creatinine, and
death, than monotherapy [84]. Recently, the Veterans Affairs
Nephropathy in Diabetes (VA NEPHRON-D) trial failed to
demonstrate a potential for benefit with respect to renal
disease progression, mortality, or cardiovascular disease. As
in ONTARGET, combined therapy was associated with an
increased risk of serious adverse events including acute
kidney injury (AKI) and hyperkalemia [85]. The KDIGO
guidelines concluded that there is insufficient evidence to
recommend combining ACEi with ARBs to prevent
progression of CKD [60]. Simultaneous administration of two
blockers of the RAAS is currently not recommended in patients
with diabetes [86].

The newest RAAS-blocking agent is aliskiren, an oral
direct renin inhibitor. In the Aliskiren in the Evaluation of
Proteinuria in Diabetes (AVOID) trial, aliskiren patients
randomized to aliskiren plus losartan had a significant 20%
greater reduction in proteinuria compared to patients ran-
domized to losartan alone, independent of its BP lowering
effects [87]. However, the Aliskiren Trial in Type 2 Diabetics
Using Cardio-Renal End-points (ALTITUDE) was terminated
prematurely because the combination of aliskiren and ACEi
or ARB caused increases in nonfatal stroke, hypotension,
hyperkalemia, and renal complications [88].
Dosing and adverse effects of ACEi and ARB. The
antiproteinuric effect of ACEi and ARBs are at least in part
independent of BP reduction, and in individuals, proteinuria
may continue to respond to dose escalations beyond those
recommended for BP control [89]. Unfortunately, maximal
dosing of ACEi or ARBs may be limited by side effects,
including hyperkalemia, hypotension, and reduced GFR.
Serum creatinine concentration may increase up to 30% in
proteinuric patients with renal impairment after an ACEi is
started. This rise in creatinine is associated with long-term
renoprotection, and therefore the ACEi should not necessarily
be stopped in these patients. Increases in serum creatinine
concentration above 30% after ACEi initiation should raise the
suspicion of renal artery stenosis. Aggressive dose increments
of ACEi or ARB, especially in conjunction with diuresis, can
precipitate AKI. In advanced CKD, although ACEi and ARBs are
not contraindicated, the de novo introduction of these agents
or injudicious dose increments may precipitate the need for
dialysis prematurely; some caution is appropriate. One small
study suggested that in some individuals, RAASi
discontinuation late in the course of DN may recover some
renal function [90]. The potential for recovering even a small
amount of renal function may be especially advantageous
when a permanent vascular access is not yet mature, or in
cases in which dialysis is inappropriate or unavailable.
Additional interventions

For all diabetic patients, additional therapies beyond glyce-
mic and hypertensive control should be used to reduce the rate
of progression of nephropathy and to minimize the risk for
cardiovascular events. Indeed, at all stages of CKD, the risk of
dying from a cardiovascular complication of diabetes exceeds
the risk of progressing to ESRD [91]. Combination therapy
includes management of dyslipidemia with a statin, dietary
restriction of salt to o5 g/d, lowering of protein intake to
�0.8 g/kg/d in adults with GFR o30 mL/min/1.73 m2, physical
activity compatible with cardiovascular health and tolerance
(aiming for at least 30 minutes, five times per week), achieving
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a healthy weight (body mass index 20–25), and smoking
cessation.

Novel interventions

Innovative strategies are needed for DN prevention and
treatment. Recent trial results have been disappointing. Some
trials resulted in an increase in adverse events (aminoguani-
dine, aliskerin, bardoxolone) [88,92,93]. Others may have been
abandoned for economic reasons prior to demonstrating
benefit (ruboxistaurin; a human monoclonal antibody to con-
nective tissue growth factor) [94,95]. Some were completed
but failed to show benefit (sulodexide) [96,97]. Others show
some benefit in small studies with relatively short follow-up
(pirfenidone) [98]. Promising preclinical data suggest that
dipeptyl-peptidase-4 antagonists and glucagon-like-1 peptides
may attenuate DN independent of their glucose-lowering
effects [99,100]; however, this has not been established in
patients [101]. Large-scale clinical trials are needed to confirm
safety and to validate the benefits of these agents on relevant
clinical end points in DN.
Conclusion

In conclusion, DN is one of the main causes of ESRD and is
associated with increased cardiovascular morbidity and mor-
tality. The pathophysiology of diabetes and DN are complex
and include interactions between hemodynamic and meta-
bolic pathways, oxidative injury, and cytokines and growth
factor elaboration, ultimately leading to renal injury. The
current mainstay of pharmacotherapy involves BP control,
inhibition of the RAAS with ACEi and/or ARB, and glucose-
lowering agents. Disease modifications such as lipid control,
dietary restriction, smoking cessation, and weight reduction
provide additive renal benefits, particularly in addressing
cardiovascular risk. Innovative strategies targeting additional
pathophysiological pathways are needed to prevent and treat
DN. ClinicalTrials.gov lists more than 500 trials that have been
recently completed or are in progress to address DN.
Conflict of interest

None for BS. SA is a member of the Steering Committee and
a local participant in the Lilly Pharmaceuticals JAGQ study to
test the safety and efficacy of a JAK1/2 inhibitor in overt
diabetic nephropathy.

References

[1] Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K,
Kasiske B, Kutner N, Liu St J, Peter W, Guo H, Gustafson S, Heubner
B, Lamb K, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid
C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC,
Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang
X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L: United
States Renal Data System 2011 Annual Data Report: atlas of
chronic kidney disease & end-stage renal disease in the United
States. Am J Kidney Dis 59:e1–e420, 2012

[2] Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR,
Himmelfarb J, de Boer IH: Kidney disease and increased mortal-
ity risk in type 2 diabetes. J Am Soc Nephrol 24:302–308, 2013
[3] Trevisan R, Viberti G: Genetic factors in the development of
diabetic nephropathy. J Lab Clin Med 126:342–349, 1995

[4] Adler S, Pahl M, Abboud H, Nicholas S, Ipp E, Seldin M: Mexican–
American admixture mapping analyses for diabetic nephropathy
in type 2 diabetes mellitus. Semin Nephrol 30:141–149, 2010

[5] Freedman BI, Bostrom M, Daeihagh P, Bowden DW: Genetic factors
in diabetic nephropathy. Clin J Am Soc Nephrol 2:1306–1316, 2007

[6] Satirapoj B, Supasyndh O, Dispan R, Punpanich D, Tribanyatkul S,
Choovichian P: Apolipoprotein E genetic polymorphisms and the
development of nephropathy in type 2 diabetes. J Med Assoc Thai
96:1119–1126, 2013

[7] Schelling JR, Abboud HE, Nicholas SB, Pahl MV, Sedor JR, Adler
SG, Arar NH, Bowden DW, Elston RC, Freedman BI, Goddard KA,
Guo X, Hanson RL, Ipp E, Iyengar SK, Jun G, Kao WH, Kasinath BS,
Kimmel PL, Klag MJ, Knowler WC, Nelson RG, Parekh RS, Quade
SR, Rich SS, Saad MF, Scavini M, Smith MW, Taylor K, Winkler
CA, Zager PG, Shah VO: Genome-wide scan for estimated
glomerular filtration rate in multi-ethnic diabetic populations:
the Family Investigation of Nephropathy and Diabetes (FIND).
Diabetes 57:235–243, 2008

[8] McDonough CW, Hicks PJ, Lu L, Langefeld CD, Freedman BI,
Bowden DW: The influence of carnosinase gene polymorphisms
on diabetic nephropathy risk in African-Americans. Hum Genet
126:265–275, 2009

[9] Lin Z, Huang G, Zhang J, Lin X: Adiponectin gene polymorphisms
and susceptibility to diabetic nephropathy: a meta-analysis. Ren
Fail 36:478–487, 2014

[10] Pezzolesi MG, Katavetin P, Kure M, Poznik GD, Skupien J,
Mychaleckyj JC, Rich SS, Warram JH, Krolewski AS: Confirmation
of genetic associations at ELMO1 in the GoKinD collection
supports its role as a susceptibility gene in diabetic nephropathy.
Diabetes 58:2698–2702, 2009

[11] Kim JH, Shin HD, Park BL, Moon MK, Cho YM, Hwang YH, Oh KW,
Kim SY, Lee HK, Ahn C, Park KS: SLC12A3 (solute carrier family
12 member [sodium/chloride] 3) polymorphisms are associated
with end-stage renal disease in diabetic nephropathy. Diabetes
55:843–848, 2006

[12] Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S,
Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai
K, Iizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M,
Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R,
Kikkawa R, Nakajima M, Nakamura Y, Maeda S: Genetic varia-
tions in the gene encoding ELMO1 are associated with suscept-
ibility to diabetic nephropathy. Diabetes 54:1171–1178, 2005

[13] Martini S, Nair V, Patel SR, Eichinger F, Nelson RG, Weil EJ,
Pezzolesi MG, Krolewski AS, Randolph A, Keller BJ, Werner T,
Kretzler M: From single nucleotide polymorphism to transcrip-
tional mechanism: a model for FRMD3 in diabetic nephropathy.
Diabetes 62:2605–2612, 2013

[14] McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN,
Hester JM, Wing MR, Bostrom MA, Rudock ME, Lewis JP, Talbert
ME, Blevins RA, Lu L, Ng MC, Sale MM, Divers J, Langefeld CD,
Freedman BI, Bowden DW: A genome-wide association study for
diabetic nephropathy genes in African Americans. Kidney Int
79:563–572, 2011

[15] Shantikumar S, Caporali A, Emanueli C: Role of microRNAs in
diabetes and its cardiovascular complications. Cardiovasc Res
93:583–593, 2012

[16] Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH,
Krolewski AS: Regression of microalbuminuria in type 1 diabetes.
N Engl J Med 348:2285–2293, 2003

[17] Parving HH: Renoprotection in diabetes: genetic and non-genetic
risk factors and treatment. Diabetologia 41:745–759, 1998

[18] Rossing P: Prediction, progression and prevention of diabetic nephro-
pathy. The Minkowski Lecture 2005. Diabetologia 49:11–19, 2006

[19] Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB,
Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittes J, Warnock
DG: Investigators BS: Bardoxolone methyl and kidney function
in CKD with type 2 diabetes. N Engl J Med 365:327–336, 2011

http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref1
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref2
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref2
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref2
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref3
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref3
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref4
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref4
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref4
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref5
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref5
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref6
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref6
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref6
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref6
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref7
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref8
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref8
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref8
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref8
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref9
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref9
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref9
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref10
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref10
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref10
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref10
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref10
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref11
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref11
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref11
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref11
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref11
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref12
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref12
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref12
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref12
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref12
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref12
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref12
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref13
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref13
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref13
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref13
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref13
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref14
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref14
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref14
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref14
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref14
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref14
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref15
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref15
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref15
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref16
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref16
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref16
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref17
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref17
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref18
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref18
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref18
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref18


Satirapoj and Adler / Diabetic nephropathy 129
[20] Satirapoj B: Review on pathophysiology and treatment of
diabetic kidney disease. J Med Assoc Thai 93:S228–S241, 2010

[21] Satirapoj B: Nephropathy in diabetes. Adv Exp Med Biol 771:107–122,
2012

[22] Ziyadeh FN, Wolf G: Pathogenesis of the podocytopathy and
proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4:39–45,
2008

[23] Heilig CW, Deb DK, Abdul A, Riaz H, James LR, Salameh J,
Nahman Jr NS: GLUT1 regulation of the pro-sclerotic mediators
of diabetic nephropathy. Am J Nephrol 38:39–49, 2013

[24] Dai T, Natarajan R, Nast CC, LaPage J, Chuang P, Sim J, Tong L,
Chamberlin M, Wang S, Adler SG: Glucose and diabetes: effects
on podocyte and glomerular p38MAPK, heat shock protein 25,
and actin cytoskeleton. Kidney Int 69:806–814, 2006

[25] Singh AK, Mo W, Dunea G, Arruda JA: Effect of glycated proteins
on the matrix of glomerular epithelial cells. J Am Soc Nephrol
9:802–810, 1998

[26] Ha H, Hwang IA, Park JH, Lee HB: Role of reactive oxygen species
in the pathogenesis of diabetic nephropathy. Diabetes Res Clin
Pract 1:S42–S45, 2008

[27] Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S,
DeCleves AE, Andreyev A, Quach T, Ly S, Shekhtman G, Nguyen
W, Chepetan A, Le TP, Wang L, Xu M, Paik KP, Fogo A, Viollet B,
Murphy A, Brosius F, Naviaux RK, Sharma K: AMPK dysregula-
tion promotes diabetes-related reduction of superoxide and
mitochondrial function. J Clin Invest 123:4888–4899, 2013

[28] Navarro-Gonzalez JF, Mora-Fernandez C: The role of inflammatory
cytokines in diabetic nephropathy. J Am Soc Nephrol 19:433–442,
2008

[29] Ihm CG, Lee GS, Nast CC, Artishevsky A, Guillermo R, Levin PS,
Glassock RJ, Adler SG: Early increased renal procollagen alpha 1
(IV) mRNA levels in streptozotocin induced diabetes. Kidney Int
41:768–777, 1992

[30] Kato M, Castro NE, Natarajan R: MicroRNAs: potential mediators
and biomarkers of diabetic complications. Free Radic Biol Med
64:85–94, 2013

[31] Kantharidis P, Wang B, Carew RM, Lan HY: Diabetes complica-
tions: the microRNA perspective. Diabetes 60:1832–1837, 2011

[32] Long J, Wang Y, Wang W, Chang BH, Danesh FR: MicroRNA-29c is
a signature microRNA under high glucose conditions that targets
Sprouty homolog 1, and its in vivo knockdown prevents progres-
sion of diabetic nephropathy. J Biol Chem 286:11837–11848, 2011

[33] Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT,
Kaimal V, Huang X, Chang AN, Li S, Kalra A, Grafals M, Portilla D,
MacKenna DA, Orkin SH, Duffield JS: MicroRNA-21 promotes
fibrosis of the kidney by silencing metabolic pathways. Sci Transl
Med 4:121ra18, 2012

[34] National Kidney F. KDOQI Clinical Practice Guideline for Dia-
betes and CKD: 2012 Update. Am J Kidney Dis 60:850–886, 2012

[35] Chuankrekkul P, Satirapoj B, Jumroendararasamee C, Vongkulsiri
S: Correlation between clinical diabetic nephropathy and sever-
ity of diabetic retinopathy in type 2 diabetic patients. J Nephrol
Soc Thai 19:41–46, 2013

[36] Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT,
Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, Joh K,
Noel LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA:
Pathologic classification of diabetic nephropathy. J Am Soc
Nephrol 21:556–563, 2010

[37] Adler SG, Kang SW, Feld S, Cha DR, Barba L, Striker L, Striker G,
Riser BL, LaPage J, Nast CC: Can glomerular mRNAs in human
type 1 diabetes be used to predict transition from normoalbu-
minuria to microalbuminuria? Am J Kidney Dis 40:184–188, 2002

[38] Ellis EN, Steffes MW, Goetz FC, Sutherland DE, Mauer SM:
Glomerular filtration surface in type I diabetes mellitus. Kidney
Int 29:889–894, 1986

[39] Fioretto P, Steffes MW, Sutherland DE, Mauer M: Sequential renal
biopsies in insulin-dependent diabetic patients: structural factors
associated with clinical progression. Kidney Int 48:1929–1935,
1995
[40] Adler S, Striker LJ, Striker GE, Perkinson DT, Hibbert J, Couser
WG: Studies of progressive glomerular sclerosis in the rat. Am J
Pathol 123:553–562, 1986

[41] Satirapoj B, Nast CC, Adler SG: Novel insights into the relation-
ship between glomerular pathology and progressive kidney
disease. Adv Chronic Kidney Dis 19:93–100, 2012

[42] Effect of intensive diabetes treatment on the development and
progression of long-term complications in adolescents with
insulin-dependent diabetes mellitus. Diabetes Control and Com-
plications Trial. J Pediatr 125:177–188, 1994

[43] Intensive blood-glucose control with sulphonylureas or insulin
compared with conventional treatment and risk of complications
in patients with type 2 diabetes (UKPDS 33). UK Prospective
Diabetes Study (UKPDS) Group. Lancet 352:837–853, 1998

[44] Kawazu S, Tomono S, Shimizu M, Kato N, Ohno T, Ishii C, Murata
K, Watanabe T, Negishi K, Suzuki M, Takahashi M, Ishii J: The
relationship between early diabetic nephropathy and control of
plasma glucose in non-insulin-dependent diabetes mellitus. The
effect of glycemic control on the development and progression
of diabetic nephropathy in an 8-year follow-up study. J Diabetes
Complications 8:13–17, 1994

[45] The effect of intensive treatment of diabetes on the develop-
ment and progression of long-term complications in insulin-
dependent diabetes mellitus. The Diabetes Control and Compli-
cations Trial Research Group. N Engl J Med 329:977–986, 1993

[46] Mulec H, Blohme G, Grande B, Bjorck S: The effect of metabolic
control on rate of decline in renal function in insulin-dependent
diabetes mellitus with overt diabetic nephropathy. Nephrol Dial
Transplant 13:651–655, 1998

[47] Group DER, de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME,
Steffes MW, Zinman B: Intensive diabetes therapy and
glomerular filtration rate in type 1 diabetes. N Engl J Med 365:
2366–2376, 2011

[48] Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M:
Reversal of lesions of diabetic nephropathy after pancreas
transplantation. N Engl J Med 339:69–75, 1998

[49] Fioretto P, Sutherland DE, Najafian B, Mauer M: Remodeling of
renal interstitial and tubular lesions in pancreas transplant
recipients. Kidney Int 69:907–912, 2006

[50] Shichiri M, Kishikawa H, Ohkubo Y, Wake N: Long-term results
of the Kumamoto Study on optimal diabetes control in type
2 diabetic patients. Diabetes Care 23:B21–B29, 2000

[51] Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA: 10-year
follow-up of intensive glucose control in type 2 diabetes. N Engl
J Med 359:1577–1589, 2008

[52] Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT,
Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm Jr RH,
Probstfield JL, Simons-Morton DG, Friedewald WT, Action to
Control Cardiovascular Risk in Diabetes Study Group: Effects of
intensive glucose lowering in type 2 diabetes. N Engl J Med 358:
2545–2559, 2008

[53] Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M,
Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S,
Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers
A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F:
Intensive blood glucose control and vascular outcomes in
patients with type 2 diabetes. N Engl J Med 358:2560–2572,
2008

[54] Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven
PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman
S, McCarren M, Vitek ME, Henderson WG, Huang GD: Glucose
control and vascular complications in veterans with type 2 dia-
betes. N Engl J Med 360:129–139, 2009

[55] Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR: Role of
intensive glucose control in development of renal end points in
type 2 diabetes mellitus: systematic review and meta-analysis
intensive glucose control in type 2 diabetes. Arch Intern Med
172:761–769, 2012

http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref19
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref19
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref20
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref20
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref21
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref21
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref21
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref22
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref22
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref22
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref23
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref23
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref23
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref23
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref24
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref24
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref24
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref25
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref25
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref25
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref26
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref26
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref26
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref26
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref26
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref26
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref27
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref27
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref27
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref28
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref28
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref28
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref28
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref29
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref29
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref29
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref30
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref30
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref31
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref31
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref31
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref31
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref32
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref32
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref32
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref32
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref32
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref33
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref33
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref34
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref34
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref34
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref34
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref35
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref35
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref35
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref35
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref35
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref36
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref36
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref36
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref36
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref37
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref37
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref37
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref38
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref38
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref38
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref38
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref39
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref39
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref39
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref40
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref40
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref40
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref41
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref41
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref41
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref41
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref42
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref42
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref42
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref42
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref42
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref42
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref42
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref43
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref43
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref43
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref43
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref44
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref44
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref44
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref44
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref45
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref45
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref45
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref46
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref46
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref46
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref47
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref47
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref47
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref48
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref48
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref48
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref49
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref49
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref49
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref49
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref49
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref49
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref50
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref50
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref50
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref50
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref50
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref50
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref50
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref51
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref51
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref51
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref51
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref51
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref52
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref52
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref52
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref52
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref52


Kidney Res Clin Pract 33 (2014) 121–131130
[56] Arem R: Hypoglycemia associated with renal failure. Endocrinol
Metab Clin North Am 18:103–121, 1989

[57] Cano N: Bench-to-bedside review: glucose production from the
kidney. Crit Care 6:317–321, 2002

[58] Satirapoj B, Supasyndh O, Phantana-Angkul P, Ruangkanchana-
setr P, Nata N, Chaiprasert A, Kanjanakul I, Choovichian P:
Insulin resistance in dialysis versus non dialysis end stage renal
disease patients without diabetes. J Med Assoc Thai 94:S87–S93,
2011

[59] KDOQI. KDOQI Clinical Practice Guidelines and Clinical Practice
Recommendations for Diabetes and Chronic Kidney Disease. Am
J Kidney Dis 49:S12–S154, 2007

[60] Andrassy KM: Comments on ‘KDIGO 2012 clinical practice
guideline for the evaluation and management of chronic kidney
disease’. Kidney Int 84:622–623, 2013

[61] American Diabetes Association. Standards of medical care in
diabetes—2014. Diabetes Care 1:S14–S80, 2014

[62] Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T,
Okamura M, Okada S, Yamakawa T, Ishimura E, Nishizawa Y:
Glycated albumin is a better glycemic indicator than glycated
hemoglobin values in hemodialysis patients with diabetes: effect
of anemia and erythropoietin injection. J Am Soc Nephrol 18:
896–903, 2007

[63] Freedman BI, Andries L, Shihabi ZK, Rocco MV, Byers JR, Cardona
CY, Pickard MA, Henderson DL, Sadler MV, Courchene LM,
Jordan JR, Balderston SS, Graham AD, Mauck VL, Russell GB,
Bleyer AJ: Glycated albumin and risk of death and hospitaliza-
tions in diabetic dialysis patients. Clin J Am Soc Nephrol
6:1635–1643, 2011

[64] Chen HS, Wu TE, Lin HD, Jap TS, Hsiao LC, Lee SH, Lin SH:
Hemoglobin A(1c) and fructosamine for assessing glycemic con-
trol in diabetic patients with CKD stages 3 and 4. Am J Kidney Dis
55:867–874, 2010

[65] Group AS, Cushman WC, Evans GW, Byington RP, Goff Jr DC,
Grimm Jr RH, Cutler JA, Simons-Morton DG, Basile JN, Corson
MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB,
Bigger JT, Gerstein HC, Ismail-Beigi F: Effects of intensive blood-
pressure control in type 2 diabetes mellitus. N Engl J Med
362:1575–1585, 2010

[66] Pohl MA, Blumenthal S, Cordonnier DJ, De Alvaro F, Deferrari G,
Eisner G, Esmatjes E, Gilbert RE, Hunsicker LG, de Faria JB,
Mangili R, Moore Jr J, Reisin E, Ritz E, Schernthaner G, Spitale-
witz S, Tindall H, Rodby RA, Lewis EJ: Independent and additive
impact of blood pressure control and angiotensin II receptor
blockade on renal outcomes in the irbesartan diabetic nephro-
pathy trial: clinical implications and limitations. J Am Soc
Nephrol 16:3027–3037, 2005

[67] Roberts MA: Commentary on the KDIGO Clinical Practice Guide-
line for the management of blood pressure in chronic kidney
disease. Nephrology (Carlton) 19:53–55, 2014

[68] Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner
BM: Prevention of diabetic glomerulopathy by pharmacological
amelioration of glomerular capillary hypertension. J Clin Invest
77:1925–1930, 1986

[69] Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo
Jr JL, Jones DW, Materson BJ, Oparil S, Wright Jr JT, Roccella EJ:
The Seventh Report of the Joint National Committee on Preven-
tion, Detection, Evaluation, and Treatment of High Blood Pres-
sure: the JNC 7 report. JAMA 289:2560–2572, 2003

[70] Viberti G, Mogensen CE, Groop LC, Pauls JF: Effect of captopril on
progression to clinical proteinuria in patients with insulin-
dependent diabetes mellitus and microalbuminuria. European
Microalbuminuria Captopril Study Group. JAMA 271:275–279,
1994

[71] Captopril reduces the risk of nephropathy in IDDM patients
with microalbuminuria. The Microalbuminuria Captopril Study
Group. Diabetologia 39:587–593, 1996

[72] Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of
angiotensin-converting-enzyme inhibition on diabetic
nephropathy. The Collaborative Study Group. N Engl J Med
329:1456–1462, 1993

[73] ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should
all patients with type 1 diabetes mellitus and microalbuminuria
receive angiotensin-converting enzyme inhibitors? A meta-
analysis of individual patient data Ann Intern Med 134:
370–379, 2001

[74] Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V,
Rubis N, Gherardi G, Arnoldi F, Ganeva M, Ene-Iordache B,
Gaspari F, Perna A, Bossi A, Trevisan R, Dodesini AR, Remuzzi
G: Bergamo Nephrologic Diabetes Complications Trial I: Pre-
venting microalbuminuria in type 2 diabetes. N Engl J Med
351:1941–1951, 2004

[75] Bilous R, Chaturvedi N, Sjolie AK, Fuller J, Klein R, Orchard T,
Porta M, Parving HH: Effect of candesartan on microalbuminuria
and albumin excretion rate in diabetes: three randomized trials.
Ann Intern Med 151:11–20, 2009

[76] Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T,
Drummond K, Donnelly S, Goodyer P, Gubler MC, Klein R: Renal
and retinal effects of enalapril and losartan in type 1 diabetes. N
Engl J Med 361:40–51, 2009

[77] Haller H, Ito S, Izzo Jr JL, Januszewicz A, Katayama S, Menne J,
Mimran A, Rabelink TJ, Ritz E, Ruilope LM, Rump LC, Viberti G:
Investigators RT: Olmesartan for the delay or prevention of
microalbuminuria in type 2 diabetes. N Engl J Med 364:907–917,
2011

[78] Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen
S, Arner P: The effect of irbesartan on the development of diabetic
nephropathy in patients with type 2 diabetes. N Engl J Med
345:870–878, 2001

[79] Viberti G, Wheeldon NM: Microalbuminuria reduction with
valsartan in patients with type 2 diabetes mellitus: a blood
pressure-independent effect. Circulation 106:672–678, 2002

[80] Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz
E, Atkins RC, Rohde R, Raz I: Renoprotective effect of the
angiotensin-receptor antagonist irbesartan in patients with
nephropathy due to type 2 diabetes. N Engl J Med 345:851–860,
2001

[81] Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE,
Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S:
Effects of losartan on renal and cardiovascular outcomes in
patients with type 2 diabetes and nephropathy. N Engl J Med
345:861–869, 2001

[82] Barnett AH, Bain SC, Bouter P, Karlberg B, Madsbad S, Jervell J,
Mustonen J: Angiotensin-receptor blockade versus converting-
enzyme inhibition in type 2 diabetes and nephropathy. N Engl
J Med 351:1952–1961, 2004

[83] Kunz R, Friedrich C, Wolbers M, Mann JF: Meta-analysis: effect
of monotherapy and combination therapy with inhibitors of the
renin angiotensin system on proteinuria in renal disease. Ann
Intern Med 148:30–48, 2008

[84] Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H,
Pogue J, Wang X, Maggioni A, Budaj A, Chaithiraphan S,
Dickstein K, Keltai M, Metsarinne K, Oto A, Parkhomenko A,
Piegas LS, Svendsen TL, Teo KK, Yusuf S: Renal outcomes with
telmisartan, ramipril, or both, in people at high vascular risk (the
ONTARGET study): a multicentre, randomised, double-blind,
controlled trial. Lancet 372:547–553, 2008

[85] Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duck-
worth W, Leehey DJ, McCullough PA, O'Connor T, Palevsky PM,
Reilly RF, Seliger SL, Warren SR, Watnick S, Peduzzi P, Guarino P:
Investigators VN-D: Combined angiotensin inhibition for the
treatment of diabetic nephropathy. N Engl J Med 369:1892–1903,
2013

[86] Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M,
Christiaens T, Cifkova R, Backer GD, Dominiczak A, Galderisi M,
Grobbee DE, Jaarsma T, Kirchof P, Kjeldsen SE, Laurent S,
Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA,
Sleight P, Viigimaa M, Waeber B, Zannad F: ESH/ESC Guidelines

http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref53
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref53
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref54
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref54
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref55
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref55
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref55
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref55
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref55
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref56
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref56
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref56
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref57
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref57
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref58
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref58
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref58
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref58
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref58
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref58
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref59
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref59
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref59
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref59
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref59
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref59
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref60
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref60
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref60
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref60
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref61
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref61
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref61
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref61
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref61
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref61
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref62
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref63
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref63
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref63
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref64
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref64
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref64
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref64
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref65
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref65
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref65
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref65
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref65
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref66
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref66
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref66
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref66
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref66
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref67
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref67
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref67
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref67
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref68
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref68
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref68
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref68
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref68
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref69
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref69
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref69
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref69
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref69
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref69
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref70
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref70
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref70
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref70
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref71
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref71
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref71
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref71
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref72
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref72
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref72
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref72
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref72
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref73
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref73
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref73
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref73
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref74
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref74
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref74
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref75
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref75
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref75
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref75
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref75
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref76
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref76
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref76
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref76
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref76
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref77
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref77
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref77
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref77
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref78
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref78
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref78
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref78
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref79
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref79
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref79
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref79
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref79
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref79
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref79
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref80
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref80
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref80
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref80
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref80
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref80
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref286
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref286
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref286
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref286
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref286


Satirapoj and Adler / Diabetic nephropathy 131
for the management of arterial hypertension. Blood Press
22:193–278, 2013

[87] Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK:
Aliskiren combined with losartan in type 2 diabetes and
nephropathy. N Engl J Med 358:2433–2446, 2008

[88] Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM,
Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M,
Richard A, Xiang Z, Brunel P, Pfeffer MA: Cardiorenal end points
in a trial of aliskiren for type 2 diabetes. N Engl J Med 367:
2204–2213, 2012

[89] Rossing K, Schjoedt KJ, Jensen BR, Boomsma F, Parving HH:
Enhanced renoprotective effects of ultrahigh doses of irbesartan
in patients with type 2 diabetes and microalbuminuria. Kidney
Int 68:1190–1198, 2005

[90] Ahmed AK, Kamath NS, El Kossi M, El Nahas AM: The impact of
stopping inhibitors of the renin–angiotensin system in patients
with advanced chronic kidney disease. Nephrol Dial Transplant
25:3977–3982, 2010

[91] Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic
kidney disease and the risks of death, cardiovascular events, and
hospitalization. N Engl J Med 351:1296–1305, 2004

[92] de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-
Schmidt H, Goldsberry A, Houser M, Krauth M, Lambers
Heerspink HJ, McMurray JJ, Meyer CJ, Parving HH, Remuzzi G,
Toto RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, Chertow
GM: Bardoxolone methyl in type 2 diabetes and stage 4 chronic
kidney disease. N Engl J Med 369:2492–2503, 2013

[93] Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB,
Cartwright K, Foiles PG, Freedman BI, Raskin P, Ratner RE,
Spinowitz BS, Whittier FC, Wuerth JP: Randomized trial of an
inhibitor of formation of advanced glycation end products in
diabetic nephropathy. Am J Nephrol 24:32–40, 2004
[94] Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton
WK, Lee T, Li D, Neff TB, Urquilla PR, Sewell KL: Phase 1 study of
anti-CTGF monoclonal antibody in patients with diabetes and
microalbuminuria. Clin J Am Soc Nephrol 5:1420–1428, 2010

[95] Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW: The
effect of ruboxistaurin on nephropathy in type 2 diabetes.
Diabetes Care 28:2686–2690, 2005

[96] Packham DK, Wolfe R, Reutens AT, Berl T, Heerspink HL, Rohde
R, Ivory S, Lewis J, Raz I, Wiegmann TB, Chan JC, de Zeeuw D,
Lewis EJ, Atkins RC: Sulodexide fails to demonstrate renoprotec-
tion in overt type 2 diabetic nephropathy. J Am Soc Nephrol
23:123–130, 2012

[97] Heerspink HL, Greene T, Lewis JB, Raz I, Rohde RD, Hunsicker LG,
Schwartz SL, Aronoff S, Katz MA, Eisner GM, Mersey JH,
Wiegmann TB: Effects of sulodexide in patients with type
2 diabetes and persistent albuminuria. Nephrol Dial Transplant
23:1946–1954, 2008

[98] Sharma K, Ix JH, Mathew AV, Cho M, Pflueger A, Dunn SR,
Francos B, Sharma S, Falkner B, McGowan TA, Donohue M,
Ramachandrarao S, Xu R, Fervenza FC, Kopp JB: Pirfenidone for
diabetic nephropathy. J Am Soc Nephrol 22:1144–1151, 2011

[99] Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, Han SW,
Shin SJ, Bang BK, Breyer MD, Chang YS: Long-term treatment of
glucagon-like peptide-1 analog exendin-4 ameliorates diabetic
nephropathy through improving metabolic anomalies in db/db
mice. J Am Soc Nephrol 18:1227–1238, 2007

[100] Liu WJ, Xie SH, Liu YN, Kim W, Jin HY, Park SK, Shao YM, Park TS:
Dipeptidyl peptidase IV inhibitor attenuates kidney injury in
streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 340:
248–255, 2012

[101] Goh SY, Jasik M, Cooper ME: Agents in development for the
treatment of diabetic nephropathy. Expert Opin Emerg Drugs 13:
447–463, 2008

http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref286
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref286
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref82
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref82
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref82
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref83
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref83
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref83
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref83
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref83
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref84
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref84
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref84
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref84
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref85
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref85
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref85
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref85
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref86
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref86
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref86
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref87
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref87
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref87
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref87
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref87
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref87
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref88
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref88
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref88
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref88
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref88
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref89
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref89
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref89
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref89
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref90
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref90
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref90
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref91
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref91
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref91
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref91
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref91
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref92
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref92
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref92
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref92
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref92
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref93
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref93
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref93
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref93
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref94
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref94
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref94
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref94
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref94
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref95
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref95
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref95
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref95
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref96
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref96
http://refhub.elsevier.com/S2211-9132(14)00100-4/sbref96

	Comprehensive approach to diabetic nephropathy
	Introduction
	Risk factors
	Clinical staging
	Pathogenesis
	Hemodynamic factors
	Metabolic factors
	Oxidative stress/inflammation

	Diagnostic criteria
	Renal pathology
	Therapeutic interventions
	Glycemic control
	Type 1 diabetes
	Type 2 diabetes
	Glycemic monitoring in CKD

	BP control
	BP target
	RAASi
	RAASi in type 1 diabetes
	RAASi in type 2 diabetes
	RAASi combinations
	Dosing and adverse effects of ACEi and ARB


	Additional interventions
	Novel interventions

	Conclusion
	Conflict of interest
	References




