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Endothelial integrins and their role in maintaining the integrity
of the vessel wall
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Integrin receptors
The subendothelial matrix is, in general, a thrombogenic

surface that promotes platelet adhesion and the activation of the
coagulation system. In normal conditions the presence of the
endothelium represents a good protection against thrombotic
phenomena and plasma protein infiltration in the vascular
media. The capacity of endothelial cells to remain attached to
the vascular surface and to migrate and proliferate to cover
exposed subendothelial structures is an important defense
mechanism against the development of vascular injury.

Endothelial cell interaction with matrix proteins is also of
importance in neovascularization. The components of the ex-
tracellular matrix can promote cell proliferation and motility
and provide an anatomical guide for the formation of new
vessels [1].

The extracellular matrix therefore exerts a more complex role
than just providing a substrate for cell attachment. Matrix
proteins bind to specific receptors on the cell surface and this
interaction can transfer intracellular signals.

Many of endothelial receptors for matrix proteins, character-
ized so far, belong to the family of integrins.

The integrin family consists of a series of heterodimers
involved in a variety of cell adhesion functions [2—9]. Almost all
cell types express these structures and integrins extend through
most of the phylogenetic tree. These receptors have several
structural and functional homologies so that it is believed that
they differentiated from a common ancestral gene. All integrins
are formed by two non-covalently linked subunits: the larger
termed a chain and the smaller /3 chain.

A subclassification of the integrin family has been attempted
based on the observation that some members have the same f3
chain but different a chains [2]. This resulted in the original
definition of three subfamilies: the f3 or VLA (very late
antigens) [61, the /32 or leu-cam (leukocyte adhesion molecules)
[10], and the /33 or cytoadhesins [11].

However, three additional /3 chains have been recently
sequenced: /3. [12—15], f3 [16] also called [17, 18] or f3, [19],
and /36 [20]. At least three additional /3 chains have been
described: /3,, in lymphocytes [21], the /3 chain of the melanoma
laminin receptor [22], and /33b in macrophages [23].

In addition, it was found that some a subunits have the

capability to link to more than one /3 subunit. For instance, a"
can bind to /33, /3 [24-26], 136' (3 [17], and /33b [23]; a4 can bind
to /3 [6] and /3,, [21], and a6 to [27] and 134 [12—15], thus
making the original subfamily definition insufficient.

Some integrins, but not all of them, recognize a sequence of
only three amino acids (arginine, glycine and aspartic acid,
RGD) in the ligand [31. Many proteins containing this sequence,
but not all of them, are recognized by an integrin receptor. The
list includes a large number of extracellular matrix and plasma
proteins such as fibrinogen, vitronectin, fibronectin, thrombo-
spondin, von Willebrand factor, bone sialoprotein [28] but also
non-adhesive proteins such as thrombin [29]. Despite the sim-
ilarities in the cell binding sequence in ligand proteins, the cell
can recognize them individually through specific and separate
receptors.

Integrin receptors expressed by endothelial cells

Table 1 lists the members of the integrin family identified in
endothelial cells. These cells possess five members of the /3,
subfamily.

The a'/31 complex has only been found in the endothelium
cultured from the microvasculature but not from large vessels.
In contrast, in situ, it was found to be present in endothelial
cells from most type of vessels [7].

The a2/31 integrin is apparently identical to the platelet Ia-ha
complex [30]. In endothelial cells it behaves as a receptor for
laminin, binding less efficiently fibronectin and collagen [31].

The a3/31 receptor is in general a multifunctional integrin; it
binds to fibronectin, collagen and laminin [32].

a5/3, in endothelial cells (as well as in other cell types) [33]
preferentially binds fibronectin [34].

The a6/31 integrin is poorly expressed in cultured endothelial
cells. This molecule is the laminin receptor in platelets [35] and
probably plays an identical role in endothelial cells.

The a"/33 integrin in endothelial cells in addition to vitronec-
tin also recognizes fibrinogen [36—39], von Willebrand factor
[37, 40], fibroneetin [18, 41], thrombospondin [42], laminin [43]
and thrombin [29].

Endothelial cells also express a'735 [19]. This receptor, in its
purified form, recognizes vitronectin and with much lower
affinity fibronectin and fibrinogen [17, 18]. It can be heavily
phosphorylated when the cells are treated with phorbol esters
[19].© 1993 by the International Society of Nephrology
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Table 1. Integrin receptors in human endothelial cells

Subunit Ligand/function

a1 I3
a2/31

im, coil
Im, coil, fn, cell-cell

a3/31 fn, im, coil
a5 13

a6/3
fn, cell-cell
im

av/3 vn, fg, vW, tsp, fn, Im, thr
a"/35

Abbreviations are: vn, vitronectin; vWf, von Willebrand factor; fg,
fibrinogen; Im, laminin; tsp, thrombospondin; thr, thrombin; coil,
collagen; cell-cell, endothelial cell contacts, see the text and Lampug-
nani et al [76]. For more information see the text and Albeda and Buck
[7].

No evidence is as yet available documenting differences in
the structure or in the synthetic pathways of endothelial inte-
grins compared with other cells [44]. However, some integrins
present cell-specific functional differences. As mentioned
above, in endothelial cells a2J31 behaves as a laminin receptor
while in other cells it acts as a collagen receptor [30, 31]; &'f33
in endothelial cells binds at least seven different substrata while
in osteosarcoma it only attaches to vitronectin [45].

When a comparison has been attempted among cultured
endothelial cells from different parts of the vasculature [46] the
integrin composition appeared to be essentially similar, with the
exception of a1 13 that is expressed by cultured endothelial cells
from small but not from large vessels [7, 43].

There are, however, discrepancies comparing the pattern of
integrins expressed in cultured cells in respect to in vivo
distribution [7]. For instance a"f33 is found abundantly in all
types of cultured endothelium [37, 47] but is present in scarce
amount in vivo [48, 49, and L. Ruco, personal communication].
Similarly a'131 is found in large vessel endothelial cells in situ
but not in cultured cells [7].

Regulation of integrin function
The same integrin might behave differently in different types

of cells. This suggests that the diversity of the integrin system
can be further augmented by a cell-specific type of regulation.

Possible mechanisms of such regulation could include mRNA
splicing, post-translational modification of the receptor or as-
sociation of the receptor with modifying components (ganglio-
sides, glycosaminoglycans). Alternative splicing for integrin
subunits have been described, but these processes were present
equally in all the cell types studied [50]. Ionic concentration and
the phospholipid composition of the membrane can dramati-
cally modify integrin receptor affinity and specificity for differ-
ent substrata [51, 41].

Modulation of integrin synthesis in endothelial cells is still a
relatively unexplored area of research. Tarone et al [52] re-
ported that the combination of tumor necrosis factor and
y-interferon induces a 50 to 70% decrease in a"133 number while
no change was found in the f3 subgroup of integrin molecules.
Other stimuli, such as chemical transformation [53] and trans-
forming growth factor f3 [54], have been reported to change
integrin synthesis in other cell types.

During the first hours of endothelial cell attachment to
substrata, the basal surface of the cells forms several types of
contacts (called focal contacts or adhesion plaques, [36, 55]

which are the areas of closest interaction between the substra-
tum, the cell membrane and the membrane insertion sites of
actin microfilament bundles [56]. During cell adhesion integrins
have been found to be clustered in focal contacts [56, 57].

Integrins do not directly interact with actin microfilaments
but do so indirectly through a chain of different proteins [56,
57]. It has been proposed that the protein directly recognizing
the integrin J3 cytoplasmic domain is talin [58]; however, recent
evidence suggests that is linked to actin microfilaments via
a-actinin [59]. Among the other cytoskeletal proteins found at
focal contacts, vinculin does not directly interact with integrins
but binds to talin in quaternary assemblies [57, 60, 61], and this
probably acts as an amplification mechanism for further recruit-
ment and organization of the cytoskeletal components.

Not all the integrins expressed in endothelial cells organize
into focal contacts. We have been unable to demonstrate any
localization of &I3, a2/31, a3p a6J31 or &'f35 in these structures
after seeding the cells on a variety of substrata [39, M.G.
Lampugnani, unpublished results]. In other cell types [62, 63],
however, clustering of these integrins might occur, thus indi-
cating that this phenomenon might be regulated more by
cell-specific factors than by integrin structural properties.

The biological role of cytoskeleton organization is still uncer-
tain, but apparently this is not required for endothelial cell
adhesion. Agents that increase intracellular cAMP inhibit inte-
grin clustering, focal contact and actin microfilament formation
[64]. This is not accompanied by a decrease in the ability of the
cells to adhere to substrata. Similarly, deletion of the cytoplas-
mic domain of f3 integrin subunit [65, 66], which blocks cell
spreading and cytoskeletal organization, does not essentially
modify cell adhesion.

Matrix organization is also regulated by integrins and by their
interaction with cytoskeletal proteins. There is coallignment of
fibronectin fibers, integrin receptors and actin microfilaments.
In addition, the fibronectin receptor a5/31, is required to form an
appropriate fibronectin matrix [67—70].

Integrins and endothelial cell function
Endothelial cell interactions with matrix proteins via integrin

receptors are of importance for a series of endothelial cell
functions. This implies that integrin molecules can transfer
intracellular signals. This can be achieved by biochemical
signalling pathways and/or via cytoskeletal organization.

Little is known about the intracellular biochemical messages
induced by integrins. The platelet integrin lib-Illa regulates
Ca2 and Na/H exchanges [71, 72] and tyrosine-specific
protein phosphorylation [73]. However, we still do not have any
evidence that these pathways are activated after integrin recep-
tor occupancy in endothelial cells or other cell types.

Cell adhesion has been associated with induction of activa-
tion genes in monocytes [74]. Different matrix proteins induce
the expression of a distinct pattern of genes, suggesting that this
phenomenon is regulated by specific receptors.

Binding of a5131 integrin by specific antibodies induces the
expression of genes for lytic enzymes such as collagenase or
stromolysin in other cell types [75]. These enzymes can facili-
tate cell migration by digesting the matrix network.

Besides their role in promoting cell attachment to matrix
protein, integrins have been found to be located at cell-cell
contacts in endothelial cells [76]. The two integrin receptors,
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a2j31 and a5/31, in the confluent endothelium line the boundaries
between the cells. Interestingly, a" but not /33 follows the same
pattern of distribution, suggesting that another /3 chain is
involved. All the other integrins considered af31, a3 f3 and a"135
remain diffuse on the cell membrane.

In epithelial cells, two f3 integrins are located at cell-cell
contacts (a2/31 and a3/31) [63, 77—79], while no such distribution
was found in smooth muscle cells or skin fibroblasts [761. This
suggests that integrin distribution at cell-cell contacts is a
specific feature of polarized cells.

In endothelial cells other molecules have been described to
be localized at intercellular contacts: PECAM (or endoCAM or
CD 31), a recently sequenced integral protein belonging to the
immunoglobulin family [80—82], endoglin [83], the Ca2-depen-
dent cell adhesion molecule, endocadherin [84], and cadherin-5
[85].

The interrelationship between these molecules and integrins
at cell-cell contacts is still unclear.

The observation that addition of antibodies to integrin recep-
tors causes discontinuities in the endothelial cell monolayer at
times of incubation too short to cause cell detachment suggests
that these molecules play a role in maintaining the integrity of
endothelial cell junctions. This is further documented by the
fact the integrin antibodies alter endothelial cell permeability
properties and induce a significant change in their capacity to
restrain macromolecules at the luminal compartment [76].

Conclusions

Integrin receptors exert an important role in promoting
endothelial cell attachment to matrix proteins, but also in
modulating endothelial cell migration, proliferation and in the
maintenance of vascular wall permeability properties.

The list of integrins characterized so far is extremely complex
and rapidly expanding. Endothelial cells express only some of
them.

An important issue is the differential distribution of integrins
in the vascular tree and in cultured cells in comparison to the
endothelium in situ. This suggests that integrin expression
might be regulated by local, tissue specific factors and by
culture conditions.

Finally, it is worthwhile to consider that integrins might
regulate a series of specialized endothelial cell functions.

An interesting development in the field is the observation that
these receptors are not only involved in the formation of
cell-matrix but also in cell-cell bonds. It is not yet clear whether
this additional role of integrins implies a new molecular recog-
nition mechanism analogous to the homotypic interaction dis-
played by cadherins or may simply due to integrin binding to
matrix molecules organized in between cells.
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