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A b s t r a c t - - I n  the present paper, some new generalized versions of Browder's theorems for varia- 
tional inequalities and the Ky Fan minimax inequality are obtained. 
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1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

In 1968, Browder [1] proved the following theorem. 

THEOREM A. Let  E be a locally convex Hausdorff topological vector space, K a compact convex 
subset  of  E,  and T an upper semicontinuous mapping  of K into E* (the conjugate space of E) ,  

such that for each x E K ,  T (x )  is a nonempty  compact convex subset o f  E*. Then there exists 

an element uo E K and wo E T(uo) such that  

(wo, uo - u) > o, 

for all u E K .  

In 1972, Ky  Fan [2] proved the following famous minimax inequality. 

THEOREM B. Let  E be a Hausdorff topological vector space, X a nonempty  compact convex 

subset o r E .  I r a  functional ~ : X x X -* R such that  

(i) for each y E X ,  ~ ( x , y )  is lower semicontinuous in x, 
(ii) for each x E X ,  ~(x,  y) is quasiconcave in y, 

then there exists a point Xo E X such that 

sup ~(x0, y) _< sup ~(x,  x). 
yEX xEX 

In 1981, Yen [3] generalized Theorem B as the following. 
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THEOREM C. Let E be a Hausdorff topological vector space, X a nonempty  compact convex 
subset of  E.  I f  two functions f ,  9 : X x X -* R such that 

(i) for each y E X ,  g(x, y) is lower semicontinuous in x, 
(ii) for each x E X ,  f ( x ,  y) is quasiconcave in y, 

(iii) 9(x, y) <_ f ( x ,  y), for all (x, y) E X x X ,  

then there exists a point Xo E X such that 

sup g(xo, y) <_ sup f ( x ,  x). 
yEX xEX 

The main objects of this paper are to generalize Theorem A, Theorem B, and Theorem C. 
Before proceeding to the main results, we consider some elementary concepts. 

DEFINITION 1.1. (See [4].) Let X be a topological space and 5r(X) be a family of  all nonempty  
finite subsets of X .  Let  {FA} be a family of  nonempty  contractible subsets of  X indexed by 
A E ~ ( X )  such that FA C FA,, whenever A C A'. The pair (X,  {FA}) is called an H-space. 
Given an H-space (X,  {FA}),  a nonempty  set D is called H-convex i f  FA C D for each nonempty  
finite subset A of  D. 

Let  (X,  {FA}) be an H-space and Y be a topological space. Let C be a nonempty  subset of  X ,  
and qo : C x Y ~ R tO {+oo} a functional. For each y E Y ,  qo(x, y) is called to be H-quasiconvex 
(quasiconcave) in x, iff for each finite subset {XI,...,Xn} ( C and each x E F{xl ..... xn}, the 
following holds: 

~(x, y) _< max qa(xi, y) 
l<i<_n 

(~(x, y) > minl<i<n ~(xi ,  y), respectively). 

DEFINITION 1.2. (See [5].) Let  X and Y be two topological spaces. A multivalued mapping T : 

X ---* 2 y is called to be transfer open valued, iff for each x E X and each y E T(x) ,  there exists 
x' E X such that  y E int[T(x')], where int[T(x')] denotes interior of T(x ' ) .  

2. G E N E R A L I Z A T I O N S  O F  T H E  B R O W D E R  
V A R I A T I O N A L  I N E Q U A L I T I E S  

In this section, we shall prove some generalized versions of the Browder variational inequalities. 
The following lemma is equivalent to Corollary 2.3 in [6]. 

LEMMA 2.1. Let (x, {FA}) be a compact H-space and T : X --* 2 x be a multivalued mapping 
such that: 

(i) for each x E X ,  T(x)  is a nonempty  H-convex subset, 
(ii) T -1 : X --* 2 x is transfer open valued, where T - l ( y )  = {x E X : y E T(x)} for each 

y E X .  

Then there is a point Xo E T(xo).  

THEOREM 2.2. Let (X,  {FA}) be a compact H-space and Y a topological space and ~ : X x Y x 
X --~ R a functional. Suppose the T : X --* 2 v is an upper semicontinuous multivalued mapping 
with nonempty  compact values. I f  the following conditions hold: 

(i) qo(x, y, z) is H-quasiconvex in z, 
(ii) qo(x, y, z) is upper semicontinuous in (x, y), 

(iii) for each x E X ,  there exists an element y E T(x)  such that ~(x,  y, x) > O, 

then there exists an element xo E X such that 

sup ~(x0, w, z) > 0, 
wETxo 

for all z e X .  
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PROOF. If the conclusion is false, then for each u • X,  there exists a point z • X such that  

sup ~o(u, w, z) < 0. 
weT(u) 

Let S(u) = {v • X : SUPweT(u ) ~0(U, w, z) < 0}. Then S : X --* 2 X is a multivalued mapping 
with nonempty values. 

For each u • X and each finite subset A = {vl . . . .  , vn} of S(u),  we have 

sup ~o(u,w, vi) < O, i = l , 2 , . . . , n .  
weT(u) 

Hence there is a real number r • R such that  

sup ~o(u,w, vi) < r < 0, i --- 1 , 2 , . . . , n .  
weT(u) 

For each v • FA and each w • T(u) ,  by Condition (i), 

~o(u, w, v) < max ~o(u, w, vi) < r. 
l<_i<_n 

Hence 
sup ~o(u,w,v) _< r < 0, 

wET(u) 

i.e., v • S(u)  and so FA C S(u).  It implies tha t  S(u) is H-convex. 
Since T : X --* 2 Y is an upper semicontinuous multivalued mapping with nonempty compact 

values and ~o(x, y, z) is upper semicontinuous in (x, y), by virtue of Proposition 21 in [7], we know 
that  supweT(u ) ~o(u, w, v) is upper semicontinuous in u. Consequently, for each v • X,  

S - l ( v )  = { u  • X : v • S(u)} 

={uEX:weT(u)sup ~O(u,w,v) < O }  

is open. By Lemma 2.1, there exists a point fi • X such that  fi E S(~2), i.e., supweT(a ) qo(~2, 
w, fi) < 0. It contradicts Condition (iii). Therefore, Theorem 2.2 is true. 

COROLLARY 2.3. Let X be a nonempty  compact convex subset of a locally convex topological 
vector space E,  E* the conjugate space o r e .  Suppose that T : X --* 2 E* is an upper semicontin- 
uous multivalued mapping with nonempty  compact values. Then there exists an element Uo E X 
such that 

sup (w, u 0 -  u) _> 0, 
weT(uo) 

for M1 u • X .  

PROOF. It is sufficient to take ( X , { F A } )  = (X,{coA}),  Y = E*, and ~ ( x , y , z )  = (y ,x  - z) in 
Theorem 2.2. 

REMARK. Corollary 2.3 contains Theorem 2 of [1] as its special case. 

THEOREM 2.4. Let  (X, {FA}) be a compact H-space, E a locally convex Hausdorff topological 
vector space. Let  Y be a nonempty  convex subset o r e  and T : X --~ 2 Y an upper semicontinuous 
multivalued mapping with nonempty compact convex values. H en  upper semicontinuous function 
qo : X x Y x X --* R such that 

(i) ~o(x, y, z) is quasiconcave in y and is H-quasiconvex in z, respectively, 
(ii) for each x • X ,  there exists y • T(x)  such that qo(x, y, x) > O, 
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then there exist ~ 6 X and ~ e T(~) such that 

~(~, 9, x) >_ o, 

for edl x E X .  

PROOF. By virtue of Theorem 2.2, there exists • E X such that  

sup ~(~2,y,x) > O, V x  E X.  
yeT(~) 

Since ~ is upper semicontinuous and T(~) is compact, for each x E X,  there exists y(x) E T(~)  
such that  

~(~, v(x), x) > 0. 

Let S(x)  = {y E T(~) : ~(~,y,  x) > 0}, then S : X --* 2 T(e) is a multivalued mapping with 
nonempty closed convex values. 

If the conclusion of Theorem 2.4 is false, then for each y E T(~), there is x0 E X such that  

~(~, y, z0) < 0. 

Let G(y) = {x E X : ~o(~, y, x) < 0}. G : T(~) --, 2 x is a multivalued mapping with nonempty 
H-convex values and for each x E X,  

G - I ( z )  = {y E T (~ ) :  x e a (y )}  

= {y e T (~ ) :  ~ (~ ,y ,x )  < 0} 

is relatively open in T($).  By virtue of Corollary 2.1 in [6], G has a continuous selection f : 

T(~)  --* X.  
For each y E T(~),  let H(y)  = S ( f ( y ) ) .  Then H : T(~) --* 2 T($) is a multivalued mapping with 

nonempty closed convex values. Assume that  {(Ya, za)},~eD is a net in Gr (H)  (Gr(H)  denotes 
the graph of H)  such that  (yc,,zc~) "--" (u,v).  Then v E T(~), f (Ya)  ---" f (u ) ,  and 

~(~, z,~, .f(y,~)) > o, r e ,  ~ D.  

Consequently, by the upper semicontinuity of ~, we have 

~(~, v, f (~ ) )  _> o, 

i.e., v E S ( f ( u ) )  = H(u) .  Hence, Gr(H)  is closed and so H : T(~) --* 2 T($) is upper semicontin- 
uous as T(~) is compact. 

By virtue of Kakutani-Fan-Glicksberg's fixed point theorem (i.e., Theorem 5.5.2 in [8]), there 
exists a point ~7 E T(~) such that  ~2 E H(~2) = S(.f(fj)), i.e., 

~(~', #, f (~))  _> O. 

On the other hand, as f (~)  E G(O), we have 

qo(~2, if, f(ff) ) < O. 

This is a contradiction. Therefore, Theorem 2.4 is true. 

REMARK. In Theorem 2.4, if X is a nonempty compact convex subset of a Hausdorff locally 
convex space E,  Y = E* (the conjugate space of E),  and ¢p(x,y,z) = (y ,x  - z), then we obtain 
Theorem 6 in [1] (i.e., Theorem A). 
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3 .  N E W  G E N E R A L I Z A T I O N S  O F  T H E  

K Y  F A N  M I N I M A X  I N E Q U A L I T Y  

THEOREM 3.1. Let (X , {FA})  be a compact  H-space and Y a topological space and qo,~b : 
X x Y --~ R two functions. Suppose that  T : X --~ 2 Y is an upper semicontinuous multivalued 
mapping with nonempty compact values. I f  the following conditions hold: 

(i) ¢ (x ,  V) is H-quasiconvex in x, 
(ii) ~o(x, y) is upper semicontinuous in y, 

(iii) for each x E X ,  there exists an element y E T(x)  such that g,(x, y) >_ c (c is a constant), 
(iv) g;(z, y) < ~(z ,  y), for all (z, y) • X × Y, 

then there exists an element xo • X such that 

max ~(x,  y) > c, 
yeTxo 

for all x • X .  

PROOF. For each x • X,  let 

S(x) = { z  • X : veT(x)max ~(z ,y)  < c}  , 

H(x)  = { z  • X : yET(x)sup ¢(z ,y )  < c } .  

Then S, H : X --* 2 X are two multivalued mappings such tha t  S(x) C H(x) ,  for all x • X.  By (i) 

we know tha t  
g ( x ) =  N { z • X : ¢ ( z , y ) < c }  

yeT(x) 

is H-convex. Now we prove f ( z ,  x) := max~eT(x ) ~(z,  y) is upper semicontinuous in x. In fact, 

for each fixed z • X and each r • R, let 

D = {x • X : f ( z , x )  _> r}. 

If  {x~ : a • I}  is a net in D such tha t  xa --* u, then 

f ( z , x ~ )  > r, Va  • I, 

i.e., 
max ~(z ,y)  > r, Va  • I. 

yeT(z~) 

Consequently, for each a • I ,  there exists a point y~ • T(x~) such tha t  ~(z, yo) > r. By 
Proposit ion 1 in [9], there exists a point v • T(u) and a subnet {y~} of {Y~}~el such tha t  
y~ --* v. By (ii), ~(z,  v) > r,  hence maxyeT(~) ~(z,  y) > r, i.e., f ( z ,  u) > r, i.e., u • D. Hence D 

is closed. Consequently, f ( z ,  x) is upper  semicontinuous in x. Hence for each z • X,  

s-l(z) = {~ • x : z  • s(~)} 

= {z • x : f ( z , z )  < c} 

is open. 
I f  S(x) # 0 for all x • X ,  then H(x)  # 0 for all x • X.  For each y • X and each x • H - l ( y ) ,  

since S(x)  # 0, there exists a point y' • S(x)  so tha t  x • S - I ( y  ') c H - I ( y ' ) ,  and hence 
x • i n t [H- l (y ' ) ]  because S - I ( y  ') is open. This shows tha t  H -1 : X --* 2 x is transfer open 

valued. By virtue of Lemma 2.1, there exists a point • • X such tha t  • • H(~) ,  i.e., 

sup ~b($,y) < c. 
yeT(~) 
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This contradicts (iii). Hence there exists a point x0 E X such that  S(xo) = 0, i.e., 

max ~(x, y) > c, 
yETxo 

for all x E X. 

COROLLARY 3.2. Let (X, {FA}) be a compact H-space and Y a topological space and f ,  g : 
X x Y --~ R two functions. Suppose that T : X --~ 2 Y is an upper semicontinuous multivalued 
mapping with nonempty  compact values. I f  the following conditions hold: 

(i) f ( x ,  y) is H-quasiconcave in x, 
(ii) g(x, y) is lower semicontinuous in y, 

(iii) for each x E X ,  there exists an element y E T(x)  such that f ( x ,  y) < c (c is a constant), 

(iv) 9(x, y) < f ( x ,  y), for all (x, y) E X x Y ,  

then there exists an element Xo E X such that 

min g(x, y) < c, 
yETxo 

for ali x ~ X .  

PROOF. For each (x, y) E X x Y, let ~(x, y) = - g ( x ,  y), ¢(x, y) = - f ( x ,  y). Then by virtue of 
Theorem 3.1, there exists an element x0 E X such that  

max ~(x,y)  > -c ,  
yET(zo) 

for all x 6 X, i.e., 
min g(x ,y)  < c, 

yETxo 

for all x E X. 

COROLLARY 3.3. Let (X,  {FA}) be a compact H-space and f , g  : X × X ~ R two functions. I f  
the following conditions hold: 

(i) f ( x ,  y) is H-quasiconcave in x, 
(ii) g(x, y) is lower semicontinuous in y, 

(iii) g(x, y) < f ( x ,  y), for ali (x, y) E X x X ,  

then there exists an element Xo E X such that 

g(z,  xo) <_ Sup f ( z ,  z), 
zEX 

for all x E X .  

PROOF. Let c = SUPzex f ( z ,  z). If c = +oo, then the conclusion holds, obviously. If c < +c¢, 
let T(x)  = x for each x E X. Then the conclusion follows from Corollary 3.2. 

REMARK. Corollary 3.3 generalizes Theorem C (consequently, Theorem B) to H-spaces without 
introducing additional assumptions. Hence Corollary 3.2 contains the Ky Fan inequality as a 
special case. Moreover, Theorem 3.1 generalizes Theorem 5.7.2 of [8] to H-space X and general 
topological space Y without introducing additional assumptions and we do not need ~ = ¢. 

By Theorem 3.1, we can prove the following existence theorem of solutions for quasi-variational 
inequalities similar to Theorem 2.4. 

THEOREM 3.4. Let (X, (FA}) be a compact H-space and Y a nonempty  convex subset of  a 
Hausdorff locally convex topological vector space, and ~ : X x Y --~ R an upper semicontinuous 
functional. Suppose that T : X ~ 2 r is an upper semicontinuous multivalued mapping with 
nonempty  compact values. I f  the following conditions hold: 

(i) ~(x,  y) is H-quasiconvex in x, 
(ii) ¢p(x, y) is H-quasiconcave in y, 

(iii) for each x E X ,  there exists an element y E T(x)  such that ~(x, y) > c (c is a constant), 
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then there exists an element ~ E X and a point ~ E T(~) such that  

> c, 

for all x E X .  

THEOREM 3.5. Let (X,  {FA}) be a compact H-space, (Y, {FB}) an H-space, and ~ : X x Y ~ R a 
functional. Suppose that T : X ~ 2 v is a multivalued mapping with nonempty  H-convex values. 
I f  the following conditions hold: 

(i) T - 1  : y __. 2 x is transfer open valued, 

(ii) ~(x,  y) is H-quasiconvex in x, 
(iii) ~(x,  y) is upper semicontinuous in y, 
(iv) ~(x,  y) > c (c is a constant) for each x • X and each y • T(x) ,  

then there exists an element ~ • X and a point ~ • T(~) such that 

>_ c, 

for all x • X .  

PROOF. Since Condition (i) is equivalent to Conditions (ii) and (iii) of Theorem 2.2 in [6], 
T satisfies all conditions of Theorem 2.2 in [6]. By virtue of Theorem 2.2 in [6], T has a continuous 

selection f : X ---* Y. 
I f  the conclusion of Theorem 3.5 is false, then for each x • X,  there exists a point z0 • X such 

tha t  ~v(z0, f ( x ) ) < c. Let 
G(x) -- {z • X :  ~ ( z , f ( x ) )  < c}. 

Then G : X --* 2 X has nonempty  H-convex values and for each z • X,  by the upper  semiconti- 
nuity of ~(x,  y) in y and the continuity of f ,  we know tha t  

c - l ( z )  = {z • z : z  • G(z)} 

-= {x • X : ~v(z, f ( x ) )  < c} 

is open in X.  Consequently, by Lemma 2.1, there exists a point 2 • X such tha t  2 • G(~),  i.e., 

~(~, f(:~)) < c. 

This contradicts (iv). Therefore Theorem 3.5 is true. 
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