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SUMMARY

Mutations in the mitochondrial kinase PINK1 and the
cytosolic E3 ligase Parkin can cause Parkinson’s
disease. Damaged mitochondria accumulate PINK1
on the outer membrane where, dependent on kinase
activity, it recruits and activates Parkin to induce
mitophagy, potentially maintaining organelle fidelity.
How PINK1 recruits Parkin is unknown.We show that
endogenous PINK1 forms a 700 kDa complex with
the translocase of the outer membrane (TOM) selec-
tively on depolarized mitochondria whereas PINK1
ectopically targeted to the outer membrane retains
association with TOM on polarized mitochondria.
Inducibly targeting PINK1 to peroxisomes or lyso-
somes, which lack a TOM complex, recruits Parkin
and activates ubiquitin ligase activity on the respec-
tive organelles. Once there, Parkin induces organelle
selective autophagy of peroxisomes but not lyso-
somes. We propose that the association of PINK1
with the TOM complex allows rapid reimport of
PINK1 to rescue repolarized mitochondria from mi-
tophagy, and discount mitochondrial-specific fac-
tors for Parkin translocation and activation.

INTRODUCTION

In humans, loss of function mutations in the genes encoding

PINK1 and Parkin have been linked to autosomal recessive

forms of Parkinson’s disease (PD) (Kitada et al., 1998; Valente

et al., 2004). In Drosophila, PINK1 and Parkin function in the

same pathway to maintain mitochondrial fidelity (Clark et al.,

2006; Greene et al., 2003; Park et al., 2006; Yang et al., 2006)

supporting prior studies indicating that mitochondrial dysfunc-

tion may be a contributing factor in PD (Schapira, 2010). More

recent studies have outlined a role for these proteins in the selec-

tive elimination of damaged mitochondria through a process

termedmitophagy (Geisler et al., 2010; Lee et al., 2010; Matsuda

et al., 2010; Narendra et al., 2008, 2010b; Vives-Bauza et al.,

2010). PINK1 is a serine/threonine kinase localized to mitochon-

dria while Parkin is an E3 ubiquitin ligase found in the cytosol.
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Through its kinase activity, PINK1 can recruit Parkin to depolar-

ized mitochondria where Parkin ubiquitinates mitochondrial

substrates and, along with additional factors, drives mitophagy.

Mouse embryonic fibroblast (MEF) cells lacking the mitochon-

drial fusion proteins Mfn1 and Mfn2 have a mixed population of

both healthy and damaged/depolarized mitochondria (Chen

et al., 2005). In these cells, Parkin specifically accumulates on

the subpopulation of depolarized mitochondria (Narendra

et al., 2008). The PINK1 requirement for Parkin translocation

raises the question of how PINK1 is activated selectively on

damaged mitochondria. The answer lies in the regulation of

PINK1 protein levels and also its submitochondrial location. In

healthy mitochondria, PINK1 levels are kept low through mem-

brane potential dependent import and constitutive turn over

(Jin et al., 2010; Narendra et al., 2010b). This process involves

PINK1 import to the inner membrane where it is processed to

a smaller 52 kDa form by the mitochondrial rhomboid protease

PARL (Deas et al., 2011; Jin et al., 2010; Meissner et al., 2011;

Whitworth et al., 2008). This form of PINK1 is subsequently

degraded by an MG132 sensitive protease thereby keeping

steady state levels of PINK1 almost undetectable on polarized

mitochondria. When a mitochondrion sustains damage that

leads to a loss in membrane potential, PINK1 proteolysis medi-

ated by import is blocked in that organelle and PINK1 accumu-

lates on the outer membrane. This appears to act as a sensing

mechanism for damaged mitochondria and allows PINK1 to

specifically recruit Parkin from the cytosol to depolarized organ-

elles. How PINK1 recruits Parkin remains unclear.

In this study we assess the role of mitochondrial factors in

PINK1-mediated Parkin translocation and activation. We find

that PINK1 forms a 700 kDa complex with the translocase of

the outer membrane (TOM) on depolarized organelles. PINK1

fused to the transmembrane anchor of OPA3 retains association

with TOM in the absence of uncoupler, suggesting a functional

association between PINK1/TOM. PINK1 targeted to peroxi-

somes or lysosomes, that lack a TOMcomplex, recruits and acti-

vates Parkin on the respective organelles. Furthermore, PINK1

requires membrane localization to stimulate its ability to recruit

and activate Parkin. We also find that Parkin targeted to peroxi-

somes by PINK1 is sufficient to drive pexophagy but this is not

recapitulated with lysosomes. Although we rule out mitochon-

drial-specific factors for Parkin translocation and activation,

PINK1 binding to TOM may function to rapidly reimport PINK1

to downregulate the PINK1/Parkin pathway.
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Figure 1. In Vitro Import and BN-PAGE Analysis of PINK1

(A) [35S]-PINK1was incubated with isolated HeLamitochondria with or without

1 mM CCCP for increasing times as indicated. Samples were treated with or

without Proteinase K (PK) and solubilized in 1% digitonin containing buffer.

Mock import samples lacking mitochondria were treated as above and as

indicated.

(B) Mitochondria were isolated from HeLa cells that were either untreated or

treated with CCCP or vehicle control (DMSO). Isolated mitochondria were

treated with or without external protease (PK) and subjected to BN-PAGE and

immunoblotting using antibodies against PINK1 (outer membrane), Tom22

(outer membrane), and Complex II (inner membrane).

(C) Radiolabeled WT PINK1 and PINK1 patient mutants A168P, H271Q, and

G309D were imported into isolated HeLa mitochondria as in (A). Radiolabeled

proteins were detected by phosphorimage analysis. See also Figure S1.
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RESULTS

PINK1 Forms a Large Multimeric Complex
on the Mitochondrial Outer Membrane
Wehave previously shown that PINK1 is imported intomitochon-

dria and constitutively turned over in a PARL-mediated process

that requires mitochondrial membrane potential (Jin et al., 2010).

In the presence of carbonyl cyanide m-chlorophenyl hydrazone

(CCCP), PINK1 import and degradation are inhibited forcing its

accumulation on the mitochondrial outer membrane where it

functions in recruiting Parkin.

Using mitochondrial in vitro import assays coupled with

BN-PAGE, we assessed the quaternary structure of PINK1 on

the mitochondrial outer membrane. Given that in vitro translated

PINK1 is imported into purified mitochondria, any assembly of

PINK1 represents an interaction with preexisting proteins or

complexes. As shown schematically (Figure S1A available

online), [35S]-labeled PINK1 was generated in vitro using rabbit

reticulocyte lysates and incubated with freshly isolated HeLa

mitochondria for different timeswith or without themitochondrial

uncoupler CCCP. External protease (Proteinase K) was added to

half of the samples to degrade nonimported or outer membrane

integrated PINK1. Samples were then solubilized in a 1% digi-

tonin containing buffer and subjected to BN-PAGE followed by

detection of radioactive protein using phosphorimaging (Fig-

ure 1A). In polarized mitochondria, [35S]-PINK1 did not assemble

into a prominent complex (lanes 1–3); however, after the addition

of CCCP, [35S]-PINK1 was found to assemble into a 700 kDa

complex that accumulated over time (lanes 7–9). External

protease (lanes 10–12) degraded the PINK1 containing complex

suggesting that it forms on the mitochondrial outer membrane.

Mock import of [35S]-PINK1 in the absence of mitochondria

(lanes 13 and 14) as well as import of [35S]-PINK1 D110 lacking

its N-terminal targeting sequences (Figure S1B) confirmed that

the complex formation was dependent on PINK1 import into

mitochondria and not an artifact of aggregation. Furthermore,

import of PINK1 into PARL�/� MEF mitochondria confirmed

that in the absence of CCCP, the PINK1 complex does not

form, nor does it resolve in its monomeric range on BN-PAGE

(Figure S1C).

We also analyzed endogenous PINK1 complex formation

using mitochondrial extracts from living cells. HeLa cells were

either untreated or treated with vehicle or CCCP for increasing

times prior to mitochondrial isolation and BN-PAGE immuno-

blotting analysis (Figure 1B). The 700 kDa PINK complex was

observed after 1 hr CCCP treatment (Figure 1B, lane 2, top

row) and accumulated with increasing times (lanes 3 and 4).

The PINK1 complex was not observed in mitochondria from

untreated or vehicle treated cells (lanes 1 and 5, top row).

External Proteinase K treatment led to the degradation of the

PINK1 complex, and proteolytic processing of the exposed cyto-

solic facing domains of the TOM complex (Figure 1B, lanes 6–10,

middle row) but not the inner membrane complex II (bottom row).

Additionally, a fraction of these samples was also subjected

to SDS-PAGE and immunoblotted for various mitochondrial

markers to confirm intactness of the organelle (Figure S1D).

Taken together, these results reveal that both in vitro imported

and endogenous PINK1 accumulate into a 700 kDa complex

on the outer membrane of depolarized mitochondria.
Developm
Next we assessed the complex assembly of PINK1 PD patient

mutants A168P, H271Q, and G309D using the in vitro import

assay (Figure 1C). The accumulation of PINK1 mutants into the

700 kDa complex was comparable to theWT PINK1 control sug-

gesting that kinase activity may not be required for complex

formation. Indeed, import of a PINK1 kinase deadmutant (Beilina
ental Cell 22, 320–333, February 14, 2012 ª2012 Elsevier Inc. 321
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Figure 2. PINK1 and Parkin Complex Analysis

(A and B) WT HeLa or YFP-Parkin HeLa cells were treated

as indicated and subjected to BN-PAGE (A) or SDS-PAGE

(B) and immunoblotted using a-PINK1 and either a-Tom20

(A) or a-actin (B) antibodies.

(C) YFP-Parkin HeLa cells treated with DMSO or 20 mM

CCCP for 3 hr were subjected to BN-PAGE and immuno-

blotting using a-PINK1 (left panel) and a-Parkin (right

panel) antibodies.

(D) HeLa cells transfected with either PINK1-V5/His or

Parkin, or both were treated as in (C) before being sub-

jected to BN-PAGE and immunoblotting using anti Parkin

(left panel) or PINK1 (right panel) antibodies. Samples

subjected to BN-PAGE were solubilized in 1% digitonin

buffer. See also Figure S1.
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et al., 2005), showed no defect in complex formation (Fig-

ure S1E). Thus PINK1 complex formation occurs independently

of its kinase activity.

Analysis of Parkin Association with the PINK1 Complex
We asked whether Parkin expression impacts PINK1 complex

assembly or shows stable Parkin association with the 700 kDa

complex. To assess this, PINK1 complex assembly was moni-

tored in stably transfected YFP-Parkin HeLa cells that lack

endogenous Parkin. Once cells were treated with CCCP for

3 hr (Figure 2A, lanes 3 and 7) or for 24 hr supplemented with

ammonium chloride to block mitophagy (lanes 4 and 8) the

PINK1 complex accumulated. However, no significant difference

in the complex was observed in cells with and without expres-

sion of YFP-Parkin. Cells that were treated with MG132 did not

show PINK1 complex formation (Figure 2A, lanes 2 and 6) sug-

gesting that the 52 kDa cleaved form of PINK1 that accumulates

after MG132 treatment (Figure 2B, lanes 2 and 6) does not inte-

grate into the complex. The accumulation of both 52 kDa and full

length forms of PINK1 was confirmed by SDS-PAGE and immu-

noblotting using antibodies against PINK1 (Figure 2B and Fig-

ure S1F). Additionally, whole cell lysates from YFP-Parkin ex-

pressing cells treated with or without CCCP were subjected to

BN-PAGE and immunoblotted using anti-Parkin antibodies.

YFP-Parkin was found in an �150 kDa complex, but no signal

was observed in the range of the 700 kDa PINK1 complex after

CCCP treatment (Figure 2C). Given that the ratio of endogenous

PINK1 to ectopically expressed YFP-Parkin is likely to be low, we

also coexpressed PINK1-V5/His. Even under these conditions,

a PINK1/Parkin complex was not observed (Figure 2D).

In vitro import of [35S]-PINK1 into mitochondria from YFP-

Parkin cells with or without prior CCCP treatment to accumulate

Parkin on mitochondria (Figures S1G and S1H), as well as import
322 Developmental Cell 22, 320–333, February 14, 2012 ª2012 Elsevier Inc.
of [35S]-Parkin (data not shown), also did not

resolve a PINK1/Parkin complex. Our findings

indicate that PINK1 and Parkin do not form

a stable complex on BN-PAGE and that Parkin

does not affect PINK1 complex formation.

Thus, either they do not stably associate or the

PINK1/Parkin interaction is labile to digitonin or

other components of the BN-PAGE system.

We also found that in the neuronal cell line SH-

SY5Y, that expresses endogenous Parkin and
may be more relevant for PD, WT and PINK1 mutants displayed

the same profile of mitochondrial PINK1 complex assembly as in

HeLa cell mitochondria (Figure S1I).

Identification of PINK1 Complex Components
Mitochondrial precursors such as PINK1, that are destined for

the mitochondrial inner membrane initially translocate through

the outer membrane via the translocase of the outer membrane

(TOM) complex (reviewed in Schmidt et al., 2010). We reasoned

that PINK1 could become sequestered within the TOM complex,

retaining it on the mitochondrial surface when its import into the

inner mitochondrial membrane is blocked by uncoupling with

CCCP. To test this, we performed immunodepletion experi-

ments after [35S]-PINK1 was imported into mitochondria in the

presence of CCCP. After import, mitochondria were lysed in

1% digitonin buffer and subjected to immunoprecipitation using

antibodies against PINK1, Tom20, or Mfn1. PINK1 protein com-

plexes not bound by these antibodies were analyzed by

BN-PAGE (Figure 3A). The PINK1 complex was specifically

depleted after incubation with immobilized a-PINK1 antibodies

but not with a-Mfn1 antibodies or beads alone. Interestingly,

the PINK1 complex was depleted also by a-Tom20 antibodies

(lane 3). As a control, [35S]-labeled Tom40 was imported into

mitochondria in the absence of PINK1 and incubated with the

same antibodies as above (Figure 3A, lanes 5–8). Only the

a-Tom20 antibody depleted the 500 kDa TOM complex (lane 7).

We performed antibody shift analysis directed against another

component of the TOM complex, the import receptor Tom22, to

further demonstrate the presence of TOM components within

the PINK1 complex. As can be seen in Figure 3B, antibodies

against Tom22 shifted the TOM complex control (lane 7) as

well as the PINK1 complex generated by WT PINK1 (lane 3)

to a higher molecular weight. Shifts were not observed using
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antibodies against a control outer membrane protein Bak. As

expected, antibodies against PINK1 shifted the PINK1 complex

(lane 2) but not the TOM complex (lane 6) that is devoid of PINK1

under these conditions.

We set out to further characterize PINK1’s association with

components of the TOM machinery by purifying the PINK1

complex under blue native gel extraction conditions. To achieve

this we generated a stable HeLa cell line expressing PINK1 with

a V5/His tag. In vitro import of [35S]-PINK1-V5/His showed that

the tag did not affect complex formation as compared to WT

PINK1 (Figure S2A). HeLa cells stably expressing PINK1-V5/His

were either untreated or treatedwithCCCP for 3 hr to accumulate

the PINK1 complex followed bymitochondrial isolation and solu-

bilization in 1% digitonin containing buffer. The PINK1 complex

was pulled down using 6xHis antibody coupled beads and eluted

under native conditions with 6xHis peptides. A fraction of the

eluted protein subjected to either BN-PAGE (Figure S2B, top

panel, lane 6) or SDS-PAGE (Figure S2B, bottom panel, lane 6)

and immunoblotted for PINK1 confirmed the successful isolation

of the PINK1 complex from CCCP treated cells. We then tested

for the presence of TOM components in this immunopurified

PINK1 complex and identified Tom20, Tom22, Tom40, and

Tom70 as PINK1 complex interacting proteins but not the outer

membrane control Bak (Figure 3C, lanes 4–6). Mock transfected

HeLa cellswere usedas controls to confirmspecific immunocap-

ture of TOM components (lanes 1–3).

To further test that TOM subunits associate in a complex with

PINK1, we analyzed purified PINK1 complex samples using BN-

PAGE by immunoblotting for Tom20 (Figure 3D). As Tom20 was

identified in a 700 kDa complex that comigrates with PINK1, we

conclude that PINK1 forms a complex with the TOM complex

(Figure 3D, right panel). However, it should be noted that a

portion of Tom20 was also found in the TOM complex lacking

PINK1. This may result from partial dissociation of the TOM

complex from PINK1 under the conditions used for BN-PAGE.

This is supported by the presence of an �200 kDa smear in

the bound fraction when immunoblotting for PINK1 (Figure 3D,

left panel, lane 3). Furthermore, PINK1 appears to associate

with only a fraction of the more highly expressed TOM complex

given that complete depletion of TOM components was not

observed in unbound fractions from Figures 3C and 3D. This is

further supported by the observation that endogenous levels of

PINK1 have no effect on the TOM complex after CCCP treatment

and BN-PAGE analysis (Figure 3E). However, a small fraction of

the TOM complex was shifted to the 700 kDa PINK1/TOM

complex in cells expressing ectopic PINK1-V5/His and treated

with CCCP (Figure 3E, lane 4).

Although only a small fraction of TOM is bound by PINK1

(Figures 3C–3E), coimmunoprecipitations of endogenous pro-

teins using antibodies against Tom20 revealed that of all of the

detectable PINK1 was associated with the TOM complex (Fig-

ure 3F, left panel). Endogenous Parkin was not coimmunopreci-

pitated with a-Tom20 antibodies supporting our findings above

(Figure 2), that show Parkin does not stably associate with the

PINK1/TOM complex. It should also be noted that immunopre-

cipitations using a-PINK1 antibodies also failed to pull down

endogenous Parkin (Figure 3F, right panel). This suggests that

while the buffer conditions used were suitable to maintain

a stable PINK1/TOM interaction, they may be labile for PINK1/
Developm
Parkin. Otherwise the interaction between endogenous proteins

may be transient.

To identify which TOM component directly associates with im-

munopurified PINK1 the complex was crosslinked using the thiol

cleavable crosslinker dithiobis (succinimidyl propionate) (DSP).

Proteins were dissociated using SDS followed by immunopre-

cipitation of PINK1. Immunocaptured crosslinked products

were analyzed by reducing SDS-PAGE to identify individual

components resulting from crosslinker cleavage. Of the TOM

subunits analyzed, Tom20 was found to specifically crosslink

with PINK1 (Figure 3G). SDS-PAGE using nonreducing condi-

tions was subsequently employed to determine the oligomeric

state of PINK1-Tom20 crosslinks (Figure 3H). Both PINK1

(lane 1, [right panel = long exposure]) and Tom20 (lane 2) immu-

nostaining was observed at �78 kDa and above 115 kDa. The

combined molecular weight of PINK1 (62 kDa) and Tom20

(16 kDa) is predicted to be �78 kDa in agreement with the

78 kDa band representing a single crosslink between the two.

Taken together, our findings indicate that when mitochondria

lose their membrane potential, PINK1 accumulates into a large

multimeric assembly with the TOM complex and directly inter-

acts with at least Tom20.

PINK1 was not found to crosslink with the import channel

Tom40 suggesting that PINK1’s association with the TOM

complex does not result from stalled import upon depolarization.

Therefore, to address whether PINK1 has the potential to bind

the TOM complex in the absence of CCCP treatment, when

import is not impaired, we imported PINK1D110-YFP fused

to the N-terminal mitochondrial anchor of OPA3 aa 1–30

(OPA3�-PINK1D110-YFP). In the absence of CCCP, OPA3�-

PINK1D110-YFP has previously been shown to recruit Parkin

and promote mitophagy in the same manner as WT PINK1

in the presence of CCCP (Narendra et al., 2010b). Import of

OPA3�-PINK1D110-YFP circumvents the use of CCCP to

localize PINK1 on the outer membrane and therefore would not

allow PINK1 to become stuck in transit within the TOM translo-

case upon uncoupling. Indeed, [35S]-OPA3�-PINK1D110-YFP

was found to assemble into the 700 kDa complex in the absence

of CCCP treatment (Figure S2C, lanes 1–3) and was comparable

to WT PINK1 that assembled in the presence of CCCP (lane 7).

Immunodepletion of PINK1 and OPA3�-PINK1D110-YFP com-

plexes as well as antibody shift analysis as described in Figures

3A and 3B, confirmed that the OPA3�-PINK1D110-YFP

complex is associated with the TOM machinery (Figures S2D

and S2E).

Unusually, [35S]-OPA3�-PINK1D110-YFP did not assemble

into the 700 kDa complex in the presence of CCCP (Figure S2C,

lanes 4–6), suggesting that the OPA3 anchor may require

a membrane potential for its import. This is supported by the

observation that CCCP treatment did not affect the mitochon-

drial location of previously imported OPA3�-PINK1D110-YFP

in cells (Figure S2F), although a slight increase in cytosolic fluo-

rescence was observed suggesting that import of newly syn-

thesized OPA3�-PINK1D110-YFP was blocked. Furthermore,

CCCP treatment after complex formation of OPA3�-

PINK1D110-YFP did not alter its binding to the TOM com-

plex (Figure S2G). Given this, we conclude that the OPA3 anchor

may unconventionally require a membrane potential for its

import. The PINK1/TOM association is likely to occur through
ental Cell 22, 320–333, February 14, 2012 ª2012 Elsevier Inc. 323
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Figure 3. PINK1 Complex Is Associated with Components of the TOM Machinery

(A) Radiolabeled proteins were imported into isolated HeLa mitochondria in the presence ([35S]-PINK1) or absence ([35S]-Tom40) of 1 mM CCCP for 60 min.

Samples were solubilized in 1% digitonin buffer and complexes were immunodepleted using indicated antibodies or beads alone as a control followed by

BN-PAGE analysis.

(B) Radiolabeled proteins were imported into isolated HeLa mitochondria in the presence ([35S]-PINK1) or absence ([35S]-Tom40) of 1 mM CCCP for 60 min.

Samples were solubilized in 1% digitonin buffer followed by the addition of antibodies as indicated, and subjected to BN-PAGE.

(C) Mock transfected and PINK1-V5/His stably transfected HeLa cells were treated with 20 mM CCCP for 3 hr followed by mitochondrial isolation and

immunocapture using a-His antibodies coupled to beads. Bound proteins were eluted with 6xHis peptides and various fractions as indicated were subjected to

SDS-PAGE followed by immunoblotting using antibodies as indicated. *Nonspecific band.

(D) Samples treated as in (C) were analyzed using BN-PAGE and immunoblotting with a-PINK1 (left panel) and a-Tom20 (right panel) antibodies.

(E) HeLa cells were eithermock transfected or transfected with PINK1-V5/His and treatedwith or without 20 mMCCCP for 3 hr before solubilization in 1%digitonin

buffer followed by BN-PAGE and immunoblotting using a-Tom22 (left panel) or a-PINK1 (right panels) antibodies.

(F) HEK293 cells were treated with 20 mM CCCP for 3 hr and then harvested and lysed in 1% digitonin containing buffer. Clarified lysates were used for

immunoprecipitation using a-Tom20 (left panel) or a-PINK1 (right panel) antibody coupled beads. Input, unbound, and bound fractions were subjected to SDS-

PAGE and immunoblotted using antibodies against PINK1, Parkin, Tom40, and Tom20.
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the cytosolic domain of PINK1 since the association is not

lost upon deletion of N-terminal residues 1–110 and replace-

ment with the OPA3 anchor. Furthermore, given that OPA3�-

PINK1D110-YFP associates with the TOM complex in the

absence of CCCP it suggests that the PINK1/TOM com-

plex does not represent a stalled import intermediate con-

sistent with prior observations on single membrane span-

ning mitochondrial proteins such as PINK1 (Frazier et al.,

2003).

Is the PINK1/TOM Complex Required for Parkin
Recruitment and/or Mitophagy?
The TOMcomplex is exclusive tomitochondria. Targeting PINK1

to other organelles, such as peroxisomes and lysosomes allows

us to investigate the potential requirement for a PINK1/TOM

complex in Parkin recruitment and autophagy induction. To

achieve this, we used a regulated heterodimerization system

(Belshaw et al., 1996), in which the FRB domain, a 93 amino

acid portion of human FK506 binding protein-12-rapamycin

associated protein (also known as mTOR) was fused to different

organelle membrane anchors. The FKBP domain (two tandem

repeats of full-length human FK506 binding protein-12

[FKBP12]) was fused to the C terminus of PINK1D110-YFP lack-

ing the membrane spanning and mitochondrial targeting

domains. Addition of a non-immunosuppressive analog of rapa-

mycin (rapalog, also called AP21967) causes the FRB and FKBP

domains of the fusion proteins to heterodimerize and thus

colocalize. FRBs were fused to the following organelle-specific

proteins, exposing FRB to the cytoplasm: (1), human Fis1

C-terminal tail (92–152) (FRB-Fis1) for mitochondria; (2), human

34 kDa peroxisomal integral membrane protein (PMP34-FRB)

for peroxisomes; and (3), rat lysosomal-associated mem-

brane protein 1 (LAMP1-FRB) for lysosomes (Figures 4A, 4C,

and 4E). To confirm the functionality of these constructs, cells

coexpressing EGFP fused to FKBP (EGFP-FKBP) and each of

these organelle specific FRB fusion constructs were treated

with or without rapalog and analyzed by confocal microscopy.

FRB-Fis1, PMP34-FRB, and LAMP1-FRB successfully recruited

cytosolic EGFP-FKBP to their corresponding organelles only in

the presence of rapalog (Figures S3A–S3C).

Using the same approach, we assessed whether

PINK1D110-YFP-FKBP when expressed at levels comparable

to those of endogenous PINK1 (Figure S4A) could be recruited

to the different organelles and also whether it may recruit CFP-

Parkin to the alternative compartments (Figures 4B, 4D,

and 4F). In the absence of rapalog, both PINK1D110-YFP-

FKBP and CFP-Parkin are localized to the cytosol in cells coex-

pressing Fis1-FRB (Figure 4B, top panels). Upon rapalog treat-

ment, PINK1D110-YFP-FKBP binds to mitochondria and also

recruits CFP-Parkin to the same compartment (Figure 4B,

bottom panels). Tetramethylrhodamine ethyl ester perchlorate

(TMRE) staining of cells and PINK1 immunoblotting confirmed

that rapalog treatment does not depolarize mitochondria or
(G) Immunocaptured PINK1-V5/His complex as in (C) was incubated in 0.1 mM d

were incubated in 1%SDS containing buffer for 5min at 95� and then subjected to

DTT before SDS-PAGE and immunoblotting with antibodies as indicated.

(H) Samples were treated as in (G) and subjected to SDS-PAGE in the absence

Radiolabeled proteins were detected by phosphorimage analysis. See also Figu

Developm
induce stabilization of endogenous PINK1 (Figures S4A

and S4B). As a control, kinase dead PINK1-FKBP failed to

recruit CFP-Parkin upon rapalog treatment (Figure S4C). In

contrast to endogenous PINK1 and OPA3�-PINK1D110-YFP,

rapalog targeted PINK1D110-YFP-FKBP to mitochondria by

FRB-Fis1 did not bind the TOM complex (Figure S4D). The

FRB and FKBP protein domains engineered into FRB-Fis1/

PINK1D110-FKBP may sterically inhibit PINK1 binding to

TOM in contrast to the more membrane proximal endogenous

PINK1 and OPA3�-PINK1D110. Overall, these results show

that PINK1 heterodimerized to the Fis1 mitochondrial anchor

is functional in Parkin recruitment. Like EGFP, in the presence

of rapalog, PINK1D110-YFP-FKBP was recruited to peroxi-

somes or lysosomes in cells coexpressing either PMP34-FRB

or LAMP1-FRB, respectively (Figures 4D and 4F, bottom

panels). Organelle recruitment was not observed in vehicle

treated cells (Figures 4D and 4F, top panels). Interestingly,

CFP-Parkin was also recruited to peroxisomes or lysosomes

specifically upon rapalog treatment (Figures 4D and 4F).

Thus, PINK1 can recruit Parkin to different subcellular organ-

elles thereby excluding the putative requirement for other mito-

chondrial-specific factors as well as the PINK1/TOM complex

in this process.

We also determined if Parkin recruited to alternative

compartments by ectopic PINK1 can exert its downstream

functions of ubiquitination and autophagy induction of the

various organelles. Cells coexpressing PINK1D110-YFP-FKBP

at levels comparable to those of endogenous PINK1 (Fig-

ure S4A), the mitochondrial targeting construct (FRB-Fis1)

and either CFP-Parkin or mCherry-Parkin did not display organ-

elle ubiquitination or autophagic clearance in the absence of

rapalog. (Figure S5A and Figure 5A, top panels). However,

upon treatment of cells with rapalog for 2 hr, robust mitochon-

drial ubiquitination (Figure S5A, middle panels) was observed.

Extended incubation with rapalog for 48 hr led to a large

proportion of cells displaying reduced or no mitochondria

(Figures 5A and 5B, left panels), thereby confirming that ectopic

targeting of PINK1 to mitochondria recapitulates CCCP

induced PINK1/Parkin-mediated mitophagy. When the same

approach was applied with peroxisome targeting of PINK1,

we found that after 2 hr of rapalog incubation peroxisomes dis-

played ubiquitination (Figure S5B), and 48 hr of rapalog incuba-

tion led to pexophagy (Figures 5A and 5B, middle panels) in the

presence of overexpressed mCherry-Parkin. To confirm that

such organelle removal occurs through autophagy, we applied

the same approach to Atg5�/� MEFs. We found a significant

increase of cells showing no evidence of mitophagy or pexoph-

agy and a significant decrease of cells showing reduction of the

organelle number compared to Atg5+/+ MEFs (Figures S5D and

S5E). This indicates that the majority of the reduction in the

number of mitochondria or peroxisomes in Figure 5B is caused

by autophagy. Lysosomal targeting of PINK1 did not induce

lysosome clearance after 48 hr of rapalog incubation (Figures 5A
ithiobis[succinimidyl propionate] for 20 min on ice. After crosslinking, samples

immunoprecipitation using a-His beads. Crosslinker was cleaved with 100mM

of DTT followed by immunoblotting using a-PINK1 and a-Tom20 antibodies.

re S2.
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Figure 4. Ectopically Localized PINK1 Can Recruit Parkin to Mitochondria, Peroxisomes, and Lysosomes

(A) Schematic diagram of organelle specific heterodimerization using FRB-Fis1 for mitochondria.

(B) Treatment of cells with rapalog induces the heterodimerization of FRB and FKBP causing cytosolic PINK1D110-YFP-FKBP to attach tomitochondria specified

by FRB-Fis1.

(C) Schematic diagram of organelle specific heterodimerization using PMP34-FRB for peroxisomes.

(D) Treatment of cells with rapalog induces the heterodimerization of FRB and FKBP causing cytosolic PINK1D110-YFP-FKBP to attach to peroxisomes specified

by PMP34-FRB.

(E) Schematic diagram of organelle specific heterodimerization using LAMP1-FRB for lysosomes.

(F) Treatment of cells with rapalog induces the heterodimerization of FRB and FKBP causing cytosolic PINK1D110-YFP-FKBP to attach to lysosomes specified by

LAMP1-FRB. HeLa cells were transfected with PINK1D110-YFP-FKBP, CFP-Parkin, one of the organelle specific FRBs and an organelle targeted fluorescent

marker protein: (RFP-SKL for peroxisomes [D], and LAMP1-cherry for lysosomes [F]). For mitochondria, cells were stained with MitoTracker Red before rapalog

treatment (B). After 48 hr of transfection, cells were treated with or without rapalog for 2 hr and imaged by confocal microscopy. The third rows are enlarged

images of the white boxes in the second rows (D and F). White bar represents 10 mm. See also Figures S3 and S4.
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Figure 5. Parkin Recruited by Ectopic PINK1 Can

Induce Autophagy of Mitochondria and Peroxi-

somes

(A) HeLa cells were transfected with PINK1D110-YFP-

FKBP and mCherry-Parkin together with one of the

organelle specific FRBs (FRB-Fis1 [left column], PMP34-

FRB [middle column], and LAMP1-FRB [right column]) for

24 hr. After 48 hr of treatment with (lower 3 rows) or without

(top row) rapalog, cells were fixed, immunostained for

organelle specific proteins (pyruvate dehydrogenase

subunit E1a [PDH] for mitochondria [left column], catalase

for peroxisomes [middle column], and LAMP-2 for lyso-

somes [right column]) and imaged with confocal micros-

copy. In rapalog treated cells, representative images of

cells showing three different responses (normal, reduced,

and trace or none) of organelle mass are shown. White

boxes on the right bottom corner show only the organelle

markers from the dashed box to clearly show the change

of organelle mass. White bar represents 10 mm.

(B) Cells having the indicated amount of each organelle in

(A) were counted. To ensure the coexpression of the three

constructs (PINK1-FKBP, Parkin and FRB) only the cells

showing an abundant expression of mCherry-Parkin were

counted. The graphs represent means ± SEM of counts

in >100 cell per condition in three independent experi-

ments and analyzed with 2-way ANOVA. ***p < 0.001,

**p < 0.01. See also Figure S5.
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and 5B, right panels), even though an increased ubiquitination

signal was observed in lysosomes after 2 hr of rapalog incuba-

tion (Figure S5C). As a control, the R42P Parkin PD mutant

(Matsuda et al., 2010; Narendra et al., 2010b; Terreni et al.,

2001) failed to ubiquitinate mitochondria, peroxisomes, and

lysosomes after rapalog targeting of PINK1 (Figures S5A–

S5C, bottom panels). Overall, these results exclude an essential

role for the PINK1/TOM complex in Parkin recruitment and mi-

tophagy. They also highlight that apart from PINK1, mitochon-

dria-specific factors are not required for the PINK1/Parkin

pathway to induce pexophagy. The ubiquitination of membrane

proteins appears to be insufficient to induce clearance of lyso-

somes that may have specific restrictions to autophagic

removal.
Developmental Cell 22, 320
PINK1 Requires Membrane Localization
to Recruit Parkin
The ectopic recruitment of Parkin to PINK1

expressed in alternate locations is consistent

with direct binding of PINK1 to Parkin, as previ-

ously reported (Sha et al., 2010; Shiba et al.,

2009; Xiong et al., 2009), but not seen in BN

gels (Figure 2) or immunoprecipitations of en-

dogenous proteins (Figure 3F). A constitutively

stable interaction between the PINK1 and Par-

kin suggests that Parkin targeted to the mito-

chondria would recruit a cytosolic form of

PINK1 (D110), lacking its mitochondrial target-

ing information. To investigate this we fused

the FKBP domain to mCherry-Parkin at the N

terminus of Parkin (mCherry-FKBP-Parkin). To

confirm that Parkin in this recombinant protein

is fully functional, we assessed mitophagy by
CCCP treatment in cells expressing either mCherry-FKBP-

Parkin, or YFP-Parkin as a control (Figures S6A and S6B). Mito-

chondrial clearance of mCherry-FKBP-Parkin after 24 hr CCCP

treatment was similar to that of YFP-Parkin. We therefore used

FRB-Fis1 to direct mCherry-FKBP-Parkin to mitochondria with

rapalog to see if it induced mitophagy or recruited PINK1.

In vehicle treated cells, both mCherry-FKBP-Parkin and

PINK1D110-YFP were localized in the cytosol (Figure 6A, top

panels). Upon rapalog treatment for 2 hr, mCherry-FKBP-Parkin

was recruited to mitochondria but PINK1D110-YFP remained in

the cytosol (Figure 6A, bottom panels), arguing against a consti-

tutive PINK1/Parkin interaction. Previous reports have shown

that overexpressed PINK1 and Parkin interact by coimmunopre-

cipitation after lysis (Sha et al., 2010; Xiong et al., 2009); however,
–333, February 14, 2012 ª2012 Elsevier Inc. 327
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Figure 6. PINK1Not Localized toMembranes Does

Not Interact with Parkin

(A) Mitochondrial Parkin does not recruit cytosolic PINK1

to mitochondria. HeLa cells were transfected with

PINK1D110-YFP, mCherry-FKBP-Parkin, and FRB-Fis1

and treated with or without rapalog for 2 hr. The live cells

were imaged by confocal microscopy.

(B) Delayed Parkin translocation after the translocation of

cytosolic PINK1-FKBP induced by heterodimerization.

HeLa cells were transfected with PINK1D110-YFP-FKBP,

mCherry-Parkin, and FRB-Fis1 for 48 hr, treated with ra-

palog and applied for confocal live cell imaging over

17 min. The first image was taken after 2 min of rapalog

treatment, and subsequent images were taken after every

5 min. White bar represents 10 mm. See also Figure S6.
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our results in intact cells are not in agreement. Moreover, a time

course rapalog treatment of cells coexpressing PINK1D110-

YFP-FKBP along with FRB-Fis1 and mCherry-Parkin, revealed

that PINK1D110-YFP-FKBP targeted to mitochondria in 2 min

(Figure 6B, top left panel). However, mCherry-Parkin remained

in the cytosol (Figure 6B, top middle panel), and only accu-

mulated on mitochondria after a >5 min delay (Figure 6B,

lower panels). The differential kinetics of mitochondrial recruit-

ment between the two raises the interesting possibility
328 Developmental Cell 22, 320–333, February 14, 2012 ª2012 Elsevier Inc.
that upon membrane localization, latent

PINK1D110-YFP-FKBP becomes active in Par-

kin recruitment.

It is possible that the primary role of PINK1

is to recruit Parkin to mitochondria and once

there, Parkin is able to ubiquitinate substrates

and stimulate mitophagy. However, mCherry-

FKBP-Parkin targeted to mitochondria by FRB-

Fis1 did not ubiquitinate mitochondria (Fig-

ure S6C, upper panels), nor did it induce

mitophagy (Figure S6D, upper panels). Similar

results were observed when mCherry-FKBP-

Parkin was placed on peroxisomes (Figures

S6C and S6D, lower panels) by heterodimeriza-

tion. Mitophagy was observed in rapalog

treated cells coexpressing mCherry-FKBP-

Parkin, PINK1D110-YFP-FKBP, and FRB-Fis1

(Figure S6E), indicating thatmitochondrial Parkin

localized on mitochondria through the heterodi-

merization can be activated by mitochondrial

PINK1 to induce mitophagy. Taken together

these results show that although FKBP-Parkin

is functional, its localization on mitochondria is

not sufficient for activity. PINK1 (D110) located

in the cytosol is insufficient for both Parkin trans-

location and subsequent activation of E3 ligase

activity but regains these activities upon ectopic

targeting to alternate membranes.

PINK1 Is Rapidly Reimported after CCCP
Washout
Through ectopic expression of PINK1 on perox-

isomes we have shown that, apart from PINK1,

mitochondrial-specific factors are not required

for Parkin-mediated autophagy of organelles. This raises the

question of the physiological function of PINK1 binding to the

mitochondrial-specific TOM complex. It is possible that PINK1’s

tight association with the TOM complex may facilitate its rapid

reimport into mitochondria that regain their membrane potential.

Indeed, we found that in HeLa cells endogenous PINK1 was

degraded within two and a half minutes of CCCP washout using

both BN-PAGE and SDS-PAGE analysis (Figure 7A). TMRE

staining of cells confirmed that mitochondria could regain their
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Figure 7. PINK1 and Parkin after CCCP Washout

(A) HeLa cells were treated with either DMSO or CCCP for 3 hr before CCCP washout for increasing times as indicated. Cells were lysed in 1% digitonin buffer

(BN-PAGE; left panel) or SDS sample buffer (SDS-PAGE; right panel) and immunoblotted using a-PINK1 and a-VDAC1 antibodies.

(B) PARL�/�MEFs transfected with PINK1-V5/His were treated as in (A). Cells were lysed in SDS sample buffer and immunoblotted using a-PINK1 and a-VDAC1

antibodies. DMTS, mitochondrial targeting sequence cleaved; FL, full-length; W/O, washout.

(C) HeLa cells were treated as in (A) and mitochondrial fractions were subjected to SDS-PAGE and immunoblotting using a-Parkin, a-PINK1 and a-Tim23

antibodies.

(D) Model for PINK1 regulation. See Discussion for description. See also Figure S7.
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membrane potential within the 2.5 min washout period (Fig-

ure S7). Furthermore, rapid reimport of PINK1 was confirmed

in PARL�/� MEFs transfected with PINK1-V5/His (Figure 7B).

In these cells, imported PINK1 has its mitochondrial targeting

sequence cleaved by the matrix processing peptidase (MPP),

and appears as a slightly faster migrating species (described in

Jin et al., 2010). This imported form of PINK1 (DMTS) was absent

after CCCP treatment (Figure 7B, lane 2) and reappeared within
Developm
2.5 min after washout where import-mediated MPP processing

of PINK1 resumed (lanes 3–6).

Since PINK1 reimport could act as a regulatory mechanism in

the Parkin pathway, we analyzed whether Parkin is released

from mitochondria upon PINK1 reimport. Cells transfected with

untagged Parkin were treated with CCCP followed by washout

for different times. Mitochondria were isolated from cells and

immunoblotted for PINK1, Parkin, and Tim23 as a loading
ental Cell 22, 320–333, February 14, 2012 ª2012 Elsevier Inc. 329
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control. As can be seen (Figure 7C), the levels of Parkin in the

mitochondrial fraction were reduced in conjunction with PINK1

after CCCP washout. This indicates that PINK1 on the outer

membrane is required to maintain Parkin on depolarized mito-

chondria and supports a role for the PINK1/TOM complex in

reimport downregulation of the pathway.

DISCUSSION

It is currently under debate whether PINK1-dependent phos-

phorylation of Parkin or another substrate drives mitochondrial

translocation and activity of Parkin (Kim et al., 2008b; Narendra

et al., 2010b; Sha et al., 2010; Vives-Bauza et al., 2010). PINK1

lacking its mitochondrial targeting sequences resides in the

cytosol and does not activate Parkin translocation to mitochon-

dria (Matsuda et al., 2010; Narendra et al., 2010b). This raises the

question of whether mitochondrial factors could function with

PINK1 to recruit Parkin.

Mitochondrial in vitro import of PINK1 coupled with BN-PAGE

revealed that PINK1 efficiently assembles into a 700 kDa

complex on the outer membrane of uncoupled mitochondria.

In the absence of uncoupler, PINK1 has been identified in

complexes ranging from 130–460 kDa using sucrose gradients

(Liu et al., 2009). That 700 kDa PINK1 complex formation was

observed when mitochondria were depolarized and import to

the inner membrane was inhibited raised the possibility that

PINK1 was trapped in the TOM complex. The TOM complex

mediates the import of most mitochondrial proteins and is an

essential molecular machine for mitochondrial function (Künkele

et al., 1998; Model et al., 2002). Using different approaches, we

found that the 700 kDa PINK1 complex contained the import

receptors Tom70, Tom22, and Tom20, as well as the transloca-

tion pore Tom40. Specifically, we found that PINK1 directly inter-

acts with Tom20, themain receptor for N-terminal presequences

(Abe et al., 2000; Brix et al., 1997). Although Parkin was not found

to stably interact with the PINK1/TOM complex, PINK1-medi-

ated recruitment of Parkin to mitochondria was found to induce

degradation of TOM complex components (Chan et al., 2011;

Yoshii et al., 2011).

In yeast, Oxa1 andCox18were found to form a 500 kDa import

intermediate within the TOM complex after mitochondrial depo-

larization (Frazier et al., 2003). Like PINK1, both Oxa1 and Cox18

contain a cleavable MTS signal but differ from PINK1 owing to

their multispanning transmembrane domains. In the same study,

the 500 kDa TOM complex associated intermediate was not

identified with soluble matrix proteins or proteins like PINK1

that contain a cleavable MTS and a single spanning transmem-

brane domain. To stably trap precursors within the TOM com-

plex researchers typically tag precursors with DHFR, an enzyme

that adopts a tight fold in the presence of methotrexate and

blocks precursor transit within TOM (Dekker et al., 1997; Ryan

et al., 1999). Also, precursors can be crosslinked with Tom40

and other TOM components within the TOM complex (Kanamori

et al., 1999; Wiedemann et al., 2001). These approaches are

often combined with mitochondrial depolarization.

Even though precursors such as PINK1 do not stall in the TOM

complex (Frazier et al., 2003), and PINK1 did not crosslink with

the translocation pore Tom40, it is still a possibility that PINK1

becomes trapped within the TOM en route to being imported
330 Developmental Cell 22, 320–333, February 14, 2012 ª2012 Elsev
upon CCCP treatment. We used the N terminus of OPA3 to

target PINK1 to the outer mitochondrial membrane indepen-

dently of import inhibition with CCCP and found that PINK1 still

bound the TOM complex on polarized mitochondria, arguing

against the ‘‘stalled import’’ hypothesis. This analysis also re-

vealed that PINK1 can associate with Tom20 through its cyto-

solic domain and not its N-terminal targeting sequences, further

arguing against PINK1 residing within the TOM complex import

channel. However, as the structural basis of the PINK1-TOM

complex is not resolved one cannot rule out that PINK1 occupies

the TOM channel.

In the presence of CCCP, OPA3�-PINK1D110-YFP import

and complex assembly were unexpectedly blocked. Single

spanning signal-anchored proteins like OPA3 do not typically

require a membrane potential for their import nor do they require

any of the known import components for their insertion and to

date, little is known about their import (reviewed in Dukanovic

and Rapaport, 2011). Thus it is not clear why CCCP should

impact import of the OPA3 anchor; however, it is interesting to

note that currently there is discrepancy regarding membrane

potential-mediated processing of the outer mitochondrial

membrane protein Mcl-1 (Warr et al., 2011; Yang-Yen, 2011).

A fully assembled TOM complex has a reported molecular

mass of �440–600 kDa (Ahting et al., 2001; Frazier et al., 2003;

Künkele et al., 1998), and in this report TOM lacking PINK1

was observed in the 500 kDa range on BN-PAGE. Considering

the size of monomeric PINK1 (62 kDa) and the change in size

from the 500 kDa TOM to the 700 kDa PINK1/TOM complex, it

appears likely that more than one PINK1 or additional factors

may be associated in the complex. This is also supported by

the comparably modest change in TOM complex size from

�440 kDa to 500 kDa observed for Oxa1 (45 kDa) and Cox18

(36 kDa) intermediate complexes (Frazier et al., 2003). A PINK1

dimer may be associated with TOM as PINK1 can interact with

itself (Liu et al., 2009), and kinases often function as dimers

(Huse and Kuriyan, 2002). The presence of additional factors in

the PINK1/TOM complex, such as PGAM5 (Imai et al., 2010),

Miro, and Milton (Weihofen et al., 2009) is also possible.

We also addressed the role of the PINK1/TOM complex in

Parkin recruitment by targeting PINK1 to organelles that lack

a TOM complex using a regulated heterodimerization system.

Interestingly, PINK1 localization to peroxisomes or lysosomes

was sufficient to recruit Parkin and stimulate its E3 ligase

activity, as evidenced by organelle ubiquitination. In the absence

of PINK1, Parkin ectopically targeted to mitochondria, peroxi-

somes or lysosomes had no detectable activity, confirming

PINK1’s essential role (Matsuda et al., 2010; Narendra et al.,

2010b). These findings eliminate the requirement for PINK1

binding to TOM for Parkin translocation and importantly,

suggest that other mitochondrial factors are not required. We

also found that Parkin targeted to peroxisomes by PINK1 was

sufficient to signal pexophagy. Ubiquitin on the surface of perox-

isomes can signal their degradation (Kim et al., 2008a), although

ubiquitin on mitochondria does not signal mitophagy (Narendra

et al., 2010a). Furthermore, autophagic removal of lysosomes

was not observed, supporting the notion that ubiquitination is

not sufficient for all organellar autophagy. However, it is also

possible that lysosomes may have inherent restrictions for auto-

phagic removal.
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PINK1’s ability to direct Parkin to different subcellular

compartments is consistent with the model that they constitu-

tively interact. However, mitochondrial targeted Parkin did not

recruit PINK1D110 to mitochondria suggesting a stable interac-

tion does not exist when PINK1 is not membrane bound. This

indicates that PINK1 requires membrane localization for Parkin

activation. PINK1 autophosphorylation has been reported in an

in vitro system although its physiological function is not clear

(Beilina et al., 2005; Silvestri et al., 2005). PINK1 activation may

occur through a concentration dependent process (Zhang

et al., 2006) that rises considerably once localized on a mem-

brane potentially allowing it to dimerize. Alternatively, PINK1’s

proximity to lipid may increase its activity by inducing a confor-

mational change, as has been reported for the PTEN phospha-

tase PIP2 (Leslie et al., 2008).

PINK1 is rapidly reimported and degraded in HeLa cells when

mitochondria regain their membrane potential. This is supported

by the rapid displacement of mitochondrial Parkin that occurs in

conjunction with PINK1 reimport. A very recent report has shown

that proteins can be laterally released from the TOM complex to

the outer membrane (Harner et al., 2011). This supports a model

whereby PINK1 can re-enter the import pathway through lateral

opening of the TOM pore. In healthy cells, mitochondria contin-

ually undergo cycles of fission and fusion. Although mitochon-

drial fission events often generate depolarized units that are

less likely to re-fuse and are removed by autophagy, occasion-

ally depolarized organelles regain their membrane potential

and re-fuse with the network (Twig et al., 2008). Thus, PINK1’s

association with the TOM complex would allow for tight regula-

tion of PINK1 levels (Figure 7D). If mitochondria re-establish

membrane potential, PINK1 accumulated on the outer mito-

chondrial membrane is readily reimported and degraded to

deactivate Parkin, terminate mitophagy and maintain healthy

organelles in the network.

EXPERIMENTAL PROCEDURES

Cloning Procedures

The construction of plasmids is described in the Supplemental Experimental

Procedures.

Cell Culture, Transfection, and Mitochondrial Isolation

HeLa cells were cultured in Dulbecco’s modified Eagles medium (DMEM;

GIBCO-BRL) containing 10% (v/v) fetal calf serum (FCS) at 37�C under an

atmosphere of 5% CO2. To transfect cells for confocal microscopy, cells

were plated in 2-well coverglass chambers. Constructs as indicated in Figures

4–6 and Figures S2–S7, were mixed with Fugene HD at 1:3 ratio in Opti-MEM

(GIBCO-BRL). After 15 min, the mixture was added to the culture and incu-

bated for 24 hr or 48 hr before 250 nM rapalog treatment for 48 hr to assess

autophagy or 2 hr rapalog treatment to assess Parkin translocation and ubiq-

uitination. For mitochondrial isolation, cells were homogenized in 20 mM

HEPES (pH 7.6), 220 mM mannitol, 70 mM sucrose, 1 mM EDTA, and

0.5 mM phenylmethylsulfonyl fluoride. Cell homogenates were centrifuged at

800 3 g at 4�C for 10 min to obtain a postnuclear supernatant and then mito-

chondria were pelleted by centrifugation at 10,000 3 g at 4�C for 20 min.

Immunocytochemistry and Confocal Imaging

For immunostaining, cells were fixed with 4% PFA in PBS, permeabilized with

0.5% Triton X-100 in PBS, and blocked with 10% BSA in PBS supplemented

with 0.5% Triton X-100. Indicated primary antibodies and corresponding

secondary antibodies were serially added. To image mitochondria or lyso-

somes, cells were incubated for 5 min with MitoTracker Red CMXROS or
Developm
LysoTracker Red DND-99 at 100 ng/ml. The fixed, immuno-labeled cells or

live cells were imaged using an inverted confocal microscope (LSM510

Meta; Carl Zeiss) with a 633 1.4 NA oil differential interference contrast Plan

Apo objective. Image contrast and brightness were adjusted with Volocity

(PerkinElmer).

CCCP Washout Cell Imaging

HeLa cells were transiently transfected with mito-YFP (YFP targeted to the

mitochondrial matrix) for 24 hr prior to imaging. Cells in CO2-independent

media (Invitrogen), were incubated with TMRE (Invitrogen) or CCCP (Sigma)

for the indicated times at concentrations of 10 nM and 10 mM, respectively.

For washout, cells were washed in 1 mL of CO2-independent media. Images

were acquired on an UltraView LCI confocal microscope (PerkinElmer) at

37�C with a 633/1.4-numerical aperture Apochrome objective.

Mitochondrial In Vitro Import and BN-PAGE

Mitochondrial imports were essentially carried out as previously described

(Stojanovski et al., 2007). A master import tube containing freshly isolated

mitochondria in import buffer (20 mM HEPES [pH 7.4], 250 mM sucrose,

80 mM potassium chloride, 5 mM magnesium acetate) was split in half and

one half was supplemented with 5 mM ATP, 10 mM Na succinate, and vehicle

control (DMSO) to a final concentration of 0.1% (v/v). The other half was sup-

plemented with 1 mM CCCP. PINK1 translation products were incubated with

mitochondria at 24�C for various times as indicated in the figure legends. At

each time point, the equivalent of 50 mg mitochondria was removed from

each import tube and placed on ice. For protease treatment samples were

incubated on ice for 10 min with 50 mg/ml Proteinase K (Sigma), followed by

the addition of 1 mM PMSF for a further 10 min on ice. For BN-PAGE, all mito-

chondrial pellets (50 mg protein) were resuspended in 50 ml 1% (w/v) digitonin

(Wako), 50 mM NaCl, 10% (v/v) glycerol, 20 mM Bis-Tris (pH 7.0). BN-PAGE

antibody shift assays were performed as previously described (Johnston

et al., 2002). Radiolabeled proteins were detected by phosphorimaging

(STORM 840, Amersham Biosciences).

PINK1-V5/His Complex Immunocapture and Crosslinking

HeLa cells stably expressing PINK1-V5/His were generated by retroviral infec-

tion using the pBMN-IRES-EGFP vector system (Allele Biotech). Details for the

approach used to immunocapture PINK1-V5/His aswell as crosslinking exper-

iments are described in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.devcel.2011.12.014.
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