Lagrange and Hermite Interpolation Processes on the Positive Real Line

Katherine Balázs

Karl Marx University, Institute of Mathematics, Budapest 5, Pf. 489, H-1828, Hungary

Communicated by Paul G. Nevai
Received November 19, 1984; revised June 11, 1985

DEDICATED TO THE MFMORY OF GF́ZA FREIJD

1. Introduction

In this paper we consider interpolation based on the Laguerre roots and the point 0 as nodes. First we show that this interpolation generates a convergent approximation process on $[0, \infty$) for a wide class of functions. Moreover, we prove the following interesting fact: In order to have uniform convergence of the derivatives of the interpolating polynomials in every interval $[0, A]$, it is sufficient to prescribe the derivatives at 0 only, in addition to the function values at the above-mentioned nodes.

Interpolating polynomials of degree $2 n-1$ based on the roots of nth Laguerre polynomials and the point 0 were introduced first by Egerváry and Turán [4] as the "most economical" stable interpolation on [0, ∞). A convergence theorem was proved by Balázs and Turán [1] and later this process was investigated by Joó [7-10].

Lagrange interpolation for the Laguerre abscissas and its convergence were treated by Freud [5] and Nevai [11-13]. Let

$$
L_{n}^{(x)}(x)=\frac{e^{x} x \cdot x}{n!}\left\{e^{x} x^{n+x}\right\}^{(n)}, \quad n=1,2, \ldots
$$

be the Laguerre polynomial of degree n for $\alpha>-1$, with the usual normalization

$$
L_{n}^{(\alpha)}(0)=\binom{n+\alpha}{n} .
$$

These polynomials are orthogonal on $[0, \infty)$ with respect to the weight function $e^{-x} x^{x}$. The zeros of $L_{n}^{(\alpha)}(x)$ are

$$
(0<) x_{1 n}^{(\alpha)}<x_{2 n}^{(\alpha)}<\cdots<x_{n n}^{(\alpha)} .
$$

If there is no danger of misunderstanding we will write briefly $x_{k n}$ or x_{k}, $k=1,2, \ldots, n$.

In what follows we will always suppose that α is integer. Let f be an α-times differentiable function on $[0, \infty)$. Let us denote by $Q_{n, \alpha}(f ; x)$ its Hermite interpolating polynomial of degree $n+\alpha$ with nodes $x_{k n}^{(\alpha)}$, $k=1,2, \ldots, n$, and 0 , the latter with multiplicity $\alpha+1$. That is,

$$
\begin{equation*}
Q_{n, x}(f ; x)=\sum_{k=1}^{n} f\left(x_{k}\right)\left(\frac{x}{x_{k}}\right)^{\alpha+1} l_{k}(x)+\sum_{i=0}^{\alpha} f^{(i)}(0) r_{i}(x) \tag{1.1}
\end{equation*}
$$

where $l_{k}(x)$ are the fundamental polynomials of Lagrange interpolation based on the roots of $L_{n}^{(\alpha)}(x)$:

$$
l_{k}(x)=l_{k n x}(x)=\frac{L_{n}^{(x)}(x)}{L_{n}^{(\alpha)}\left(x_{k}\right)\left(x-x_{k}\right)}, \quad k=1,2, \ldots, n,
$$

and the polynomials $r_{i}(x)=r_{\text {inx }}(x)$ are such that

$$
r_{i}^{(s)}(0)=\left\{\begin{array}{lll}
1, & \text { if } \quad s=i, \\
0, & \text { if } & 0 \leqslant s<i,
\end{array}\right.
$$

and

$$
r_{i}\left(x_{k}\right)=0, \quad \text { for } \quad k=1,2, \ldots, n ; i=1,2, \ldots, \alpha,
$$

so that, explicitly,

$$
r_{i}(x)=\frac{x^{i} L_{n}^{(\alpha)}(x)}{i!\binom{n+\alpha}{n}}, \quad i=0,1, \ldots, \alpha .
$$

In the case $\alpha=0$ we have Lagrange interpolation:

$$
\begin{equation*}
Q_{n, 0}(f ; x)=\sum_{k=1}^{n} f\left(x_{k}\right) \frac{x}{x_{k}} l_{k}(x)+f(0) L_{n}^{(0)}(x) . \tag{1.2}
\end{equation*}
$$

Convergence theorems and estimates concerning $Q_{n, 0}(f)$ were announced without proof by the author at the Varna Conference on Constructive Theory of Functions in 1984, [2].

We remark that convergence problems of Hermite interpolation of type $Q_{n, x}$ based on the point 0 and Laguerre roots for non-integral α can be con-
sidered also, but these investigations require other means and will be treated in a forthcoming paper.

2. Results

We give weighted estimates which imply the convergence of interpolating polynomials $Q_{n, \mathrm{x}}(f)$ and their derivatives $Q_{n}^{(i)}(f)$ to f and $f^{(i)}$, respectively in $[0, \infty)$.

In what follows $O(1)$ is always independent from x and n. Our first theorem concerns Lagrange interpolation based on the roots of $L_{n}^{(0)}(x)$ and the origin (see (1.2)).

Theorem 1. Let $f \in \operatorname{Lip} \gamma, \frac{1}{2}<\gamma \leqslant 1$, in $[0, \infty)$. Then

$$
\left|f(x)-Q_{n .0}(f ; x)\right|=O(1) x^{1 / 2} e^{v / 2} n \quad / 2+1 / 4
$$

for $0 \leqslant x \leqslant x_{n n}^{(0)}$.
Note the important fact $x_{n n}^{(x)} \sim n$ for the greatest zero of $L_{n}^{(x)}(x)$, which follows from Lemma 3. We use the symbol \sim in the sense of Szegö [14, p. 1$]$: if two sequences z_{n} and w_{n} of numbers have the property that $w_{n} \neq 0$ and the sequence $\left|z_{n}\right| /\left|w_{n}\right|$ has finite positive limits of indetermination, we write $z_{n} \sim w_{n}$.

Theorem 2. Let $f^{(x)} \in \operatorname{Lip} \gamma, 0<\gamma \leqslant 1$, in $[0, \infty)$ for some $\alpha>0$ integer. Then

$$
\left|f(x)-Q_{n, x}(f ; x)\right|=O(1) x^{(\alpha+1) / 2} e^{x / 2} n^{(x+y) / 2+1 / 4}
$$

for $0 \leqslant x \leqslant x_{n n}$.
If $f^{(r)}$ exists for some $r>\alpha$, then we may have better estimates:

Theorem 3. Let $f^{(r)} \in \operatorname{Lip} \gamma, 0<\gamma \leqslant 1$, in $[0, \infty)$ for some $r>\alpha$, where $\alpha \geqslant 0$ and integer. Then

$$
\left|f(x)-Q_{n, \alpha}(f ; x)\right|=O(1) x^{(\alpha+1) / 2} e^{x / 2} n^{-(r+\gamma) / 2+1 / 4}
$$

for $0 \leqslant x \leqslant x_{n n}^{(\alpha)}$.

Corollary. The convergence of $Q_{n, x}(f)$ to f is uniform in every finite subinterval of $[0, \infty)$ under the assumptions of the above theorems.

Theorem 4. Suppose that $f^{(r)}$ exists in $[0, \infty)$ for some $r \geqslant \alpha$, where $\alpha \geqslant 0$ and integer. Let $f^{(r)} \in \operatorname{Lip} \gamma, \frac{1}{2}<\gamma \leqslant 1$ if r is even or $f^{(r)} \in \operatorname{Lip} \gamma$, $0<\gamma \leqslant 1$ if r is odd. Then

$$
\left|f^{(i)}(x)-Q_{n, x}^{(i)}(f ; x)\right|=O(1) x^{(\alpha+1) / 2-i} e^{x} n^{-(r+\gamma) / 2+i+1 / 4}
$$

for $1 \leqslant i \leqslant[r / 2]$ and $0 \leqslant x \leqslant x_{n n}^{(\alpha)} / 2$.
Corollary. The convergence of $Q_{n, x}^{(i)}(f)$ to $f^{(i)}$ is uniform in every finite subinterval of $[0, \infty)$ if $1 \leqslant i \leqslant[\alpha / 2]$.

3. Lemmas and Proofs

Lemma 1. If $f^{(r)}$ exists and is continuous in $[0, \infty), r \geqslant 0$, then there exists a polynomial G_{n} of degree $n \geqslant 4 r+5$ at most, that

$$
\begin{array}{r}
\left|f^{(i)}(x)-G_{n}^{(i)}(f ; x)\right|=O(1) \omega\left(f^{(r)} ; \frac{\sqrt{x\left(x_{n}-x\right)}}{n}\right)\left(\frac{\sqrt{x\left(x_{n}-x\right)}}{n}\right)^{r-i} \\
0 \leqslant x \leqslant x_{n}, \quad i=0,1, \ldots, r,
\end{array}
$$

where $\omega\left(f^{(r)} ; \cdot\right)$ denotes the modulus of continuity of $f^{(r)}$ on $\left[0, x_{n}\right]$.
The lemma shows that $G_{n}^{(i)}(f ; 0)=f^{(i)}(0), i=0,1,2, \ldots, r$.
Proof. The lemma is an easy consequence of Gopengauz's theorem [6].
Lemma 2 (Joó [10 , inequality (11)]).

$$
\frac{e^{x}}{x^{\alpha+1}}-\sum_{k=1}^{n} \frac{e^{x_{k}}}{x_{k}^{x+1}}\left(\frac{L_{n}^{(x)}(x)}{L_{n}^{(\alpha)}\left(x_{k}\right)\left(x-x_{k}\right)}\right)^{2} \geqslant 0, \quad x>0, \alpha>-1 .
$$

Lemma 3. Let $\alpha>-1$. Then the following asymptotic relation holds for the zeros $x_{k}=x_{k n}^{(\alpha)}$ of $L_{n}^{(\alpha)}(x)$:

$$
x_{k n}^{(\alpha)} \sim \frac{k^{2}}{n}, \quad k=1,2, \ldots, n ; n=1,2, \ldots
$$

Proof. Lemma 3 follows from Theorem 6.31 .3 of Szegö [14], e.g.,
Lemma 4. Let $\alpha>-1$ and $\beta>\alpha / 2+\frac{1}{4}$. Then for the zeros of $L_{n}^{(\alpha)}(x)$ the estimate

$$
\sum_{k=1}^{n} x_{k}^{\beta-x-1}\left(x_{n}-x_{k}\right)^{\beta} x^{\alpha+1}\left|l_{k}(x)\right|=O(1) n^{\beta+1 / 4} x^{(\alpha+1) / 2} e^{x / 2}
$$

holds for $x \geqslant 0$.

Proof. By Lemma 3 our sum is equal to

$$
\begin{aligned}
S_{n} & =x_{n}^{\beta} \sum_{k=1}^{n} x_{k}^{\beta-\alpha \cdot 1}\left(1-\frac{x_{k}}{x_{n}}\right)^{\beta} x^{\alpha+1}\left|l_{k}(x)\right| \\
& =O(1) n^{\beta} x^{(\alpha+1) / 2} \sum_{k=1}^{n} x_{k}^{\beta-(x+1) / 2} e^{-x_{k} / 2} e^{x_{k} / 2}\left(\frac{x}{x_{k}}\right)^{(x+1) / 2}\left|l_{k}(x)\right|
\end{aligned}
$$

Using Cauchy's inequality and Lemma 2 we obtain

$$
\begin{equation*}
\left.S_{n}=O(1) n^{\beta} x^{(\alpha+1) / 2}\left\{\sum_{k=1}^{n} x_{k}^{2 \beta}(x) 1\right) e^{x_{k}}\right\}^{1 / 2} e^{x / 2} \tag{3.1}
\end{equation*}
$$

Let $-\frac{1}{2}<2 \beta-(\alpha+1) \leqslant 0$. Then denoting the sum under square root by T_{n}, we have by Lemma 3

$$
\begin{align*}
T_{n} & =\sum_{k=1}^{n} x_{k}^{2 \beta}(x+1) e^{x_{k}}=O(1) \sum_{k=1}^{n}\left(\frac{k^{2}}{n}\right)^{2 \beta-(x+1)} e^{-c k^{2} / n} \\
& =O(1) \int_{0}^{\infty}\left(\frac{x^{2}}{n}\right)^{2 \beta-(x+1)} e^{-c x^{2} / n} d x=O(1) n^{1 / 2} \tag{3.2}
\end{align*}
$$

where c is a positive constant.
In the case $2 \beta-(\alpha+1)>0$ the function $y(x)=\left(x^{2} / n\right)^{2 \beta \cdot(x+1)} e^{\left(x^{2} / n\right.}$ $(x>0)$ attains its maximum at $x_{0}=\sqrt{n(2 \beta-(\alpha+1))} / c$, and y decreases monotonically, if $x>x_{0}$. Let $N=\left[x_{0}\right]+1, N=O(1) n^{1 / 2}$ evidently. We get by repeated applications of Lemma 3,

$$
\begin{align*}
T_{n} & =\sum_{k=1}^{N} x_{k}^{2 \beta}(x+1) e^{x}+O(1) \sum_{k=N+1}^{n}\left(\frac{k^{2}}{n}\right)^{2 \beta-(x+1)} e^{-c k^{2} / n} \\
& =O(1) N x_{N}^{2 \beta-(x+1)}+O(1) \int_{N}^{x}\left(\frac{x^{2}}{n}\right)^{2 \beta-(x+1)} e^{-\cdots x^{2} / n} d x \\
& =O(1) n^{1 / 2} \tag{3.3}
\end{align*}
$$

The lemma follows from (3.1)-(3.3).

Lemma 5 (Bernstein [3]). Let $M=\max _{0 \leqslant x \leqslant A}\left|P_{n}(x)\right|$, where $P_{n}(x)$ is a polynomial of degree n, then

$$
\left|P_{n}^{(k)}(x)\right| \leqslant\left(\frac{k}{x(A-x)}\right)^{k / 2} n^{k} M, \quad k=1,2, \ldots, n ; 0 \leqslant x \leqslant A
$$

Proofs of Theorems 1, 2, and 3. Only the proof of Theorem $3(r>\alpha)$ will be detailed, since the proofs of Theorems 2 and 1 can be treated as analog cases where $r=\alpha>0$ and $r=\alpha=0$, respectively.

Let $G_{n+\alpha}(f)$ be the polynomial defined in Lemma 1. Then we may write by Lemma 1 ,

$$
\begin{aligned}
\left|f(x)-Q_{n . x}(f ; x)\right| \leqslant & \left|f(x)-G_{n+\alpha}(f ; x)\right|+\left|G_{n+\alpha}(f ; x)-Q_{n, x}(f ; x)\right| \\
= & O(1) \omega\left(f^{(r)} ; \frac{\sqrt{x\left(x_{n}-x\right)}}{n}\right)\left(\frac{\sqrt{x\left(x_{n}-x\right)}}{n}\right)^{r} \\
& +\left|Q_{n, \alpha}\left(G_{n+\alpha} f-f ; x\right)\right|
\end{aligned}
$$

where $\omega\left(f^{(r)} ; \cdot\right)$ denotes the modulus of continuity of $f^{(r)}$ in $[0, \infty)$.
Using Lemma 3 and Lemma 1 again we get

$$
\begin{aligned}
\mid f(x)- & Q_{n, \alpha}(f ; x) \mid \\
= & O(1) x^{(r+\gamma) / 2} n^{(r+\gamma) / 2} \\
& +O(1) \sum_{k=1}^{n} \omega\left(f^{(r)} ; \frac{\sqrt{x_{k}\left(x_{n}-x_{k}\right)}}{n}\right)\left(\frac{\sqrt{x_{k}\left(x_{n}-x_{k}\right)}}{n}\right)^{r} \\
& \times\left(\frac{x}{x_{k}}\right)^{x+1}\left|I_{k}(x)\right| .
\end{aligned}
$$

Applying Lemma $4(\beta=(r+\gamma) / 2)$ we obtain our theorem.
Proof of Theorem 4. Let $G_{n+\alpha}(f)$ be the polynomial defined in Lemma 1. Then we have by that lemma,

$$
\begin{aligned}
& \left|f^{(i)}(x)-Q_{n, x}^{(i)}(f ; x)\right| \\
& \quad \leqslant\left|f^{(i)}(x)-G_{n+x}^{(i)}(f ; x)\right|+\left|G_{n+x}^{(i)}(f ; x)-Q_{n, x}^{(i)}(f)\right| \\
& \quad=O(1) \omega\left(f^{(r)} ; \frac{\sqrt{x\left(x_{n}-x\right)}}{n}\right)\left(\frac{\sqrt{x\left(x_{n}-x\right)}}{n}\right)^{r-i}+\left|Q_{n, \alpha}^{(i)}\left(G_{n+\alpha} f-f ; x\right)\right|
\end{aligned}
$$

where $\omega\left(f^{(r)} ; \cdot\right)$ denotes the modulus of continuity of $f^{(r)}$ in $[0, \infty)$.
Applying Lemma 3, Lemma 5 for $Q_{n, x}(f)$ if $A=2 x$, and Lemma 1 again, we get

$$
\begin{aligned}
& \left|f^{(i)}(x)-Q_{n, x}^{(i)}(f ; x)\right| \\
& =O(1) x^{(\gamma+r-i) / 2} n^{-(\gamma+r-i) / 2} \\
& \quad+i^{i / 2} x^{-i} n^{i} \max _{0 \leqslant t \leqslant 2 x}\left|Q_{n, x}\left(G_{n+x} f-f ; t\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) x^{(\gamma+1} \quad 12_{n} \quad(;+1 \\
& +O(1) x^{\prime} n^{\prime} \max _{0 \leqslant 1 \leqslant 2 x} \sum_{k=1}^{n} \omega\left(f^{(r)}: \frac{\sqrt{x_{k}\left(x_{n}-x_{k}\right)}}{n}\right) \\
& \times\left(\frac{\sqrt{x_{k}\left(x_{n}-x_{k}\right)}}{n}\right)^{r}\left(\frac{t}{x_{k}}\right)^{x+1}\left|l_{k}(t)\right| .
\end{aligned}
$$

Using Lemma $4(\beta=(\gamma+r) / 2)$ we can estimate the maximum of the last sum by

$$
O(1) n^{(i+1) / 2+1 / 4} x^{(x+1) / 2} e^{1} \text {, }
$$

which proves the theorem.

References

1. J. Balázs and P. Turán, Notes on interpolation VII, Acta Math. Hungar. 9 (1959), 63-68.
2. K. Balázs, Lagrange interpolation for the completed Laguerre abscissas, in "Proceedings, Internat. Conf. on Constructive Theory of Functions," Varna, 1984, pp. 150-153.
3. S. N. Bernstein, "Collected Works," Vol. 1. Academy of Sciences of the USSR, Moscow, 1952. [Russian]
4. E. Egerváry and P. Turán, Notes on interpolation VI, Acta Math. Hungar. 10 (1959), 55-62.
5. G. Freld, Convergence of the Lagrange interpolation on the infinite interval, Mat. Lapok 18 (1967), 289-292.
6. I. E. Gopengauz, On Timan's theorem on approximation of functions by polynomials, Mat. Zametki 1 (1967), 163-172. [Russian]
7. 8. Joó, Stable interpolation on an infinite interval, Acta Math. Hungar. 25 (1974), 147-157.
1. I. Joó, On positive linear interpolation operators, Anal. Math. 1 (1975), 273-281.
2. I. Joó, Interpolation on the roots of Laguerre polynomials, Ann. Univ. Sci. Budapest Eötuös Sect. Math. 17 (1974), 183-188.
3. I. Joó, An interpolation-theoretical characterization of the classical orthogonal polynomials, Acta Math. Hungar. 26 (1975), 163-169.
4. P. Neval, On Lagrange interpolation based on Laguerre roots, Mat. Lapok 22 (1971), 149-164. [Hungarian]
5. P. Neval, On the convergence of Lagrange interpolation based on Laguerre roots, Publ. Math. 20 (1973), 235-239. [Russian]
6. P. Neval, Lagrange interpolation at zeros of orthogonal polynomials, "Approximation Theory" (G. G. Lorentz, Ed.), Academic Press, New York, pp. 163-201, 1976.
7. G. Szegó, "Orthogonal Polynomials," AMS Colloq. Publ. Vol. 23, Providence, R. I., 1978.
