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1. INTRODUCTION 

In this paper we consider interpolation based on the Laguerre roots and 
the point 0 as nodes. First we show that this interpolation generates a con- 
vergent approximation process on [0, co) for a wide class of functions. 
Moreover, we prove the following interesting fact: In order to have uniform 
convergence of the derivatives of the interpolating polynomials in every 
interval [0, A], it is sufficient to prescribe the derivatives at 0 only, in 
addition to the function values at the above-mentioned nodes. 

Interpolating polynomials of degree 2n - 1 based on the roots of nth 
Laguerre polynomials and the point 0 were introduced first by Egervary 
and Turan [43 as the “most economical” stable interpolation on [0, co). A 
convergence theorem was proved by Balazs and Turan [ 1 ] and later this 
process was investigated by Jo6 [7-lo]. 

Lagrange interpolation for the Laguerre abscissas and its convergence 
were treated by Freud [S] and Nevai [ 1 l-l 31. Let 

L’qx) = erx )I 1 te r*n+n}(nl, 
n! 

n = 1, 2,..., 

be the Laguerre polynomial of degree n for c( > - 1, with the usual nor- 
malization 

L!,“‘(O) = n+a 

( > n 
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These polynomials are orthogonal on [0, co) with respect to the weight 
function eeXxZ. The zeros of L:)(x) are 

(O<)x<;)<x&)< ... <xlpl,). 

If there is no danger of misunderstanding we will write briefly xkn or xk, 
k = 1) 2 )...) n. 

In what follows we will always suppose that r is integer. Let f be 
an a-times differentiable function on [0, co). Let us denote by Q,,,,(f; x) 
its Hermite interpolating polynomial of degree n + x with nodes xj$), 
li = 1, 2 ,..., n, and 0, the latter with multiplicity M + 1. That is, 

Q,,,,(.L x) = f  f(xk) n+’ l,(x) + f  f”‘(O) r;(x) (1.1) 
k=l i=o 

where I,(x) are the fundamental polynomials of Lagrange interpolation 
based on the roots of L!:)(x): 

L’“‘(x) 
lk(-X) = La(x) = Ljp).(x;)(x _ xk)’ k = 1, 2 ,..., n, 

and the polynomials r,(x) = rma(x) are such that 

r!“)(O) = 
i 

1, if s = i, 

0, if O<s<i, 

and 

ri(Xk) = 0, for k= 1, 2 ,..., n; i= 1, 2 ,..., CI, 

so that, explicitly, 

x’L’“‘(x) 
r,(x)= . “,+, , 

z!( n ) 
i = 0, 1 )...) c1. 

In the case CI = 0 we have Lagrange interpolation: 

Qn.o(f; x) = i f(xk); Mx) +f(O) L!?(x). 
k-l 

(1.2) 

Convergence theorems and estimates concerning Qn,o(j’) were announced 
without proof by the author at the Varna Conference on Constructive 
Theory of Functions in 1984, [2]. 

We remark that convergence problems of Hermite interpolation of type 
Q,.X based on the point 0 and Laguerre roots for non-integral c( can be con- 
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sidered also, but these investigations require other means and will be 
treated in a forthcoming paper. 

2. RESULTS 

We give weighted estimates which imply the convergence of interpolating 
polynomials Q,,,(f) and their derivatives Qt)(,j’) to f and f”‘, respectively 
in [0, co). 

In what follows 0( 1) is always independent from x and n. Our first 
theorem concerns Lagrange interpolation based on the roots of Ljf’(.\-) and 
the origin (see (1.2)). 

THEOREM 1. Let ,f E Lip 7, 4 < y 6 1, in [0, m ). Then 

l,f(x) - Q,,Jf’; x)1 = O( 1 ) I’,’ c’ ‘H ’ ’ + “4, 

,ftir 0 < x < XL:,). 

Note the important fact x!,;~’ - n for the greatest zero of L!,“‘(x), which 
follows from Lemma 3. We use the symbol - in the sense of Szegii 
[ 14, p. 11: if two sequences z,~ and u’,~ of numbers have the property that 
u’, ~0 and the sequence I:,,l/lu,,I has finite positive limits of indeter- 
mmation, we write z,, - ~a,,. 

THEOREM 2. Let ,f’“’ E Lip y, 0 < y d 1, in [0, cc;) ji)r some r > 0 integer. 
Then 

If(x)pQ,,,,(f;,y)I =~(1)X~l+I);2er;Zn (x+?m+Ir4 

,for 0 d x 6 x ,,,, 

If ,f”’ exists for some r > 2, then we may have better estimates: 

THEOREM 3. Let 1“” E Lip y, 0 < y < 1, in [0, ax)) for some r > ~1, where 
cx > 0 and integer. Then 

I,f(x)-Q,,,(,r;X)I=~(~)X("t')!2e\-;~n~"+;"/2+1/4 

,for 0 <x <xj$. 

COROLLARY. The convergence of Q,,,(f) to f  is uniform in every ,finite 
subinterval of [0, GO) under the assumptions of the above theorems. 
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THEOREM 4. Suppose that f”) exists in [0, 00) for some Y > LX, where 
x 2 0 and integer. Let f (r’ E Lip y , t< 7 < 1 !J‘ r is even or f(“E Lip y, 
O<y< 1 $‘r is odd. Then 

~f”‘(x)~Q~),(f;x)~~~(l)X(~+~)/~~Je.~n~(~+;~):2+~+~:4 

for 1 d i d [r/2] and 0 d x < x$)/2. 

COROLLARY. The conuergence ofQXh(f) to f (i’ is untform in every finite 
subinterval of [IO, a) if 1 d id [U/2]. 

3. LEMMAS AND PROOFS 

LEMMA 1. rf f"' exists and is continuous in [0, co), r 3 0, then there 
exists a polynomial G,, of degree n 2 4r + 5 at most, that 

If""(x)- Gj;‘(f‘; x)1 = O(1) w 
( 

j.(r); 
Jzyy$=y; 

0 < x < x,, ) i = 0, 1 ,..., r, 

where w(f”‘; .) denotes the modulus of continuity off”’ on [0, x,]. 

The lemma shows that Gj:)(f; 0) = f ‘j’(O), i = 0, 1, 2 ,..., r. 

Proc?f The lemma is an easy consequence of Gopengauz’s theorem [6]. 

LEMMA 2 (Jo6 [IO, inequality (11 )I), 

e-’ e.‘k 
-- 
X”+l 

i[:- 
L’“‘(x) 2 

x;+ ’ Ll:qx;)(x - Xk) ( > 3 O, 
x>o, a> -1. 

h=l 

LEMMA 3. Let (x > -1. Then the following asymptotic relation holds for 
the zeros xk = x$$~) of L:)(x): 

x,'L 2 
n’ 

k = 1, 2 ,..., n; n = 1, 2 ,... 

Proqf. Lemma 3 follows from Theorem 6.31.3 of Szegii [14], e.g., 

LEMMA 4. Let u > - 1 and fl> a/2 + a. Then ,for the zeros of L:)(x) the 
estimate 

holds for x 3 0. 
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Pro@ By Lemma 3 our sum is equal to 

Using Cauchy’s inequality and Lemma 2 we obtain 

s,, = O( 1 ) d,K(” + ’ “2 
i 
,g, ,q (2 + I) Ed- ?A]’ 2 el 2. 

(3.1) 

Let - 4 < 28 - (M + 1) < 0. Then denoting the sum under square root by 
T,, we have by Lemma 3 

where c is a positive constant. 
In the case 2fi- (s( + 1) > 0 the function J(,x) = (x2/n)“” ‘I+ ‘) e , 12 II 

(x > 0) attains its maximum at x,, = dn(2fi - (2 + 1 ))/c, and ,t’ decreases 
monotonically, if x > x0. Let N= [x,, J + 1, N= 0( 1 )n’,‘2 evidently. We get 
by repeated applications of Lemma 3, 

The lemma follows from (3.1)- (3.3). 

(3.3) 

LEMMA 5 (Bernstein [3]). Let M=max,, t.,A IP,,(.u)l, Where P,,(x) ix . \ 
a polynomial of degree n, then 

IPR’(x)l 4(x(~-,x))*‘n*M, k= 1, 2 ,..., n;O<x<A. 



INTERPOLATION ON THE POSITIVE REAL LINE 23 

Proofs of Theorems 1,2, and 3. Only the proof of Theorem 3 (r > a) 
will be detailed, since the proofs of Theorems 2 and 1 can be treated as 
analog cases where r = c1> 0 and r = c( = 0, respectively. 

Let G,, .(,f) be the polynomial defined in Lemma 1. Then we may write 
by Lemma 1, 

If(x) - Q,.,(f; XII f If(x) - Gn+Jf; XII + lG,+,(f; x) - Qn,,(f; XII 

=O(l)o j-(r); 
( 

Jy3)($y) 

+ IQ,uAG,+J--L XII 

where w(f”“; .) denotes the modulus of continuity of fCr) in [0, co). 
Using Lemma 3 and Lemma 1 again we get 

I.f(-x) - Qd.f; x)l 
= O(,) x(‘+‘)“n (r+W2 

N 
+ O( 1 ) c 0 

k=l ( 
j-“‘; 

x+1 
Ih(x 

Applying Lemma 4 (fl= (r + 7)/2) we obtain our theorem. 

Proof of Theorem 4. Let G,+,(f) be the polynomial defined in 
Lemma 1. Then we have by that lemma, 

If”‘(x) - Q%L -u)l 
< If”‘(x) - G;,, 2 (f; x)l + lG!A .Cf; x) - Q::?(f)1 

= O(1) u f”‘. y)(-I”“y-‘+ ,Q;J(Gn+l,f+x)l ) 

where w(f”‘; .) denotes the modulus of continuity off”’ in [IO, co). 
Applying Lemma 3, Lemma 5 for Q,,,(f) if A = 2x, and Lemma 1 again, 

we get 

If”‘(x) - Qti) (I-; XII n,z 
=0(~)x"+'e"i2n -bt+r-iv2 

+i”2x-‘nio~~x2r lQ,,.,(G,+,f-f; [)I . . 
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Using Lemma 4 (/I = (;I + r)i2) we can estimate the maximum of the last 
sum by 

which proves the theorem 
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