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1. INTRODUCTION

In this paper we consider interpolation based on the Laguerre roots and
the point 0 as nodes. First we show that this interpolation generates a con-
vergent approximation process on [0, co) for a wide class of functions.
Moreover, we prove the following interesting fact: In order to have uniform
convergence of the derivatives of the interpolating polynomials in every
interval [0, 4], it is sufficient to prescribe the derivatives at 0 only, in
addition to the function values at the above-mentioned nodes.

Interpolating polynomials of degree 2rn— 1 based on the roots of nth
Laguerre polynomials and the point 0 were introduced first by Egervary
and Turan [4] as the “most economical” stable interpolation on [0, c0). A
convergence theorem was proved by Balazs and Turan [1] and later this
process was investigated by Joo [7-10].

Lagrange interpolation for the Laguerre abscissas and its convergence
were treated by Freud [S] and Nevai [11-13]. Let

e,\'x %
!

LiP(x)= fe “x"F2ym p=1,2,.,

n

be the Laguerre polynomial of degree n for o« > — 1, with the usual nor-
malization

Lt,“’(0)=(”:“).
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These polynomials are orthogonal on [0, oo) with respect to the weight
function e ~*x* The zeros of L (x) are

O<)xp <xP®< - <x®,

If there is no danger of misunderstanding we will write briefly x,, or x,,
k=1,2..,n

In what follows we will always suppose that « 1S integer. Let f be
an o-times differentiable function on [0, oo). Let us denote by Q,,(f; x)
its Hermite interpolating polynomial of degree n+ o« with nodes x{%),
k=1,2..n, and 0, the latter with multiplicity o + 1. That is,

0ulfin= ¥ fow () b+ X M)
k=1 k i=0

where [, (x) are the fundamental polynomials of Lagrange interpolation
based on the roots of L!*)(x):

LE(x)

l b = ==, k:1, 2,..., N
k(x) lkmx(x) LLO() (xk)(x_ xk) n
and the polynomials r{x)=r,,(x) are such that
1 if s=i
(-“‘) — 2 k
r(0) {0, if 0<s<i,

and
r{x.)=0, for k=1,2,.,ni=1,2,., 0
so that, explicitly,

x'L™(x)
(X)=—""2—o0 i=0,1,.,a
ri{x) TGOR i o

In the case « =0 we have Lagrange interpolation:

Qnolfs x) Z ka)—lk(X)+f(0)L‘°’(X) (12)

Convergence theorems and estimates concerning Q, o(f) were announced
without proof by the author at the Varna Conference on Constructive
Theory of Functions in 1984, [2].

We remark that convergence problems of Hermite interpolation of type
Q... based on the point 0 and Laguerre roots for non-integral o can be con-
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sidered also, but these investigations require other means and will be
treated in a forthcoming paper.

2. RESULTS

We give weighted estimates which imply the convergence of interpolating
polynomials O, (/) and their derivatives Q{)( /) to f and f*”, respectively
in [0, «).

In what follows O(1) is always independent from x and n. Our first
theorem concerns Lagrange interpolation based on the roots of L!%(x) and
the origin (see (1.2)).

THEOREM 1. Let feLipy, 1<y<1, in [0, 0). Then

S(X)= Qo x) = 0(1) X2 e¥2n 72014,
Jor 0<x<xiD).

Note the important fact x!*’~n for the greatest zero of L{*'(x), which

nn

follows from Lemma 3. We use the symbol ~ in the sense of Szegd
[14, p. 1]: if two sequences z, and w, of numbers have the property that
w,#0 and the sequence |z,|/|w,| has finite positive limits of indeter-
mination, we write z, ~ w,,.

TuroreM 2. Let [ e Lipy, 0<y <1, in [0, cv) for some 2> 0 integer.
Then
/(X)) = Q. (fix)| = O(1) x*+ 12 X2 (xro2e 1

‘for O S X < X -

If /) exists for some r > «, then we may have better estimates:

TueOoREM 3. Let f"elLipy, 0<y <1, in [0, o0) for some r>a, where
o2 0 and integer. Then
() = Qi fi X) = O(1) 7102 2 e 02518
Jor 0<x < x).

COROLLARY. The convergence of Q, ,(f) to f is uniform in every finite
subinterval of [0, oo} under the assumptions of the above theorems.
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THEOREM 4. Suppose that {7 exists in [0, o0) for some r> o, where
x>0 and integer. Let feLipy, {<y<1 if r is even or f"”eLipy,
O<y<1lifrisodd Then

‘f(i)(x) _ Li)(f; x)l — 0(1)x(o<+ 2 —i px = (r+9)24 0+ 1/4
Jor 1<i<[r/2] and 0 < x < x'%/2.
COROLLARY.  The convergence of Q(f) to £ is uniform in every finite
subinterval of [0, o) if 1 <i<[o/2].
3. LEMMAS AND PROOFS

LemMma 1. If [ exists and is continuous in [0, 00), r =0, then there
exists a polynomial G, of degree nz=4r+ 5 at most, that

|f(,~)(x) i G:],-)(f; X)] — 0(1 ) w <f(r); m)(m>11

n n
0<x<x,, i=0,1,.,r,
where w(f'";+) denotes the modulus of continuity of ' on [0, x, ].
The lemma shows that GY(f;0)= f(0), i=0, 1, 2,..., r.
Proof. The lemma is an easy consequence of Gopengauz’s theorem [6].
LemMMA 2 (Joo [10, inequality (11)]).

e do e (L)
a+1 Z <L(1)' ) 30’ X>O,a> —1.

Azlxiﬂ () (x —x;)

X

LEMMA 3. Let a> —1. Then the following asymptotic relation holds for
the zeros x, = x%) of L™¥(x):

2

v — k=12 mn=12,

Proof. Lemma 3 follows from Theorem 6.31.3 of Szegé [14], e.g.,
LEMMA 4. Let > —1 and > a/2+ 4. Then for the zeros of L™(x) the
estimate

n

Y x) ()] = O(1) P Ve 12 g2
k=1

holds for x =2 0.
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Proof. By Lemma 3 our sum is equal to
n ) X, il
S,=x{ Y xf = '(1-~) X 1)
\ '\TH

) " ’ By X tx 4+ 1)2
— O(l)n[{x(awrl),rl Z xl/(}— (1+1),r2() xk;2€\;‘,2 (__) I/k(x)}

k=1 X
Using Cauchy’s inequality and Lemma 2 we obtain

n 1:2
S, =0(1)nfxl=+172 { Y xppo e “} e, (3.1)

k=1

Let —3<2f —(a+1)<0. Then denoting the sum under square root by
T, we have by Lemma 3

n n kZ 2 (a+ 1) .
Tn: Z xlz/i (az+|)€ \”A__:O(]) Z (_) e——pkarn

k=1 k=1 h

KN ) N
(—) e YMdx=0(1)n'?, (3.2)

n

=o) |

O

where ¢ is a positive constant.

In the case 2f—(x+1)>0 the function y(x)=(x>n)*# +h,e «n
(x>0) attains its maximum at x,=./n(2f — (x+ 1))/c, and y decreases
monotonically, if x> x,. Let N=[x,]+ 1, N=0O(1)n"? evidently. We get
by repeated applications of Lemma 3,

N " kz 2~ {x+ 1) s
T, = Z xi/f (x+ 1o \'A'_‘_O(l) Z <__> o "k

k1 k=N+1 N7

v fe2\2B- (x4 1) .
=0 NG o) | (%) e dx
N

=0(1)n'"?. (3.3)
The lemma follows from (3.1)-(3.3).

LemMa 5 (Bernstein [3]). Let M=maxg. .4 |P,(x)|, where P,(x) is
a polynomial of degree n, then

/( ki2
)) n*M, k=1,2,.,n0<xy<A.

[PF(x)] < (m
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Proofs of Theorems 1,2, and 3. Only the proof of Theorem 3 (r> a)
will be detailed, since the proofs of Theorems 2 and 1 can be treated as
analog cases where r=o >0 and r = =0, respectively.

Let G, ,(f) be the polynomial defined in Lemma 1. Then we may write
by Lemma 1,

LX) = Qual £ X) S 1F(x) = Gy o f5 X) H 1G4 o3 X) = Qi f %)
oy X0, — X)\ [ /X, — X))
I e

+ 1Qn,a(Gn+df—f‘;x)|

where w(f";-) denotes the modulus of continuity of £ in [0, o).
Using Lemma 3 and Lemma 1 again we get

() = Q,al f3 X))

-:O( ) (r+y)/’2n -{r+7)/2

d , \/xk(xn X \/Xk(xn_xk) ’
R = N

k=1 n

x (l> ().
Xk

Applying Lemma 4 (f = (r +7)/2)} we obtain our theorem.

Proof of Theorem 4. Let G,..f) be the polynomial defined in
Lemma 1. Then we have by that lemma,

LFO(x) = Q3 )]
<IN = G20 + 1G5 1) = Q)]

0w (f‘” Vi, x))(\/x(x” ’>“+1QL{L(GM.f—f;x)I

where w(f'”;) denotes the modulus of continuity of /" in [0, o).
Applying Lemma 3, Lemma 5 for Q, ,(f) if 4 =2x, and Lemma 1 again,
we get

L/(x) = QS5 %)
— O(l)x()'+r——/),’2 n Sy +r—1i)2

+ ii/zx - in max l Q'l X VI + x f f t

0<r<2x
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SOy 2y

I

o)y W max Y w <;<;_‘L_;_>)
1

()<1<2xk> n

//"‘—j'”—:__ r AN + 1
(LY ()
" R

\

Using Lemma 4 (ff = (y + r)/2) we can estimate the maximum of the last

sum by

0( 1 ) n (y+r)2+ 1/4x(1 + 1)2 (",

which proves the theorem.

3o
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