In situ synthesis and formation mechanism of ZrC and ZrB_{2} by combustion synthesis from the Co-Zr- $\mathrm{B}_{4} \mathrm{C}$ system

Mengxian Zhang ${ }^{\text {a }}$, Yanqiu Huo ${ }^{\text {a,* }}$, Min Huang ${ }^{\text {a }}$, Yihang Fang ${ }^{\text {a }}$, Binglin Zou ${ }^{\text {b,* }}$
${ }^{\text {a }}$ College of Physics and Electronic Engineering, Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 318000, China
${ }^{\mathrm{b}}$ State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

A R T I C L E I N F O

Article history:

Received 6 March 2015
Received in revised form 1 May 2015
Accepted 19 May 2015
Available online 9 June 2015

Keywords:

$\mathrm{ZrC}-\mathrm{ZrB}_{2}$
Formation mechanism
Combustion synthesis

Abstract

$\mathrm{ZrC}-\mathrm{ZrB}_{2}$-based composites were prepared by combustion synthesis (CS) reaction from $10 \mathrm{wt} . \%$ to $50 \mathrm{wt} . \%$ $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ powder mixtures. With increasing Co contents, the particle sizes of near-spherical ZrC and platelet-like ZrB_{2} decreased from $1 \mu \mathrm{~m}$ to $0.5 \mu \mathrm{~m}$ and from $5 \mu \mathrm{~m}$ to $2 \mu \mathrm{~m}$, respectively. In addition, the formation mechanism of ZrC and ZrB_{2} was explored by the phase transition and microstructure evolution on the combustion wave quenched sample in combination with differential scanning calorimeter analysis. The results showed that the production of ZrC was ascribed to the solid-solid reaction between Zr and C and the precipitation from the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}-\mathrm{C}$ melt, while ZrB_{2} was prepared from the saturated liquid. The low B concentration in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}-\mathrm{C}$ liquid and high cooling rate during the CS process led to the presence of $\mathrm{Co}_{2} \mathrm{~B}$ and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ in the composites. The addition of Co in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system not only prevented ZrC and ZrB_{2} particulates from growing, but also promoted the occurrence of $\mathrm{ZrC}-\mathrm{ZrB}_{2}$-forming reaction. © 2015 The Ceramic Society of Japan and the Korean Ceramic Society. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

ZrC and ZrB_{2} have outstanding properties, such as good thermal conductivity, high melting point and excellent wear resistance. This makes them good candidates for cutting tools, reinforcing particles in composites and high temperature ceramics [1-3]. The widely used methods to produce materials combining ZrC and ZrB_{2} ceramics involve a reactive hot pressing process, reactive melt infiltration, spark plasma sintering, etc. [3-7]. However, in most cases, these technologies require high temperature and complex equipment. By comparison, self-propagating high temperature synthesis (SHS), also termed as combustion synthesis (CS), is a novel processing technique currently being developed due to the low processing cost, relative simplicity of equipment and high efficiency in energy and time [8]. Thus far, this technology has been used to prepare intermetallic compounds, advanced engineering ceramics and composites.

[^0]In the past years, the combustion synthesis of $\mathrm{TiC}-\mathrm{TiB}_{2}$-based composites from the Ti- $\mathrm{B}_{4} \mathrm{C}$ system with different metal additives has been extensively investigated [9-13]. Research results revealed that the incorporation of metal into $\mathrm{Ti}-\mathrm{B}_{4} \mathrm{C}$ powder mixtures can promote and accelerate the formation of TiC and TiB_{2} by forming low melting liquid. Moreover, the addition of metal contributed to controlling the size and morphology of the resultant grains. By contrast, reports related to $\mathrm{ZrC}^{2} \mathrm{ZrB}_{2}$-based composites produced by the CS route are relatively limited. These works include ZrC and ZrB_{2} particles fabricated from the $\mathrm{Al}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ and $\mathrm{Cu}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system, and $\mathrm{ZrC}-\mathrm{ZrB}_{2}-\mathrm{SiC}$ composites prepared with $\mathrm{Zr}, \mathrm{B}_{4} \mathrm{C}, \mathrm{Si}$ and graphite mixtures [2,14,15]. However, the combustion synthesis of $\mathrm{ZrC}-\mathrm{ZrB}_{2}$-based composites from the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system has not been reported so far. In general, the properties of composites depend on the nature of the matrix and fillers, their proportion and interfacial binding strength as well as the distribution of the filler [16]. In comparison with Al and Cu , Co features higher Young's modulus ($110-128 \mathrm{GPa}$), higher melting point $\left(1495^{\circ} \mathrm{C}\right.$), lower thermal expansion coefficient ($13.0 \mu \mathrm{~m} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$), higher hardness (HV 1043 MPa), and lower wetting angles with $\mathrm{ZrC}\left(86^{\circ}\right)$ and ZrB_{2} (50°) [17]. Therefore, $\mathrm{ZrC}^{2} \mathrm{ZrB}_{2} / \mathrm{Co}$ composites are expected to have good high temperature performance. In this paper, we explore the feasibility for the CS reaction in this system and the effect of Co addition on the resultant products. The main purpose is to investigate the formation mechanism of ZrC and ZrB_{2}. It is expected that these
preliminary results will provide helpful guidance for the further production of $\mathrm{ZrC}_{-2 r B}^{2}$-based composites.

2. Experimental procedure

The starting materials were commercial powders of Co (99 wt.\% purity, $\sim 28 \mu \mathrm{~m}$), $\mathrm{Zr}\left(99.5 \mathrm{wt} . \%\right.$ purity, $\sim 48 \mu \mathrm{~m}$) and $\mathrm{B}_{4} \mathrm{C}(\geq 95 \mathrm{wt} . \%$ purity, $\sim 3.5 \mu \mathrm{~m})$. Samples were prepared with Zr and $\mathrm{B}_{4} \mathrm{C}$ at a ratio corresponding to the stoichiometry of $\mathrm{ZrC}-2 \mathrm{ZrB}_{2}$ plus $10,20,30$, 40 and $50 \mathrm{wt} . \%$ Co in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system. The blended powders were dry mixed in a stainless steel container using ZrO_{2} balls at a low speed ($\sim 50 \mathrm{rpm}$) for 8 h . Subsequently, the powder mixtures were placed in cylindrical die (22 mm in diameter) and uniaxially pressed into compacts with about 65\% theoretical density. The CS experiments were performed in a stainless steel glove box full of Ar atmosphere. Briefly, the compact was placed on a 2 -mm-thick graphite plate on top of a tungsten electrode. The compact was ignited by an arc heating, which was generated by passing a strong current (60 A).

The phase evolution path of the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system was measured by differential scanning calorimeter (DSC) (Model 200 F3 Maia, Netach, Bavaria, Germany) with the protection of flowing Ar gas (flow rate: $40 \mathrm{ml} / \mathrm{min}$). A small amount of loose powder mixtures ($\sim 35 \mathrm{mg}$) was held in an alumina crucible and heated to a designated temperature at the heating rate of $30^{\circ} \mathrm{C} / \mathrm{min}$. Furthermore, in the glove box full of Ar, the copper-mold-aided combustion front quenching experiment for rectangular compacts in dimensions of $65 \mathrm{~mm} \times 10 \mathrm{~mm} \times 2 \mathrm{~mm}$ was conducted.

The phase constituents of the DSC and CS products were identified by X-ray diffraction (XRD) (D/Max 2500PC Rigaku, Japan) using $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation source, while the phase compositions in the different regions of the quenched sample were detected by X-ray micro-diffraction (D8 Discover with GADDS, Bruker AXS, Germany) using an $800 \mu \mathrm{~m}$ beam diameter. The microstructures of the CS and quenched specimens were examined by field emission scanning electron microscopy (FESEM) (Model S-4800, Hitachi, Tokyo, Japan) equipped with an energy-dispersive X-ray spectrometer (EDS) (Model Link-ISIS, Oxford, England).

3. Results and discussion

3.1. Thermodynamic analysis

As a preliminary analysis, the change in standard Gibbs free energy (ΔG^{0}) can offer information about the possible reactions, the reaction direction and extend as well as the phase stability at elevated temperatures. Hence, it is an important thermodynamic parameter for analyzing the complex reactions during the CS process. The potential chemical reactions that may take place among Co, Zr and $\mathrm{B}_{4} \mathrm{C}$ are listed as follows:
$\frac{4}{5} \mathrm{Co}+\frac{1}{5} \mathrm{~B}_{4} \mathrm{C} \rightarrow \frac{4}{5} \mathrm{CoB}+\frac{1}{5} \mathrm{C}$
$\frac{8}{9} \mathrm{Co}+\frac{1}{9} \mathrm{~B}_{4} \mathrm{C} \rightarrow \frac{4}{9} \mathrm{Co}_{2} \mathrm{~B}+\frac{1}{9} \mathrm{C}$
$\frac{1}{2} \mathrm{Co}+\frac{1}{2} \mathrm{Zr} \rightarrow \frac{1}{2} \mathrm{CoZr}$
$\frac{2}{3} \mathrm{Co}+\frac{1}{3} \mathrm{Zr} \rightarrow \frac{1}{3} \mathrm{Co}_{2} \mathrm{Zr}$
$\frac{1}{4} \mathrm{~B}_{4} \mathrm{C}+\frac{3}{4} \mathrm{Zr} \rightarrow \frac{1}{4} \mathrm{ZrC}+\frac{1}{2} \mathrm{ZrB}_{2}$
Utilizing the thermodynamic data in Refs. [18,19], the values of ΔG^{0} for Eqs. (1)-(5) were calculated, as shown in Fig. 1. It is clear that the above reactions are all thermodynamically favorable ($\Delta G^{0}<0$) in the calculated temperature ranges. It should be noted

Fig. 1. Changes in ΔG^{0} for reactions (1)-(5).
that the value of ΔG^{0} for Eq. (5) is more negative than that of others. Thus, reaction (5) is energetically favored to proceed. Moreover, ZrC and ZrB_{2} are more thermodynamically stable than cobalt zirconium and cobalt boron compounds. This suggests that if Co-Zr or/and CoB phases are formed during the CS process, they may transform to ZrC and ZrB_{2} at elevated temperatures.

3.2. DSC experiment

Thermodynamic analysis indicates that there may be complicated reactions in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system. Therefore, the phase transitions for $\mathrm{Co}-\mathrm{B}_{4} \mathrm{C}, \mathrm{Co}-\mathrm{Zr}, \mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ and 30 wt .\% Co-Zr- $\mathrm{B}_{4} \mathrm{C}$ systems were explored by DSC, respectively. The molar ratios of $\mathrm{Co}-\mathrm{B}_{4} \mathrm{C}, \mathrm{Co}-\mathrm{Zr}$ and $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ correspond to those in $30 \mathrm{wt} . \% \mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system, respectively. Additionally, interrupted experiments were conducted in order to make clear the reaction sequence during the heating process.

In the DSC curve of the $\mathrm{Co}-\mathrm{B}_{4} \mathrm{C}\left(\mathrm{Co} / \mathrm{B}_{4} \mathrm{C}=2.4\right.$ in molar ratio $)$ system, no obvious endothermic or exothermic peaks were observed (Fig. 2a). Heating the mixtures to $600^{\circ} \mathrm{C}$, only Co and $\mathrm{B}_{4} \mathrm{C}$ were found in the DSC products (Fig. 3a). For the reactant quenched at $800^{\circ} \mathrm{C}$, a large amount of $\mathrm{Co}_{2} \mathrm{~B}$ was determined by XRD (Fig. 3b). This means that the solid-state reaction of $\mathrm{Co}+\mathrm{B}_{4} \mathrm{C} \rightarrow \mathrm{Co}_{2} \mathrm{~B}+\mathrm{C}$ mainly took place in the temperature range of $600-800^{\circ} \mathrm{C}$. When the temperature ranged from $800^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}, \mathrm{Co}-\mathrm{B}_{4} \mathrm{C}$ reaction was further activated. It gave rise to the significant enhancement

Fig. 2. DSC curves of the (a) Co- $\mathrm{B}_{4} \mathrm{C}$, (b) $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$, (c) $\mathrm{Co}-\mathrm{Zr}$ and (d) 30 wt . \% Co- $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ powder mixtures, respectively.

Fig. 3. XRD patterns for the DSC products of the Co- $\mathrm{B}_{4} \mathrm{C}$ system quenched at (a) $600^{\circ} \mathrm{C}$, (b) $800^{\circ} \mathrm{C}$, (c) $1000^{\circ} \mathrm{C}$ and (d) $1250^{\circ} \mathrm{C}$, respectively.
of CoB peaks and the disappearance of Co (Fig. 3c). According to the calculated results in Fig. 1, the values of ΔG^{0} for Eqs. (1) and (2) are negative. Thus, the fabrication of $\mathrm{Co}_{2} \mathrm{~B}$ and CoB is thermodynamically feasible. With further increasing temperature, $\mathrm{Co}_{2} \mathrm{~B}$ reacted with $\mathrm{B}_{4} \mathrm{C}$ to form CoB. As a result, $\mathrm{Co}_{2} \mathrm{~B}$ content decreased, while CoB content increased in the final products (Fig. 3d). It is worth noting that C peaks were not identified by XRD, though C atoms should be set free from above reactions. It may be owing to the amorphous structure of C.

In the DSC curve of the $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}\left(\mathrm{Zr} / \mathrm{B}_{4} \mathrm{C}=3\right.$ in molar ratio) system, only an exothermic peak is present at temperature close to $1182^{\circ} \mathrm{C}$ (Fig. 2b). Besides Zr and $\mathrm{B}_{4} \mathrm{C}$ phases, a great number of ZrC and ZrB_{2} were found in the final products (Fig. 4b). Clearly, this exothermic event was caused by $\mathrm{ZrC}-\mathrm{ZrB}_{2}$-forming reaction between Zr and $\mathrm{B}_{4} \mathrm{C}$ particles. Guo et al. [4] produced $\mathrm{ZrB}_{2}-\mathrm{ZrC}-\mathrm{Zr}$ cermets with Zr and $B_{4} C$ powder mixtures by reactive hot pressing. They found that for samples sintered at $900^{\circ} \mathrm{C}$ or above, Zr and $\mathrm{B}_{4} \mathrm{C}$ mixtures can be converted into ZrB_{2} and ZrC . It is notable that the diffraction peak of $\mathrm{B}_{4} \mathrm{C}$ is far weaker than Zr or it cannot be detected though the mole percentages of $\mathrm{B}_{4} \mathrm{C}$ and Zr are 25% and 75%, respectively. Similar phenomena also existed in the $\mathrm{Cu}-\mathrm{B}_{4} \mathrm{C}[20]$ and $\mathrm{Co}-\mathrm{B}_{4} \mathrm{C}$ systems.

Fig. 4. XRD patterns for the DSC products of the $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system quenched at (a) $900^{\circ} \mathrm{C}$ and (b) $1250^{\circ} \mathrm{C}$, respectively.

Fig. 5. XRD patterns for the DSC products of the Co-Zr system quenched at (a) $800^{\circ} \mathrm{C}$, (b) $998^{\circ} \mathrm{C}$ and (c) $1250^{\circ} \mathrm{C}$, respectively.

The relative diffraction intensity formula of phase in the powder mixtures can be described as follows:
$I_{P}=n \cdot|F|^{2} \cdot \frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta} \cdot e^{-2 M}$
where $n, F, \frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta}, \theta$ and $e^{-2 M}$ are multiple factor, structure factor, angle factor, Bragg angle and temperature factor, respectively. F is the scattering power of unit cell and is connected with the atomic characteristics and location in the unit cell. Therefore, the weak

Fig. 6. XRD patterns of (a) 30 wt .\% Co- $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ powder mixtures and corresponding DSC products quenched at (b) $1000^{\circ} \mathrm{C}$, (c) $1070^{\circ} \mathrm{C}$, (d) $1164^{\circ} \mathrm{C}$ and (e) $1250^{\circ} \mathrm{C}$, respectively.

Fig. 7. X-ray micro-diffraction patterns of the quenched sample in the (a) unreacted region, (b) preheated region, (c) reacting reaction and (d) fully reacted region, respectively.
or absent $\mathrm{B}_{4} \mathrm{C}$ peaks in the mixtures are possibly on account of its atomic characteristics and crystalline lattice.

In the DSC curve of the $\mathrm{Co}-\mathrm{Zr}(\mathrm{Co} / \mathrm{Zr}=0.8$ in molar ratio) system (Fig. 2c), there are two exothermic peaks at about $998^{\circ} \mathrm{C}$ and $1061^{\circ} \mathrm{C}$, respectively. Heating Co-Zr mixtures to $800^{\circ} \mathrm{C}$, no reactions occurred in accordance to the XRD patterns in Fig. 5a. With increasing temperature, Zr reacted with Co to form CoZr and $\mathrm{Co}_{2} \mathrm{Zr}$ compounds, which gave rise to the exothermic peak at $998^{\circ} \mathrm{C}$. Thus, new phases $\mathrm{Co}_{2} \mathrm{Zr}$ and CoZr appeared in the DSC products (Fig. 5b). The reason for the presence of $\mathrm{CoZr}_{3}(\mathrm{O}, \mathrm{N})$ phase may be owing to the invasion of atmosphere during the heating period. In the light of the thermodynamic analysis in Fig. 1, the synthesis of $\mathrm{Co}_{2} \mathrm{Zr}$ and CoZr through Co-Zr reaction is theoretically feasible. As the temperature was raised to $1061{ }^{\circ} \mathrm{C}$, the reaction of $\mathrm{Zr}+\mathrm{Co}_{2} \mathrm{Zr} \rightarrow \mathrm{CoZr}$ took place. Consequently, the diffraction peaks of CoZr became intensive, while those of $\mathrm{Co}_{2} \mathrm{Zr}$ and Zr became weak in the final products (Fig. 5c).

The DSC curve of $30 \mathrm{wt} . \% \mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system includes two obvious exothermic peaks at around $1070^{\circ} \mathrm{C}$ and $1164^{\circ} \mathrm{C}$, respectively (Fig. 2d). For the reactants quenched at $1000^{\circ} \mathrm{C}$, a small number of $\mathrm{Co}_{2} \mathrm{~B}$ and CoB compounds were detected by XRD (Fig. 6b). This implies that the reaction of $\mathrm{Co}+\mathrm{B}_{4} \mathrm{C} \rightarrow \mathrm{Co}_{y} \mathrm{~B}+\mathrm{C}(y=1,2)$ occurred. The phenomenon was also observed in the DSC experiments of the $\mathrm{Co}-\mathrm{B}_{4} \mathrm{C}$ system. However, no Co-Zr compounds were formed at $1000^{\circ} \mathrm{C}$ as compared with DSC results of the $\mathrm{Cu}-\mathrm{Zr}$ system. Research on the reaction process of the $\mathrm{Cu}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system indicated that the

Fig. 8. Microstructure and elemental mapping micrographs in the unreacted region.
presence of $\mathrm{B}_{4} \mathrm{C}$ particles may restrain solid-state reaction between Cu and Zr powders [15]. It is inferred that the $\mathrm{B}_{4} \mathrm{C}$ in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system played the same role. Without no doubt, $\mathrm{B}_{4} \mathrm{C}$ can decrease the contact surface and extend diffusion distance between Co and Zr particulates, which is unfavorable to the formation of $\mathrm{Co}-\mathrm{Zr}$ compounds. In addition, it can be concluded that $\mathrm{Cu}-\mathrm{B}_{4} \mathrm{C}$ reaction is more favorable than Co- Zr reaction. It is possibly due to the fine $\mathrm{B}_{4} \mathrm{C}$ particles and large contact surface between Co and $\mathrm{B}_{4} \mathrm{C}$ powders.

Heating the reactant to $1070^{\circ} \mathrm{C}$, new phases ZrC and ZrB_{2} were identified in the DSC products (Fig. 6c). So, this exothermic peak mainly resulted from the formation of ZrC and ZrB_{2}. After the solidsolid reaction between Co and $\mathrm{B}_{4} \mathrm{C}, \mathrm{C}$ atoms were set free. Then, the free C atoms reacted with Zr to form ZrC . The ZrC -forming reaction is exothermic, which would improve the reactivity of the surrounding particles. As a consequence, the reaction of $\mathrm{Zr}+\mathrm{B}_{4} \mathrm{C} \rightarrow \mathrm{ZrC}+\mathrm{ZrB}_{2}$ was induced. These two reactions were put together and led to the exothermic peak with the maximum temperature at $1070^{\circ} \mathrm{C}$, and the stronger diffraction intensity of ZrC peaks in comparison with that of ZrB_{2} peaks (Fig. 6c). The forming temperature of ZrC and $\mathrm{ZrB}_{2}\left(1070^{\circ} \mathrm{C}\right)$ in $30 \mathrm{wt} . \% \mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system is lower than that in the $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system $\left(1182^{\circ} \mathrm{C}\right)$. Therefore, it is accepted that the addition of Co to the $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ mixtures promotes the formation of ZrC and ZrB_{2}.

Increasing temperature brought about the second exothermic peak at approximately $1164{ }^{\circ} \mathrm{C}$. In the DSC products, new phase CoZr was detected (Fig. 6d). Furthermore, the diffraction peaks of ZrC and ZrB_{2} were much stronger than those in Fig. 6c. As we know, high temperature favors atomic diffusion. Hence, the diffusion rate of Co and Zr increased as the temperature was raised to $1164^{\circ} \mathrm{C}$. Spontaneously, the solid-state reaction between Co and Zr to form CoZr proceeded. Referring to the DSC analysis in the Co-Zr system, the formation of CoZr will release heat and elevate the temperature around. Consequently, the reaction of $\mathrm{Zr}+\mathrm{B}_{4} \mathrm{C} \rightarrow \mathrm{ZrC}+\mathrm{ZrB}_{2}$ was triggered. Once again, $\mathrm{ZrC}-\mathrm{ZrB}_{2}$-forming reaction $\left(1164{ }^{\circ} \mathrm{C}\right)$ was accelerated as compared with that in the $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system $\left(1182^{\circ} \mathrm{C}\right)$.

In the temperature range of $1164-1250^{\circ} \mathrm{C}$, no obvious exothermic peaks were observed. However, CoB, CoZr and Zr disappeared, while $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ phase appeared in the final products (Fig. 6e). On the basis of the DSC analysis, the phase evolution in $30 \mathrm{wt} . \% \mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system can be described as: (1) $\mathrm{Co}+\mathrm{Zr}+\mathrm{B}_{4} \mathrm{C} \rightarrow$ (2) $\mathrm{Co}+\mathrm{Zr}+\mathrm{B}_{4} \mathrm{C}+\mathrm{Co}_{y} \mathrm{~B}+\mathrm{C} \rightarrow$ (3) $\mathrm{Co}+\mathrm{Zr}+\mathrm{B}_{4} \mathrm{C}+\mathrm{Co}_{y} \mathrm{~B}+\mathrm{ZrC} \rightarrow(4) \quad \mathrm{Co}+\mathrm{Zr}+\mathrm{B}_{4} \mathrm{C}+\mathrm{Co}_{y} \mathrm{~B}+\mathrm{ZrC}+\mathrm{ZrB}_{2} \rightarrow$ (5) $\mathrm{Co}+\mathrm{Zr}+\mathrm{B}_{4} \mathrm{C}+\mathrm{Co}_{y} \mathrm{~B}+\mathrm{ZrC}+\mathrm{ZrB}_{2}+\mathrm{CoZr} \rightarrow$ (6) $\mathrm{ZrC}+\mathrm{ZrB}_{2}+\mathrm{Co}_{2} \mathrm{~B}+$ $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$.

3.3. Combustion wave quenching experiments

DSC analysis contributes to understanding the formation path of ZrC and ZrB_{2} in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system. However, it may not be fully reliable for the different experimental conditions between the DSC and CS process. For instance, CS reaction was ignited by heating one end of the reactant, while DSC reaction was triggered by heating the whole reactant [8]. In order to further make clear the formation mechanism of ZrC and ZrB_{2}, it is necessary to quench the combustion wave during its passage through the sample. The combustion wave quenching experiments succeeded in 50 wt .\% $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ specimen with $1-\mu \mathrm{m} \mathrm{Co}, 48-\mu \mathrm{m} \mathrm{Zr}$ and $3.5-\mu \mathrm{m} \mathrm{B}_{4} \mathrm{C}$ particles. The quenched sample could be roughly divided into four regions along the propagation direction of combustion wave front, i.e. unreacted region, preheated region, reacting region and fully reacted region. From the X-ray micro-diffraction results in the different regions (Fig. 7), it can be seen that the phase constituents gradually changed.

In the unreacted region, there exist only Co and Zr phases, without any intermediates (Fig. 7a). This suggests that the powder mixtures were not affected by the heat generated from the

Fig. 9. Microstructure and elemental scanning spectra in the reacting region.
combustion front. Microstructure observation and energy spectrum analysis in this region (Fig. 8) shows that the fine white particles are Co , the large white ones represent Zr and the fine gray grains are $\mathrm{B}_{4} \mathrm{C}$. Compared with the unreacted region, $\mathrm{Co}_{2} \mathrm{~B}$ phase was formed in the preheated region (Fig. 7b). The appearance of $\mathrm{Co}_{2} \mathrm{~B}$ should be $\mathrm{Co}-\mathrm{B}_{4} \mathrm{C}$ reaction triggered by the heat generated from the reacting region. DSC results also indicated that the solid-solid reaction between Co and $\mathrm{B}_{4} \mathrm{C}$ initially took place in the Co-Zr- $\mathrm{B}_{4} \mathrm{C}$ system (Fig. 6a).

Fig. 7 c is the XRD patterns in the reacting region. As seen, new phases $\mathrm{ZrC}, \mathrm{ZrB}_{2}, \mathrm{Co}_{2} \mathrm{Zr}$ and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ appeared. After $\mathrm{Co}-\mathrm{B}_{4} \mathrm{C}$ reaction, the free C atoms reacted with Zr particles to form ZrC , which will elevate temperature around. Thus, the diffusion rate of Co and Zr increased, and the solid-solid reaction of $\mathrm{Co}+\mathrm{Zr} \rightarrow \mathrm{Co}_{2} \mathrm{Zr}$ happened. Li et al. [21] found that the synthesis of ZrC with Zr and C powders can bring about the evaporation of NaCl (boiling point: $1413{ }^{\circ} \mathrm{C}$). It is inferred that ZrC -forming reaction also promoted the melting of $\mathrm{Co}_{2} \mathrm{~B}$ (melting point: $1280^{\circ} \mathrm{C}$) at the local area. Subsequently, Co, Zr and $\mathrm{B}_{4} \mathrm{C}$ gradually dissolved and diffused into the melt to form Co-Zr-B-C liquid because of the capillary penetration and the increasing diffusion path of liquid. Fig. 9 is the

Fig. 10. Microstructure and the EDS spectra of corresponding dot in the reacting region close to the fully reacted region.
microstructure in the reacting region. A molten-like phase can be observed. According to the EDS-line analysis, the molten-like phase was made of $\mathrm{Co}, \mathrm{Zr}, \mathrm{B}$ and C elements. This indicated that $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}-\mathrm{C}$ liquid was formed in the reacting region. Generally, atoms in the liquid are able to move more freely, and they are much more likely to collide and react with one another. As a consequence, $\mathrm{ZrC}-\mathrm{ZrB}_{2}-$ forming reaction was promoted. Once the more stable ZrC and ZrB_{2} in the liquid became saturated, they were precipitated. Liang et al. [9] explored the reaction path of TiC^{2} and TiB_{2} in $20 \mathrm{wt} . \% \mathrm{Cu}-\mathrm{Ti}-\mathrm{B}_{4} \mathrm{C}$ system. They found that in the $\mathrm{Ti}-\mathrm{B}_{4} \mathrm{C}$ system, TiC and TiB_{2} were synthesized at $1093{ }^{\circ} \mathrm{C}$ through the solid-solid reaction between Ti and $\mathrm{B}_{4} \mathrm{C}$. While in $20 \mathrm{wt} . \% \mathrm{Cu}-\mathrm{Ti}-\mathrm{B}_{4} \mathrm{C}$ system, $\mathrm{TiC}-\mathrm{TiB}_{2}$-forming temperature was reduced to $990^{\circ} \mathrm{C}$ due to the formation of $\mathrm{Cu}-\mathrm{Ti}-\mathrm{B}-\mathrm{C}$ liquid. It should be noted that the location of the region containing Co does not quite correspond to those containing Zr, C, and B , as seen in the EDS-line analysis in Fig. 9. As we know, diffusion is a time-dependent process and usually goes from regions of higher concentration to regions of lower concentration. So in the melt, Co concentration close to Co particles was higher than that away from Co particles, and gradually decreased from the left to the right. Similar behavior also existed in the concentration variation of Zr . At the center (white-lined box in Fig. 9), Co, Zr and C were simultaneously detected owing to a short distance to the surrounding particles. Moreover, B concentration in the liquid was relatively low. The EDS technique measures X-rays emitted from the sample during bombardment by an electron beam to characterize the elemental composition [22]. However, light elements (e.g. B) are difficult to detect for the low fluorescence quantum yield and low X-ray energy as well as strong absorption. In Fig. 8, B "counts" are few as well. On the other hand, the diffusion of C away from the $\mathrm{B}_{4} \mathrm{C}$ is much faster than that of B [23]. These may lead to the low intensity of B in the liquid.

Fig. 10 is the microstructure in the reacting region close to the fully reacted region. In Fig. 10, a molten-like phase including Co and

Fig. 11. Microstructure in the fully reacted region.
Zr elements was observed. It is speculated that the formation of ZrC and ZrB_{2} will release heat and result in the melting of $\mathrm{Co}_{2} \mathrm{Zr}$. After the dissolution and diffusion of $\mathrm{B}_{4} \mathrm{C}$ into $\mathrm{Co}-\mathrm{Zr}$ melt, more $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}-\mathrm{C}$ liquid was formed. In this way, $\mathrm{Co}_{2} \mathrm{Zr}$ promoted $\mathrm{ZrC}-\mathrm{ZrB}_{2}$-formation reaction.

Fig. 11 is the microstructure in the fully reacted region, which further offers evidence that ZrC and ZrB_{2} were precipitated from the liquid. The phase compositions in this region (Fig. 7d) are similar with those in the CS products with 50 wt \% Co content (Fig. 12e). Besides the desired $\mathrm{Co}, \mathrm{ZrC}$ and ZrB_{2} phases, $\mathrm{Co}_{2} \mathrm{~B}$ and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ compounds were determined by XRD. Makino et al. [24] considered that the presence of nonequilibrium structures was because of the high cooling rate and high defect concentration during the CS processes. According to the EDS line in Fig. 9, C concentration in the

Fig. 12. XRD patterns for the CS products with (a) $10 \mathrm{wt} . \%$, (b) $20 \mathrm{wt} . \%$, (c) $30 \mathrm{wt} . \%$, (d) $40 \mathrm{wt} . \%$ and (e) $50 \mathrm{wt} . \%$ Co contents, respectively.

Co-Zr-B-C liquid is higher than B concentration because the diffusion of C away from the $B_{4} C$ is much faster than that of B [23]. Moreover, ZrC is a substoichiometric phase in the light of $\mathrm{Zr}-\mathrm{C}$ phase diagram [25]. Therefore, the formation of ZrC may consume more Zr owing to the high C concentration. Accordingly, there were insufficient Zr atoms to produce ZrB_{2} and redundant B atoms in the liquid. So, with the precipitation of ZrC and $\mathrm{ZrB}_{2}, \mathrm{Co}, \mathrm{Co}_{2} \mathrm{~B}$ and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ crystallized from the liquid.

Based on the above observation and analysis, we believed that the formation route of ZrC and ZrB_{2} during the CS process experienced the following reactions:
$\mathrm{Co}(\mathrm{s})+\mathrm{B}_{4} \mathrm{C}(\mathrm{s}) \rightarrow \mathrm{Co}_{y} \mathrm{~B}(\mathrm{~s})+\mathrm{C}(\mathrm{s})$
$\mathrm{Zr}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \rightarrow \mathrm{ZrC}(\mathrm{s})$
$\mathrm{Co}(\mathrm{s})+\mathrm{Zr}(\mathrm{s}) \rightarrow \mathrm{Co}_{x} \mathrm{Zr}(\mathrm{s})$
$\mathrm{Co}_{y} \mathrm{~B}(\mathrm{~s}) \rightarrow \mathrm{Co}-\mathrm{B}(\mathrm{l})$
$\mathrm{Co}-\mathrm{Zr}-\mathrm{B}-\mathrm{C}(\mathrm{l}) \rightarrow \mathrm{ZrC}(\mathrm{s})+\mathrm{ZrB}_{2}(\mathrm{~s})+$ Liquid
$\mathrm{Co}_{2} \mathrm{Zr}(\mathrm{s}) \rightarrow \mathrm{Co}-\mathrm{Zr}(\mathrm{l})$
$\mathrm{Co}-\mathrm{Zr}(\mathrm{l})+\mathrm{B}_{4} \mathrm{C}(\mathrm{s}) \rightarrow \mathrm{ZrC}(\mathrm{s})+\mathrm{ZrB}_{2}(\mathrm{~s})+$ Liquid
Liquid $\rightarrow \mathrm{Co}(\mathrm{s})+\mathrm{Co}_{2} \mathrm{~B}(\mathrm{~s})+\mathrm{ZrCo}_{3} \mathrm{~B}_{2}(\mathrm{~s})$

3.4. Phases and microstructures of CS products

Fig. 12 is the typical XRD patterns of the CS products with Co contents ranging from $10 \mathrm{wt} . \%$ to $50 \mathrm{wt} . \%$. As indicated, besides the expected $\mathrm{ZrC}, \mathrm{ZrB}_{2}$ or/and Co phases, a small number of $\mathrm{Co}_{2} \mathrm{~B}$ and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ compounds were determined. This implies that the combustion synthesis of $\mathrm{ZrC}-\mathrm{ZrB}_{2}$-based composites from the Co-$\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system is feasible. As mentioned before, the appearance of $\mathrm{Co}_{2} \mathrm{~B}$ or/and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ is due to the high defect concentration of B and high cooling rate during the CS processes. Therefore, increasing B concentration in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}-\mathrm{C}$ liquid may restrain the presence of $\mathrm{Co}_{2} \mathrm{~B}$ or/and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$ in the CS products. In a previous work [20], the effect of $\mathrm{B}_{4} \mathrm{C}$ particle size on the CS process and product in the $\mathrm{Cu}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system was investigated. Research results showed that increasing $\mathrm{B}_{4} \mathrm{C}$ size will reduce the dissolution rate of $\mathrm{B}_{4} \mathrm{C}$ in $\mathrm{Cu}-\mathrm{Zr}$ liquid and lead to the incomplete conversion of ZrC and ZrB_{2}. It is deduced that using finer $\mathrm{B}_{4} \mathrm{C}$ particles may increase the dissolution rate of $\mathrm{B}_{4} \mathrm{C}$ and B concentration in the liquid, and thus refrain the

Fig. 13. Microstructures for the CS products with (a) $10 \mathrm{wt} . \%$, (b) $20 \mathrm{wt} . \%$, (c) $30 \mathrm{wt} . \%$, (d) $40 \mathrm{wt} . \%$ and (e) $50 \mathrm{wt} . \%$ Co contents, respectively.
production of $\mathrm{Co}_{2} \mathrm{~B}$ or/and $\mathrm{ZrCo}_{3} \mathrm{~B}_{2}$. However, relevant experiments have not been conducted for the lack of fine $B_{4} C$.

Fig. 13 shows the morphologies of ZrC and ZrB_{2} in the CS products. It can be observed that ZrC and ZrB_{2} grains displayed close to spherical [26] and platelet-like morphologies [4,27], respectively. Furthermore, with increasing Co contents, the particle size of ZrC decreased from about $1 \mu \mathrm{~m}$ to $0.5 \mu \mathrm{~m}$, while ZrB_{2} size was reduced from about $5 \mu \mathrm{~m}$ to $2 \mu \mathrm{~m}$. Referring to Fig. 12, increasing Co contents will result in the reduction of ZrC and ZrB_{2} and the enhancement of Co in the CS products. On one hand, the cooling rate increased for the higher thermal conductivity coefficient of metal. Correspondingly, the dwell time of the final products at elevated temperature was shorted. This prevented the growth of ZrC and ZrB_{2}. On the other hand, the heat released from $\mathrm{ZrC}-\mathrm{ZrB}_{2}$-froming reaction decreased. Spontaneously, the combustion temperature decreased. It brought about the reduction in the size of resultant ZrC and ZrB_{2} because the growth of grains is an exponential function of the temperature [11]. Moreover, the increase of liquid metal surrounding ceramic particles gives rise to the increased diffusion path, and prevents the ceramic particles to form larger particles [13]. Increasing Co contents in the $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ system will promote the formation of $\mathrm{Co}-\mathrm{B}$ and $\mathrm{Co}-\mathrm{Zr}$ compounds. Correspondingly, more $\mathrm{Co}-\mathrm{Zr}-\mathrm{B}-\mathrm{C}$ liquid will be formed according to the analysis on the combustion wave quenching experiments. As a result, the sizes of ZrC and ZrB_{2} particles turned to be smaller with increasing Co contents.

4. Conclusions

(1) $\mathrm{ZrC}^{2}-\mathrm{ZrB}_{2}$-based composites were produced by way of CS method from the Co-Zr- $\mathrm{B}_{4} \mathrm{C}$ system.
(2) With increasing Co contents, the particle size of ZrC and ZrB_{2} reduced.
(3) The addition of Co to $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ mixtures promoted the formation of ZrC and ZrB_{2}.
(4) ZrB_{2} was prepared from Co-Zr-B-C liquid, while ZrC was produced by the solid-solid reaction between Zr and C and the precipitation from the saturated liquid.

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 51404517 , No. 51101143 and No. 51472235), Natural

Science Foundation of Zhejiang Province (No. LQ15E010002) and Open Foundation of Zhejiang Provincial Key Laboratory for Cutting Tools (No. ZD201307).

References

[1] Y.Y. Li, Q.G. Li, Z. Wang, C. Wu, G.P. Shi and M.J. Liu, J. Asian Ceram. Soc., 3, 1-15 (2015).
[2] R. Licheri, R. Orrù, C. Musa and G. Cao, Mater. Lett., 62, 432-435 (2008).
[3] L. Xu, C.Z. Huang, H.L. Liu, B. Zou, H.T. Zhu, G.L. Zhao and J. Wang, Int. J. Refract. Met. Hard Mater., 37, 98-105 (2013).
[4] S.Q. Guo, Ceram. Int., 40, 12693-12702 (2014).
[5] S.A. Chen, C.R. Zhang, Y.D. Zhang and H.F. Hu, Composites Part B: Eng., 60, 222-226 (2014).
[6] F. Goutier, G. Trolliard, S. Valette, A. Maître and C. Estournes, J. Eur. Ceram. Soc., 28, 671-678 (2008).
[7] D.S. King, G.E. Hilmas and W.G. Fahrenholtz, J. Eur. Ceram. Soc., 34, 3549-3557 (2014).
[8] J.J. Moore and H.J. Feng, Prog. Mater. Sci., 39, 243-273 (1995).
[9] Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.L. Du and Q.C. Jiang, Int. J. Refract. Met. Hard Mater., 26, 383-388 (2008).
[10] X.G. Huang, Z.M. Zhao, L. Zhang, C. Yin and J.Y. Wu, J. Asian Ceram. Soc., 2, 144-149 (2014).
[11] B.L. Zou, J.Y. Xu, Y. Wang, S.M. Zhao, X.Z. Fan, Y. Hui, X. Zhou, W.Z. Huang, X.L. Cai, S.Y. Tao, H.M. Ma and X.Q. Cao, Chem. Eng. J., 233, 138-148 (2013).
[12] B. Aminikia, Powder Technol., 232, 78-86 (2012).
[13] Y.F. Yang, H.W. Wang, R.Y. Zhao, Y.H. Liang and Q.C. Jiang, Int. J. Refract. Met. Hard Mater., 26, 77-83 (2008).
[14] Q.D. Hu, P. Luo, M.X. Zhang, M.S. Song and J.G. Li, Int. J. Refract. Met. Hard Mater., 31, 89-95 (2012).
[15] M.X. Zhang, Y.Q. Huo, Q.D. Hu, P. Zhang and B.L. Zou, Int. J. Refract. Met. Hard Mater., 43, 102-108 (2014).
[16] S. Poovarodom, D. Hosseinpour and J.C. Berg, Ind. Eng. Chem. Res., 47, 2623-2629 (2008).
[17] G.A. Yasiskaya, Powder Metall. Met. Ceram., 5, 557-559 (1966).
[18] D.L. Ye and J.H. Hu, Notebook of Thermodynamic Data of Inorganic, second ed., Metallurgical Industry Press, Beijing (2002).
[19] A. Durga and K.C. Hari Kumar, Calphad, 34, 200-205 (2010).
[20] M.X. Zhang, Y.Q. Huo, M. Huang, Y.H. Fang and G.P. Wang, J. Asian Ceram. Soc., 3, 38-43 (2015).
[21] J. Li, Z.Y. Fu, W.M. Wang, H. Wang, L. Soowohn and N. Kochi, J. Chin. Ceram. Soc., 38, 979-985 (2010).
[22] L.D. Hanke, Handbook of Analytical Methods for Materials, Materials Evaluation and Engineering, Plymouth (2001).
[23] P. Shen, B.L. Zou, S.B. Jin and Q.C. Jiang, Mater. Sci. Eng. A, 454-455, 300-309 (2007).
[24] A. Makino and C.K. Low, J. Am. Ceram. Soc., 77, 778-786 (1994).
[25] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, second ed., ASM International Materials Park, Ohio (1990).
[26] M.X. Zhang, B. Huang, Q.D. Hu and J.G. Li, Int. J. Refract. Met. Hard Mater., 31, 230-235 (2012).
[27] H.T. Liu, J. Zou, D.W. Ni, W.W. Wu, Y.M. Kan and G.J. Zhang, Scr. Mater., 65, 37-40 (2011).

[^0]: * Corresponding author. Tel.: +86 576 88661939; fax: +86 57688661939.

 E-mail addresses: hyqhappy1199@163.com (Y. Huo), zoubinglin@ciac.ac.cn (B. Zou).

 Peer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.

