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In this Letter we study a novel effect of a hidden sector coupling to the standard model Higgs boson:
an enhancement of the Higgs pair production cross section near threshold due to bound state effects.
After summing the ladder contributions of the hidden sector to the effective gg H H coupling, we find
the amplitude for gluon–gluon scattering via a Higgs loop. We relate this amplitude to the double Higgs
production cross section via the optical theorem. We find that enhancements of the O(100) for the
partonic cross section near the threshold region can be obtained for a hidden sector strongly coupled to
the Higgs boson. The corresponding cross section at the LHC can be as large as O(10) times the SM result
for extreme values of the coupling. The detection of such an effect could in principle lead to important
information about the hidden sector.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

The idea of a hidden sector, that is, a sector that is singlet under
the symmetries of the standard model and interacts with the rest
of the particles only through the Higgs boson (in addition to grav-
ity), sometimes called “Higgs portal”, was probably first introduced
by Veltman and Ynduráin [1] with the purpose of parametrizing
the limit of large Higgs mass in the standard model.

A more recent motivation of a hidden sector comes from new
viable dark matter models. The existence of dark matter inferred
from several different observations signals the incompleteness of
the standard model of the electroweak interactions [2]. Perhaps the
best motivated candidate for dark matter are neutralinos arising
from supersymmetric extensions of the standard model but there
are other contenders from different extensions with varying de-
grees of theoretical motivations [3].

The simplest extension of the standard model with a natu-
ral dark matter candidate is the addition of a scalar singlet [4].
A more recent role of singlet scalars in dark matter phenomenol-
ogy appears when one tries to explain the excess of positrons and
electrons seen in some experiments as an effect of dark matter an-
nihilation [3]. In this case, the annihilation cross section must be a
factor of O(103) larger than the usual cross section determined by
the observed dark matter abundance in the case of thermal relics.
The existence of new light singlet scalars coupling to the dark mat-
ter candidate can generate an enhancement in the annihilation
cross section of dark matter particles, known as the Sommerfeld
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enhancement [5]. Several studies have been performed consider-
ing this possibility [6]. In particular, the coupling of this scalar to
the Higgs boson can lead to sizeable effects in the direct detection
of dark matter, as recently emphasized in [7].

In this Letter we want to study a novel effect of the coupling
of the Higgs boson with another scalar field: the enhancement of
the double Higgs production at the LHC near threshold due to the
formation of Higgs–Higgs bound states.

Double Higgs production is an important process to test the
structure of the Higgs boson potential and possible new physics
beyond the standard model [8]. A possible enhancement effect may
be of importance since the gluon distribution functions are largest
near the threshold region. This is akin to the well-known enhance-
ment of top quark pair production near threshold due to the gluon
contribution [9]. Contribution of bound states to the production of
supersymmetric particles at the LHC has also been recently dis-
cussed in [10]. The enhancement of the double Higgs production
may have observable effects and therefore can in principle probe
the hidden sector.

2. Enhancement

The formation of a nonrelativistic Higgs–Higgs bound state,
sometimes referred to as Higgsonium [11] or Higgsium [12] would
result in an increase of the double Higgs production cross sec-
tion near threshold. The possibility of formation of Higgsium can
arise within the standard model due to the Higgs boson self-
interactions, but only in the case of a very heavy Higgs, actu-
ally above the unitarity bound [13]. Since we will be interested
in an intermediate Higgs boson mass, we will only consider the
contribution of the interaction of the Higgs boson with the hidden
sector to this process.
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Double Higgs production within the standard model via the
dominant gluon fusion process at hadron colliders was computed
by Plehn et al. [14]. They use a form-factor for an effective gghh
coupling that we will denote by Γ (0) . This effective coupling de-
pends dominantly on the total momentum entering the vertex.

We add to the standard model Lagrangian a new singlet real
scalar φ with a coupling to the Higgs boson h:

L = LSM + 1

2
(∂μφ)2 − 1

2
m2

φφ2 + guhhφ (1)

where mφ is the mass of the new scalar, g is a dimensionless cou-
pling constant and u is an energy scale from this new sector. This
Lagrangian should be thought of as a toy model used to study a
general phenomenon. For the moment we will assume that it is
already in its diagonal basis for the scalar sector.

Unfortunately there is no full treatment of bound states in
quantum field theory and some approximations must be used,
such as the ladder approximation to the Bethe–Salpeter equa-
tion [15]. We will follow the standard framework developed for
computing threshold effects due to bound states [9] and use the
optical theorem to write:

σ(gg → hh) = 1

s
Im M(gg →

hh
gg), (2)

where M(gg →
hh

gg) is the amplitude for gluon–gluon scattering

through a Higgs boson loop. Our goal will be to compute this
amplitude in the nonrelativistic limit taking into account the con-
tributions from the hidden sector.

We first compute the corrections to the effective gghh vertex
due to the hidden scalar exchange by summing all ladder contri-
butions as shown in Fig. 1a, which results in the integral equation

S(q, p) = 1 +
∫

d4k

(2π)4

ig2u2

(p − k)2 − m2
φ

× i

(q/2 + k)2 − m2
h − imhΓh

× i

(q/2 − k)2 − m2
h − imhΓh

S(q,k) (3)

where S(q, p) = Γ (q, p)/Γ (0)(q, p) is the normalized coupling, q
is the 2-particle bound state momentum and 2p is the relative
momentum.1 A bound state would appear as a pole at q2 = m2

hh ,

with mhh < 2mh . Near threshold we write q = (2mh + E, �0), where
|E| � mh is the binding energy for a nonrelativistic bound state.

In the nonrelativistic limit we keep only the instantaneous part
of the φ propagator. Likewise, since we are in the threshold region,
we neglect the time dependence of the total vertex gghh and for
consistency we do the same for the vertex inside the loop in the
Bethe–Salpeter equation (Fig. 1a). With these approximations one
can perform the k0 integral to obtain:

S(�q, �p) = 1 − g2u2

8m2
h

∫
d3k

(2π)3

1

(�p − �k)2 − m2
φ

× 1
�k2/mh − E − iΓh

S(�q, �k). (4)

Setting

G(�q, �p) = 1
�p2/mh − E − iΓh

S(�q, �p) (5)

1 One should note that a including a hhφφ coupling in Eq. (1) would result in
an additional contribution with a loop of φ field. This contribution would be sup-
pressed by the usual g2/16π2 factor.
Fig. 1. (a) Bethe–Salpeter equation for M(gg → hh) with hidden sector correc-
tions in the ladder approach. (b) Relation between the total scattering amplitude
M(gg →

hh
gg) and M(gg → hh).

and performing a Fourier transform in Eq. (4) we arrive at a
Schrödinger-like equation, depending of the relative position r and
center of mass coordinate r′ placed at origin:[
−∇2

mh
− E − iΓh + V (r)

]
G V

(�r,�r′ = 0, E
) = δ3(�r) (6)

with an Yukawa potential given by

V (r) = − g2u2

8m2
h

e−mφr

r
. (7)

Now we can find the amplitude M(gg →
hh

gg) by solving the

integral equation depicted in Fig. 1b:

M(gg →
hh

gg) = Γ (0)(E)

∫
d4k

(2π)4

i

(q/2 + k)2 − m2
h − imhΓh

× i

(q/2 − k)2 − m2
h − imhΓh

Γ (q,k). (8)

Following similar steps as in the previous calculation we obtain

M(gg →
hh

gg) = (
Γ (0)(E)

)2
G V (0, E). (9)

Therefore the cross section with the contribution from the hidden
sector is

σ(gg → hh) = σ0(gg → hh)R(E) (10)

with the enhancement factor R(E) is given by

R(E) = Im G V (�0, E)

Im G0(�0, E)
(11)

where E = √
s − 2mh is the center-of-mass energy of the Higgsium

from threshold and G0 is the solution of the same Schrödinger
equation (6) in the absence of a potential.

3. Finding the enhancement factor

The solution to Eq. (6) can be obtained following the standard
procedure of defining two independent solutions v1 and v2 of the
corresponding radial homogeneous equation in the relevant case of
zero angular momentum, one regular at the origin and the other
regular at infinity:

G
(
r, r′, E + iΓh

) =
{

− mh
4π

v1(r)v2(r′)
rr′ for 0 < r < r′ < ∞,

−mh
4π

v1(r′)v2(r)
rr′ for 0 < r′ < r < ∞,

(12)

where v1,2(r) is a solution of the equation:[
d2

2
+ mh

(
E + iΓh − V (r)

)]
v(r) = 0. (13)
dr



A.C.A. Oliveira, R. Rosenfeld / Physics Letters B 702 (2011) 201–204 203
Fig. 2. Double Higgs production cross section as a function of energy above threshold for mφ = 50 GeV. Left panel: Double Higgs production cross section cross for κ = 0.01,
0.1, and 0.3 (dashed, dot-dashed and dotted lines, respectively) compared with the uncorrected result (solid line). Right panel: Double Higgs production cross section near
threshold for κ = 0.1, 0.7, and 1 (dashed, dot-dashed and dotted lines, respectively) compared with the uncorrected result (solid line). Notice the logarithm scale in this case.
We use the method described in Strassler and Peskin [9] to nu-
merically solve the equation above with the appropriate boundary
conditions. We will use the functions va and vb with boundary
conditions va(r → 0) = r and vb(r → 0) = 1 to write

v1(r) = va(r), (14)

v2(r) = vb(r) + B va(r). (15)

Hence B = limr→∞(− vb(r)
va(r) ) and we can formally calculate the

imaginary part of the Green function as2:

Im G V (0,0, E + iΓh) = − mh

4π
Im B. (16)

In our numerical solution the boundary conditions for the
Green function is of course calculated at a finite value of r, and
it is very important to keep the Higgs boson width that guaran-
tees its exponential decay.

In the absence of a potential it is easy to find that

G0
(
r, r′, E + iΓh

) = − mh

4π

sin(λr)

λr

eiλr

r
(17)

where λ = √
m(E + iΓh) and therefore

Im G0(0,0, E + iΓh) = − mh

4π
Reλ. (18)

4. Results and conclusion

We use the results of Plehn et al. [14] to evaluate the cross
section without hidden sector corrections,3 which can be written
as:

σ0(gg → hh) = 1

16π s

∣∣M(gg → hh)
∣∣2

√(
1 − 4m2

h

s

)
. (19)

Part of the kinematical factor is cancelled by the denominator
of the enhancement factor of Eq. (10) resulting in a total cross
section given by

σ(gg → hh) = 1

16π s

∣∣M(gg → hh)
∣∣2

√(
1 + 2mh√

s

)
Im B√
mh

√
s
.

(20)

The enhancement depends basically on two parameters: the

strength of the interaction κ = g2u2

8m2
h

and its range determined by

the mass mφ of the exchanged boson. For mφ = 0 one is back

2 Note that the real part of this limit diverges.
3 We will use the

√
s 
 mt limit for illustration.
to the well-known Coulomb case. As an illustration of this effect
we will set the Higgs mass in 180 GeV (we checked that our re-
sults are weakly dependent on the Higgs mass in the intermediate
range).

In Fig. 2 we show the total cross section σ(gg → hh) for differ-
ent values of the coupling constant for mφ = 50 GeV. For couplings
κ < 0.01 hardly any modification is observed. The difference below
threshold is due to the finite width effects contained in the func-
tion G , which allows a nonzero cross section below threshold. We
have checked that our numerical code reproduces the analytical
result Eq. (18) to high accuracy.

The enhancement increases with the coupling and for values
κ > 0.6 a dramatic difference results from the presence of peaks
due to Higgs–Higgs bound states. We find enhancement factors as
large as a factor of O(100) in this case, which is comparable to
what has been found in the study of Sommerfeld enhancement for
dark matter annihilation cross section in several models [5].

A couple of comments are in order. First, it is a textbook exer-
cise [16] to implement a variational method to estimate the energy
of the l = 0 bound state in a Yukawa potential.4 In our case the en-
ergy is given by:

E = −κmφ p3(p − 1)/4(p + 1)3 (21)

where p is a solution of the equation κmh/mφ = (p +1)3/p(p +3).
For κ = 1, mh = 180 GeV and mφ = 50 GeV, the values used in our
Letter, we obtain E = −11 GeV (E = −1.8 GeV for κ = 0.7). These
are in good agreement with our numerical results shown in Fig. 2
and corroborate that the bound states are nonrelativistic, since the
binding energy is much smaller than the Higgs mass even for these
large values of kappa. Secondly, the nonrelativistic approximation
is only valid for a region of 30 GeV or so around threshold. The
left plot of Fig. 2 is only meant to illustrate that the corrections are
small even at high energies. In our numerical results for the LHC
cross sections below we switched-off the bound state corrections
at an energy of 15 GeV above threshold.

For lighter φ masses (O(10) GeV) the peaks appear for smaller
couplings at lower energies and occasionally more than one peak
can be seen. For heavier masses, as expected, bound states are not
formed but some enhancement effect is still obtained.

In order to estimate the corresponding enhancement at the
LHC, we have convoluted the parton level cross section with the
gluon distribution function in the proton. For our estimates we
used the Mathematica package of the leading order CTEQ5 [17]
with factorization and renormalization scales set to q = 2mh . In
Table 1 we present our results for

√
s = 7 and 14 TeV. The

convolution smooths out the large partonic enhancements but one
can still find cross sections that are as large as 20 times the SM

4 We thank G. Krein for pointing this out to us.
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Table 1
Enhancement factor for double Higgs production cross section at
the LHC for different values of the coupling κ to a hidden sector
for

√
s = 7 and 14 TeV.

κ
√

s = 7 TeV
√

s = 14 TeV

0.1 1.1 1.2
0.3 1.5 1.6
0.7 5.5 6.0
1.0 19 21

result for extreme values of the coupling. We find that the en-
hancement factors are not very sensitive to the CM energy, al-
though the absolute values of the production cross section cer-
tainly are.

At this point we should note that the simplest model with an
additional singlet would not result in a large enhancement due to

the mixing between the scalars, which requires κ <
λm2

φ

4m2
h

where λ

is the Higgs boson self-coupling [18]. There are a few examples
where one could have a strong interaction of the hidden sector
with the Higgs boson, such as considering a more evolved scalar
sector or even interactions with hidden Abelian gauge fields or
a condensate of fermions. We take no position on what the pri-
mary motivation might exist for the hidden sector. Our goal is to
consider the general effect of this hidden sector on double Higgs
production near threshold.

One may also be concerned with unitarity violation when large
couplings are present. For example, at low energies one gets a s-
channel contribution to the s-wave scattering amplitude that goes
as a0 = g2u2/32πm2

φ ; this is less than one for g2u2 = O(m2
h) and

the examples discussed here.
The prospects for detection of such an enhancement require a

detailed study that is beyond the scope of this short Letter. The
signal would probably be an excess of 4 gauge boson events near
the double Higgs threshold, where the SM background is small. It
is amusing to entertain the idea that an investigation of the double
Higgs cross section near threshold could lead to important infor-
mation about the hidden sector.
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