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Abstract An efficient method for blind classification of space–time block codes (STBCs) based on

fourth-order cumulants is proposed for a single receiver antenna. This paper presents a model of

received STBCs signals in multiple input single output (MISO) communication systems and applies

the characteristics of coding matrices to derive analytical expressions for the fourth-order cumu-

lants to be used as the basis of an algorithm. The fourth-order cumulants at various delay vectors

present non-null values that depend on the transmitted STBCs. Tests of nullity are accomplished by

hypothesis testing. The proposed algorithm avoids the need for a priori information of modulation

scheme, channel coefficients, and noise power. Consequently, it is well suited for non-cooperative

scenarios. Simulations show that this method performs well even at low signal-to-noise ratios

(SNRs).
� 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Obtaining signal parameters of the intercepted signals is a key
step between signal detection and signal decoding in non-
cooperative scenarios. Signal parameters include modulation

scheme, channel coding information and code parameters. In
recent years, the traditional blind classification of signal
parameters, including interference identification, signal
confirmation, radio surveillance and spectrum monitoring,

has been extended to both military and commercial applica-
tions. Array signals can be employed to estimate target signals
in multiple input multiple output (MIMO) communication
systems. However, a single receiver antenna is favored for

many practical applications due to size, power, and cost con-
straints. Consequently, further work is needed to address the
important practical problems of classifying signals with a sin-

gle receiver antenna.
Space–time block coding is a practical signal design tech-

nique aimed at capitalizing on the theoretical information

capacity of MIMO channels.1 MIMO communication systems
accompanied by space–time block codes (STBCs) have been
standardized in IEEE 802.16e and IEEE 802.11n, and appear
to be ideal technologies for the next generation of wireless

communication. Consequently, the blind classification of
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STBCs is a key research issue in non-cooperative MIMO-
STBC communication systems and can be divided into four
categories: maximum likelihood,2,3 second-order statistics,4–8

cyclostationarity-based9–12 and fourth-order statistics.13–15

Maximum likelihood algorithms employ the maximum likeli-
hood criterion to find optimum solutions. However, their com-

putational complexity is too high for higher order modulation,
and they require a priori information, such as channel coeffi-
cients, modulation scheme, carrier frequency offset and carrier

phase.2,3 Second-order statistics is a method based on the
space–time correlation of received signals to classify the
STBCs in multiple receiver antennas systems.4–8 In Refs. 9–12,
the cyclostationarity properties of received signals are

exploited for the classification of STBCs in the context of mul-
tiple receiver antennas. The fourth-order statistical method
uses the fourth-order statistics of received signals as discrimi-

nating signal features to classify the STBCs with a single recei-
ver antenna14,15 or to estimate channel coefficients.13 However,
except for Refs. 14,15, most previous research3–15 focuses on the

context of multiple receiver antennas. Therefore, further work
is needed to address the practical problem of classifying the
STBCs with a single receiver antenna. In this paper, we pro-

pose a STBCs classification algorithm based on fourth-order
cumulants with a single receiver antenna over frequency-flat
Nakagami-m fading channels.16 This algorithm does not
require any a priori information of modulation scheme, chan-

nel coefficients or noise power. Consequently, it is well suited
for non-cooperative scenarios.

Three distinct differences exist between the proposed

method and those found in Refs. 14,15 First, fourth-order
cumulants are employed in this paper, however, fourth-order
moment (FOM) and the discrete fourier transform (DFT) of

the fourth-order lag product (FOLP) are used in the litera-
ture.14,15 The fourth-order cumulants of zeros-mean Gaussian
white noise are equal to zero and the fourth-order moment is

not equal to zero. Theoretically, we can ignore the effect of
the Gaussian white noise in the derivation of theoretical value
of the fourth-order cumulants. This explains why the proposed
algorithm performs better than other methods in Refs. 14,15 at

a low SNR. Second, the proposed algorithm can classify gen-
eral STBCs while those in Ref. 14 only distinguish Alamouti
coding from spatial multiplexing(SM). Moreover, Spatial Mul-

tiplexing cannot be categorized into the STBCs. Finally, the
fourth-order lag cumulants of STBCs present non-null values
that depend on the transmitted STBCs. The FOM-based algo-

rithm employs the likelihood ratio test for decision making.
The FOLP-based algorithm detects the peaks or the position
of the peaks within the frequency domain of the fourth-order
lag product in Refs. 14,15

The rest of this paper is organized as follows: Section 2 –
signal model and assumptions; Section 3 – the derivation of
the fourth-order cumulants of STBCs; Section 4 – the pro-

posed STBCs classification algorithm; Section 5 – simulation
results; Section 6 – conclusions.
2. Signal model and assumptions

Let us consider a wireless communication system composed of
a single receiver antenna and Nt transmit antennas. We assume

the symbols that belong to the same complex linear modula-
tion are independent and identically distributed (i.i.d) random
variables. For quadrature phase shift keying(QPSK) constella-
tion, the real and imaginary parts of the transmitted symbols

are also i.i.d. That is to say, Eðjxj2Þ ¼ 1 and

Eðx2Þ ¼ E½ðx�Þ2� ¼ 0.

Eðx4Þ ¼ E½ðx�Þ4� ¼ �1 ð1Þ
The N transmitted symbols can be divided into blocks with

length of Ns. Each block of Ns modulated symbols is encoded
to generate Nt parallel signal sequences of length L. The kth

block of Ns transmitted complex symbols is denoted by
Xk ¼ ½xk;0; xk;1; � � � ; xk;Nt�1�.

(1) For SM, a block of N s ¼ N t symbols is transmitted
through N t antennas in a single time period ðL ¼ 1Þ.
The corresponding coding matrix can be given as
GSMðXkÞ ¼ Xk ¼ xk;0; xk;1; � � � ; xk;Nt�1½ �T ð2Þ

(2) For Alamouti coding (Al), a block of N s ¼ 2 symbols is

transmitted through 2 antennas in two consecutive time
periods ðL ¼ 2Þ. Alamouti coding is an orthogonal

STBC(OSTBC). The corresponding coding matrix can
be given as:17" #

GAlðXkÞ ¼

xk;0 �x�
k;1

xk;1 x�
k;0

ð3Þ

where � represents complex conjugate.

(3) For OSTBC-3/4 coding (ST3), a block of N s ¼ 3 sym-

bols is transmitted through 3 antennas in four consecu-

tive time periods ðL ¼ 4Þ. The OSTBC-3/4 coding is also
an orthogonal STBC. The corresponding coding matrix
can be given as:12 3

GST3ðXkÞ ¼

xk;0 0 xk;1 �xk;2

0 xk;0 x�
k;2 x�

k;1

�x�
k;1 �xk;2 x�

k;0 0

64 75 ð4Þ
(4) For OSTBC-1/2 coding (ST4), a block of N s ¼ 4 sym-

bols is transmitted through 3 antennas in eight consecu-
tive time periods ðL ¼ 8Þ. The OSTBC-1/2 coding is also
an orthogonal STBC. The corresponding coding matrix
can be given as:18
GST4ðXkÞ

¼
xk;0 �xk;1 �xk;2 �xk;3 x�

k;0 �x�
k;1 �x�

k;2 �x�
k;3

xk;1 xk;0 xk;3 �xk;2 x�
k;1 x�

k;0 x�
k;3 �x�

k;2

xk;2 �xk;3 xk;0 xk;1 x�
k;2 �x�

k;3 x�
k;0 x�

k;1

2
64

3
75

ð5Þ
Let us consider a receiver with a single antenna. The length
and start of STBCs are unknown at the receiver side in a non-

cooperative scenario. The first received column is expressed as

rð0Þ, so the ðkþ 1Þ th intercepted column rkðkÞ can be denoted
as

rkðkÞ ¼ HSðkÞ þ wðkÞ ¼ YðkÞ þ wðkÞ ð6Þ
where SðkÞ ¼ Gk

pðXqÞ, with p ¼ ðkþ k1ÞmodL, q ¼ ðkþ k1Þ
divL, 0 6 k1 < L, and k 2 X, X 2 fSM;Al; ST3; ST4g. wðkÞ
denotes complex Gaussian white noise with zero-mean and

variance r2
w. It is worth noting that the additive noise is sup-

posed to be Gaussian complex circular and temporally uncor-
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related. H ¼ ½h0; h1; � � � ; hNt�1� denotes the vector of the fading

channel coefficients, which is constant over the observation
period.

In this paper, we resort to using fourth-order cumulants to

blindly classify the proposed STBCs above from K received
columns when a single receiver antenna is available. More
details are in the next section.

3. The fourth-order cumulants of STBCs

In this section, the expression of fourth-order cumulants is
deduced in order to discover the characteristic parameters that

can blindly classify STBCs in a non-cooperative scenario.

3.1. Principles

For the complex-value stationary random process rðkÞ,
second-order moments can be defined in two different ways:

C20 ¼ E½rðkÞ2�
C21 ¼ E½jrðkÞj2�

(
ð7Þ

Similarly, fourth-order cumulants can be defined in three
ways:

C40 ¼ cumðrðkÞ; rðkÞ; rðkÞ; rðkÞÞ
C41 ¼ cumðrðkÞ; rðkÞ; rðkÞ; rðkÞ�Þ
C42 ¼ cumðrðkÞ; rðkÞ; rðkÞ�; rðkÞ�Þ

8><
>: ð8Þ

where, the statistics in Eqs. (7) and (8) are the zeroth lags of the
correlations and fourth-order cumulants of rðkÞ, For zero-

mean w, x, y, and z,the fourth-order cumulants can be defined
as

cumðw; x; y; zÞ ¼ EðwxyzÞ � EðwxÞEðyzÞ � EðwyÞEðxzÞ
� EðwzÞEðxyÞ ð9Þ

If random variable xi and yi are statistically independent,
the cumulants have the characteristics of half-invariance, so

cumðx1 þ y1; x2 þ y2; � � � ; xk þ ykÞ
¼ cumðx1; x2; � � � ; xkÞ þ cumðy1; y2; � � � ; ykÞ ð10Þ
3.2. The derivation of the fourth-order cumulants for STBCs

Eqs. (6) and (10) can be deduced as

Ck
40;rðkÞ ¼ cumðYðkÞYðkþ s1ÞYðkþ s2ÞYðkþ s3ÞÞ ð11Þ
In Refs. 19,20, the fourth order cumulants of zeros-mean

Gaussian white noise are equal to zero, but the fourth order

moments are not equal to zero. Therefore, we choose fourth-
order cumulants as a tool to blindly classify the STBCs. Eq.
(11) can be simplified as

Ck
40;rðkÞ ¼ cum½YðkÞYðkþ s1ÞYðkþ s2ÞYðkþ s3Þ�

¼ E½YðkÞYðkþ s1ÞYðkþ s2ÞYðkþ s3Þ�
� E½YðkÞYðkþ s1Þ�E½Yðkþ s2ÞYðkþ s3Þ�
� E½YðkÞYðkþ s2Þ�E½Yðkþ s1ÞYðkþ s3Þ�
� E½YðkÞYðkþ s3Þ�E½Yðkþ s1ÞYðkþ s3Þ�

ð12Þ

where s1 ¼ 0 and s2 ¼ s3 2 f1; 2; 5g.
Therefore, the fourth-order cumulants of ST4 at a delay-
vector ½0; 0; 1; 1� can be expressed as

CST4
40;rðkÞ ¼ cum½YðkÞYðkÞYðkþ 1ÞYðkþ 1Þ�

¼ E½Y2ðkÞY2ðkþ 1Þ� � E½Y2ðkÞ�E½Y2ðkþ 1Þ�
� 2Eð½YðkÞYðkþ 1Þ�Þ2

¼ 1

8
ð4Eðh20h21x4Þ þ 2Eðh21h22ðjxj4 � 2jxj2jxj2ÞÞÞ

þ 1

8
ð2Eðh21h22x4Þ þ 4Eðh21h20ðx�Þ4Þ þ 2Eðh21h22ðx�Þ4ÞÞ

ð13Þ
where hi represents the channel coefficient between the i trans-
mit antenna and receive antenna.

The fourth-order cumulants of ST4 at a delay-vector

½0; 0; 2; 2� can be expressed as

CST4
40;rðkÞ ¼ cum½YðkÞYðkÞYðkþ 2ÞYðkþ 2Þ�

¼ E½Y2ðkÞY2ðkþ 2Þ� � E½Y2ðkÞ�E½Y2ðkþ 2Þ�
� 2Eð½YðkÞYðkþ 2Þ�Þ2

¼ 1

8
ð4Eðh20h22ðjxj4 � 2jxj2jxj2ÞÞ þ 4Eðh20h22x4Þ

þ 4Eðh20h22ðx�Þ4ÞÞ

ð14Þ

The fourth-order cumulants of ST4 at a delay-vector
½0; 0; 5; 5� can be expressed as

CST4
40;rðkÞ ¼ cum½YðkÞYðkÞYðkþ 5ÞYðkþ 5Þ�

¼ E½Y2ðkÞY2ðkþ 5Þ� � E½Y2ðkÞ�E½Y2ðkþ 5Þ�
� 2Eð½YðkÞYðkþ 5Þ�Þ2

¼ 1

8
ð4Eðh20h22ðjxj4 � 2jxj2jxj2ÞÞ

þ 2Eðh21h22ðjxj4 � 2jxj2jxj2ÞÞÞ

ð15Þ

The fourth-order cumulants of SM, Al and ST3 at different

delay-vectors can be obtained in similar ways.
For SM, the transmitted symbols are independent in differ-

ent time slots. Therefore, the fourth-order cumulants of SM

are equal to zero at different delay-vectors.

CSM
40;rðkÞ½0; 0; 1; 1� ¼ CSM

40;rðkÞ½0; 0; 2; 2� ¼ CSM
40;rðkÞ½0; 0; 5; 5� ð16Þ

The fourth-order cumulants of Al at different delay-vectors

can be deduced as follows:

(1) The fourth-order cumulants of Al at a delay-vector

½0; 0; 1; 1� are expressed as

CAl
40;rðkÞ ¼ cum½YðkÞYðkÞYðkþ 1ÞYðkþ 1Þ�

¼ E½ðh0xc;0 þ h1xc;1Þ2ð�h0x
�
b;1 þ h1x

�
b;0Þ2�

� E½ðh0xc;0 þ h1xc;1Þ2�
E½ð�h0x

�
b;1 þ h1x

�
b;0Þ2�

� 2E½ðh0xc;0 þ h1xc;1Þð�h0x
�
b;1 þ h1x

�
b;0Þ�2 ¼ C

ð17Þ
where xc;0 represents the zeroth transmit symbol in the

cth coding matrix. If c – b, it represents symbol xc;0

and xb;0 are not in the same coding matrix.If c ¼ b, C

can be expresses as
C ¼ 2E½ðh20h21ðjxj4 � 2jxj2jxj2ÞÞ� ð18Þ
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Else
C ¼ 0 ð19Þ

Therefore, CAl

40;rðkÞ can be expressed as
CAl
40;rðkÞ ¼ 2� 0:5� E½h20h21ðjxj4 � 2jxj2jxj2Þ�

¼ Eðh20h21C42;xÞ
ð20Þ
(2) As the length of the code matrix is equal to 2, the trans-
mitted symbols in a different code matrix are indepen-
dent. The fourth-order cumulants of Al are equal to
zero at delay-vectors ½0; 0; 2; 2� and ½0; 0; 5; 5�.

CAl

40;rðkÞ½0; 0; 2; 2Þ� ¼ CAl
40;rðkÞ½0; 0; 5; 5� ¼ 0 ð21Þ
The fourth-order cumulants of ST3 at different delay-

vectors can be deduced as follows:

(1) The fourth-order cumulants of ST3 at a delay-vector

½0; 0; 1; 1� are expressed as
CST3
40;rðkÞ ¼ cum½YðkÞYðkÞYðkþ 1ÞYðkþ 1Þ�

¼ E½Y2ðkÞY2ðkþ 1Þ� � E½Y2ðkÞ�E½Y2ðkþ 1Þ�
� 2Eð½YðkÞYðkþ 1Þ�Þ2

¼ 1

4
fEðh20h21x4Þ þ 2E½h21h22ðjxj4 � 2jxj2jxj2Þ�

þ 2E½h20h21ðjxj4 � 2jxj2jxj2Þ�g
ð22Þ
(2) The fourth-order cumulants of ST3 at a delay-vector
½0; 0; 2; 2� are expressed as
CST3
40;rðkÞ ¼ cum½YðkÞYðkÞYðkþ 2ÞYðkþ 2Þ�

¼ E½Y2ðkÞY2ðkþ 2Þ� � E½Y2ðkÞ�E½Y2ðkþ 2Þ�
� 2Eð½YðkÞYðkþ 2Þ�Þ2

¼ 1

4
fEðh20h21x4Þ þ 2E½h20h22ðjxj4 � 2jxj2jxj2Þ�g

ð23Þ

(3) As the length of the code matrix is equal to 4, the fourth-

order cumulants of ST3 at a delay-vector ½0; 0; 5; 5� are
equal to zero.

CST3
40;rðkÞ½0; 0; 5; 5� ¼ 0 ð24Þ
Table 2 Theoretical values of the fourth-order cumulants

C40;rðkÞ at different delay vectors (QPSK modulation).

STBCs C40;rðkÞ

s1 ¼ 0; s2 ¼ s3 C42;rðkÞ

SM 1 0

2 0

5 0

Al 1 1
Examples of moments and cumulants corresponding to

different signal constellations are provided in Table 1. In
Table 1, PSK refers to phase shift keying, QAM refers to
quadrature amplitude modulation, and QPSK refers to quad.

Where mab;x ¼ Eðxa�bðx�ÞbÞ denotes the ða; bÞ moment

corresponding to the signal constellation.

C42;x ¼ Eðjxj4Þ � 2ðEðjxj2ÞÞ2 and C21;x ¼ Eðjxj2Þ represent the

ð4; 2Þ cumulant and ð2; 1Þ cumulant corresponding to the sig-
nal constellation respectively.
e 1 Moments and cumulants values for various signal

tellations.

meter QPSK 8PSK 16-QAM 64-QAM

¼ C21;x 1 1 1 1

�1 �1 �0.68 �0.619
The conclusion in Section 3 can be reached that the fourth-
order cumulants at different time delays-vectors present non-
null values that depend on the transmitted STBCs. For QPSK

modulation, the theoretical values of the fourth-order cumu-
lants for SM, Al, ST3 and ST4 are provided in Table 2.

4. Blind classification of STBCs by decision tree and hypothesis

testing

In this section, we propose a classifier for blind recognition of

4 linear STBCs, which are introduced above. The automatic
classification of these STBCs is accomplished by using a deci-
sion tree.

4.1. The estimated values of fourth-order cumulants

In the practical applications of signal processing, the fourth-

order cumulants can be estimated from the limited length
received signals. Given the observed data rðkÞ; k ¼
1; 2; . . . ;K, the estimation of the fourth-order cumulants can
be expressed as

Ĉ40;rðkÞ ¼ m̂40;rðkÞðs1;s2;s3Þ� R̂rðkÞðs1ÞR̂rðkÞðs3 � s2Þ
� R̂rðkÞðs2ÞR̂rðkÞðs3 � s1Þ� R̂rðkÞðs3ÞR̂rðkÞðs2 � s1Þ ð25Þ

where R̂rðkÞðs1Þ can be defined as

R̂rðkÞðs1Þ ¼ mrðkÞðs1Þ ¼ 1

K

XK�1

i¼0

rðiÞrðiþ s1Þ ð26Þ

By using Eqs. (25) and (26), Ĉ40;rðkÞ can be obtained as

Ĉ40;rðkÞ ¼ m̂40;rðkÞðs1;s2;s3Þ� m̂rðkÞðs1Þm̂rðkÞðs3 � s2Þ
� m̂rðkÞðs2Þm̂rðkÞðs3 � s1Þ� m̂rðkÞðs3Þm̂rðkÞðs2 � s1Þ

¼ 1

K

XK�1

i¼0

rðiÞrðiþ s1Þrðiþ s2Þrðiþ s3Þ

� 1

K2

XK�1

i¼0

rðiÞrðiþ s1Þ
XK�1

i¼0

rðiÞrðiÞþ ðs3 � s2Þ

� 1

K2

XK�1

i¼0

rðiÞrðiþ s2Þ
XK�1

i¼0

rðiÞrðiÞþ ðs3 � s1Þ

� 1

K2

XK�1

i¼0

rðiÞrðiþ s3Þ
XK�1

i¼0

rðiÞrðiÞþ ðs2 � s1Þ

ð27Þ
2 0

5 0

ST3 1 1.25

2 0.75

5 0

ST4 1 1.75

2 1.50

5 0.75



Fig. 2 Distribution of Ĉ40;rðkÞ of STBCs at delay-vector ½0; 0; 2; 2�
at SNR = 20 dB.
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4.2. Decision tree

From transmission, the theoretical values of fourth-order
cumulants are obtained due to the derivation in Section 3.
For the 4 STBCs under consideration, the theoretical values

of fourth-order cumulants are reported on Table 2. By analyz-
ing Table 2, we propose a new method to blindly classify the
STBCs with the decision tree in Fig. 1. The ST4 is recognized
by the non-null value of fourth-order cumulants at delay-

vector ½0; 0; 5; 5�. The presence of the ST3 is then detected from
the non-null value of the fourth-order cumulants at delay-
vector ½0; 0; 2; 2�. Subsequently, the fourth-order cumulants at

delay-vector ½0; 0; 1; 1� are used to discriminate Al from SM.

At each node of the tree, the nullity of Ĉ40;rðkÞ is tested. In an

experiment, Ĉ40;rðkÞ can be estimated and the test of nullity

accomplished by a hypothesis testing.

4.3. Detection of null values using hypothesis testing

From the data in Table 2, we propose a new method to blindly
classify the STBCs by detecting the non-null value of the
fourth-order cumulants at different delay vectors. The detec-

tion of the non-null values can be performed by the following
hypothesis testing:

Hypothesis H 0: Ĉ40;rðkÞ ¼ 0

Hypothesis H 1: Ĉ40;rðkÞ–0

According to central limit theorem, Ĉ40;rðkÞ is an asymptot-

ically normal estimator of Ĉ40;rðkÞ. The interceptor is composed

of a single receiver antenna. Fig. 2 presents a histogram of

Ĉ40;rðkÞ for a wireless communication using ST3 and QPSK

modulation.

The fourth-order cumulants Ĉ40;rðkÞ are subjected to an

asymptotically normal distribution under assumption H0.

The knowledge of the distribution of Ĉ40;rðkÞ under assumption

H0 permits one to set the threshold. The threshold, n, is
obtained from the probability of false alarm(PFA), defined by:

PFA ¼
Z 1

n

ffiffiffiffiffiffiffiffiffiffi
1

2pd2

r
e
�ðx�lÞ2

2d2 dx ð28Þ
Fig. 1 Decision tree for classification of 4 STBCs.
where, under assumption H0, l and d are mean value and vari-

ance respectively. Taking the inverse function of Eq. (28) leads

to n. Hypothesis H0 is selected if Ĉ40;rðkÞ < n, otherwise,

hypothesis H1 is selected.
The average probability of correct classification pðkjkÞ, can

be expressed as

Pc ¼ 1

4

X
k2X

pðkjkÞ ð29Þ
5. Simulation results

5.1. Simulation setup

1000 Monte Carlo trials were performed to evaluate the perfor-

mance of the proposed algorithm. SM, Al, ST3 and ST4 were
considered in simulations. Unless specifically indicated, QPSK

modulation was used where K ¼ 8192 and PFA ¼ 10�2. The
received signal was affected by additive white Gaussian noise

(AWGN) with variance r2
w. Channel was set to a frequency-

flat Nakagami-m fading channel, with m ¼ 3 and

Eðjhij2Þ ¼ 1; i ¼ 0; 1; 2; 3. SNR was set to 10 lg
Nt

r2
w

� �
. Two per-

formancemeasures were used: the average probability of correct
classification, whichwas addressed inEq. (29), and the probabil-
ity of correct classification pðkjkÞ; k 2 X.

5.2. Performance evaluation

Fig. 3 presents the simulation results for the probability of cor-

rect classification over the Nakagami-m fading channel for
m ¼ 3 .Note that the probability of correct classification for
Al, ST3 and ST4 is dependent on SNRs but not SM. For Al,
the probability of correct classification is close to 1 at a SNR

equal to �3 dB. For ST3, the probability of correct classifica-
tion is close to 1 at a SNR equal to 2 dB. For ST4, the prob-
ability of correct classification is close to 1 at a SNR equal to

6 dB. Therefore, the proposed algorithm performs well in low
SNR scenarios. Al shows better performance than ST3 and
ST4 at a low SNR. The fourth-order cumulants of Al, ST3

and SM are subject to Gaussian distribution at delay-vector
½0; 0; 5; 5� and their trails have some overlap on the distribution



Fig. 5 Effect of the probability of false alarm on Pc.Fig. 3 Probability of correct classification pðkjkÞ.
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of Ĉ40;rðkÞ of ST4. Therefore, in the hierarchical recognition of

STBCs, the recognition of ST4 at first node is disturbed due to
the existence of the other STBCs.

5.3. Influence of the number of received samples K

Fig. 4 illustrates the classification behavior of a single receiver
antenna interceptor with received samples equal to 8192, 4096,

2048, 1024 and 512 respectively. The simulation conditions as
follows: the SM, Al, ST3 and ST3 are under consideration and

PFA ¼ 10�2. In each case, the average probability of correct

classification reaches its maximum at a SNR equal to 5 dB.
With K ¼ 8192, the average probability of correct classifica-
tion shows better performance at a SNR less than 5 dB. With
K ¼ 8192, the average probability of correct classification is

close to 1 at a SNR equal to 4 dB. The average probability
of correct classification is enhanced by a greater number of
received samples. This improvement is due to a more accurate

estimation of the fourth-order cumulants Ĉ40;rðkÞ.

5.4. Influence of the probability of false alarm

Fig. 5 presents the performance of the proposed algorithm
with respect to the probability of false alarm with a single

receiver antenna interceptor receiving 2048 samples. In four
cases, the average probability of correct classification shows
better performance when the probability of false alarm equals

10�2. The analysis is described as follows: Ĉ40;rðkÞ is a Gaussian
Fig. 4 Effect of the number of received samples K on Pc .
distribution; higher probability of false alarm leads to a lower
threshold, therefore, the range of the interval ½lþ n; 2l� n� is
enlarged and the performance of classification is enhanced.

5.5. Influence of the modulation scheme

We have illustrated the behavior of a proposed algorithm for
four complex modulation schemes: 16-QAM, 64-QAM, 8-
PSK and QPSK. The simulation conditions as follows: the

SM, Al, ST3 and ST3 are under consideration, PFA ¼ 10�2,

K ¼ 2048 and m ¼ 3. Fig. 6 shows performance with respect
to modulation scheme. We find that classification performance
is dependent on the M-QAM modulation but not M-PSK

modulation. The explanation for this phenomenon concerning
modulation scheme is described as follows: According to Sec-
tion 3, the performance of the proposed algorithm is deter-

mined by the Euclidean distance between the fourth-order

cumulants Ĉ40;rðkÞ and zero, which improves as the distance

increases. The fourth-order cumulants are related to C42;x,

which increases as C42;x increases. C42;x is independent on the

M-PSK constellations, whereas it decreases as M increases

for M-QAM constellations.

5.6. Influence of m for Nakagami-m channel

Fig. 7 presents the performance of the proposed algorithm

with respect to m for an interceptor with a single receiver
antenna and 2048 samples. The simulation conditions as
Fig. 6 Effect of the modulation scheme on Pc.



Table 3 Effect of SNR on Pc for proposed algorithm, FOLP-

A, FOLP-B, and FOLP-C.

SNR(dB) Pc

Proposed algorithm FOLP-A FOLP-B FOLP-C

�10 0.7640 0.5000 0.5000 0.5000

�5 0.7880 0.5100 0.5100 0.5100

0 0.9570 0.5250 0.6000 0.5100

5 0.9970 0.8500 0.9100 0.6700

10 1.0000 0.9600 1.0000 0.9250

15 1.0000 1.0000 1.0000 0.9220

20 1.0000 1.0000 1.0000 0.9300

Table 4 Effect of SNR on Pc for proposed algorithm and

algorithm in Ref. 15

SNR(dB) Pc

Proposed algorithm Algorithm in Ref. 15

�10 0.6375 0.2510

�5 0.7543 0.2530

0 0.9555 0.4521

5 0.9988 0.8610

10 1.0000 0.9920

15 1.0000 1.0000

20 1.0000 1.0000

Fig. 7 Effect of m on Pc.
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follows: the SM, Al, ST3 and ST3 are under consideration and

PFA ¼ 10�2 .The variance of the channel coefficients increases
for lower m values, which affects the value of the variance of

Ĉ40;rðkÞ, thus leading to erroneous results.

5.7. Performance comparison

Fig. 8 compares the average probability of correct classifica-
tion with the algorithms mentioned in Refs. 14,15 FOLP-A,

FOLP-B and FOLP-C represent these algorithms in Refs. 14,
respectively. These algorithms14,15 are sensitive to Gaussian
noise and perform unsatisfactory at a SNR less than 5 dB.

In addition, the algorithms mentioned in Ref. 14 merely dis-
criminate between spatial multiplexing and Alamouti coding.
The proposed algorithm performs well even at a SNR equal

to 0 dB. This is due to the employment of the fourth-order
cumulants, which are not sensitive to Gaussian noise.

We compare the performance of the proposed method with
algorithms in Refs. 14,15 in detail below. The simulation condi-

tions are different than in the Refs. 14,15 Ref. 14 investigated
SM and Al signals for classification, and it did not involve
the general STBCs. Ref. 15 investigated 4 STBCs. Table 3

and Table 4 compare the average probability of correct classi-
fication Pc, over Nakagami-m fading channel, m ¼ 3, for dif-
ferent values of SNR of the proposed algorithm and those

algorithms in Refs. 14,15 For Table 3 and Table 4, the number
of symbols are set to 1024 and 8192 respectively. The proposed
algorithm exhibits superior performance, especially at a lower
SNR.
Fig. 8 Comparison of algorithms in Refs. 14,15
In Table 5 and Table 6, the effect of the number of received
symbols K on Pc at SNR= 10 dB is presented for the pro-

posed algorithm and the algorithms in Refs. 14,15 Increasing
the number of symbols results in a performance improvement
for the proposed algorithm due to a more accurate estimate of

the fourth-order cumulants Ĉ40;rðkÞ. It is worth noting that the

proposed algorithm outperforms those in Refs. 14,15

Table 7 and Table 8 present the modulation scheme effect
on Pc at SNR = 10 dB for the proposed algorithm and the
algorithms in Refs. 14,15 The proposed algorithm is indepen-

dent of M for the M-PSK modulation ðM P 4Þ; it degrades
slightly as M increase for M-QAM modulation. It should also
be noted that less K is needed to attain a classification perfor-

mance for M-PSK ðM P 4Þ similar to that for M-QAM mod-
ulation. For example, for K ¼ 2048, Pc ¼ 0:9980 and
Pc ¼ 0:9940 for the proposed algorithm, while Pc ¼ 0:8500
and Pc ¼ 0:7800 results from FOLP-C with 16-QAM and 64-
QAM respectively. Therefore, the proposed algorithm outper-
forms those in Refs. 14,15(see Tables 7 and Table 8).

Table 9 and Table 10 present the effect of m on Pc at

SNR= 10 dB for the proposed algorithm and the algorithms
in Refs. 14,15 The proposed algorithm exhibits a lower sensitiv-
ity to m when compared with the algorithms in the Refs. 14,15
Table 5 Effect of the number of symbols on Pc for proposed

algorithm, FOLP-A, FOLP-B, and FOLP-C.

K Pc

Proposed algorithm FOLP-A FOLP-B FOLP-C

512 0.9908 0.9600 0.9500 0.8300

1024 1.0000 0.9700 0.9700 0.9300

2048 1.0000 0.9800 0.9800 0.9800

4096 1.0000 1.0000 1.0000 1.0000



Table 6 Effect of the number of symbols on Pc for proposed

algorithm and algorithm in Ref. 15

K Pc

Proposed algorithm Algorithm in Ref. 15

2048 0.9680 0.8650

4096 0.9948 0.9452

8192 1.0000 0.9900

Table 11 Effect of PFA on Pc for proposed algorithm and

FOLP-A.

PFA Pc

Proposed algorithm FOLP-A

10�2 1.0000 1.0000

10�3 1.0000 1.0000

10�4 0.9970 1.0000

10�5 0.9875 1.0000

Table 7 Effect of modulation scheme on Pc for proposed

algorithm, FOLP-A, FOLP-B, and FOLP-C.

Modulation Pc

Proposed

algorithm

FOLP-A FOLP-B FOLP-C

QPSK 1.0000 0.9900 0.9900 0.9800

8-PSK 1.0000 0.9900 0.9900 0.9800

16-QAM 0.9980 0.9600 0.9800 0.8500

64-QAM 0.9940 0.9400 0.9700 0.7800

Table 8 Effect of modulation scheme on Pc for proposed

algorithm and algorithm in Ref. 15

Modulation Pc

Proposed algorithm Algorithm in Ref. 15

QPSK 1.0000 0.9910

8-PSK 0.9933 0.9910

16-QAM 0.9400 0.8980

64-QAM 0.9320 0.8950

Table 10 Effect of the Nakagami-m on Pc for proposed

algorithm and algorithm in Ref. 15

m Pc

Proposed algorithm Algorithm in Ref. 15

1 0.9958 0.8750

3 1.0000 0.9870

Table 9 Effect of the Nakagami-m on Pc for proposed

algorithm, FOLP-A, FOLP-B, and FOLP-C.

m Pc

Proposed algorithm FOLP-A FOLP-B FOLP-C

1 0.9835 0.8400 0.8750 0.7500

3 1.0000 0.9900 0.9500 0.9050
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Table 11 presents the effect of PFA on Pc at SNR = 10 dB
for the proposed algorithm and the algorithm in Ref. 14 The
two algorithms exhibit similar performance.

6. Conclusions

This paper proposes a novel method for blind classification of

STBCs based on the fourth-order cumulants. It shows that the
fourth-order cumulants of the STBCs exhibit non-null values
that depend on the transmitted STBCs. The detection of non-

null values is performed through hypothesis testing, and auto-
matic classification is done by decision tree. The proposed algo-
rithm is evaluated for the classification of 4 STBCswith different

code lengths: SM, Alamouti coding, and two kinds of orthogo-
nal STBCs. The proposed algorithm operates well even at a low
SNR with a single receiver antenna. The performance is

enhanced by increasing the number of received samples. Addi-
tional experiments show that the probability of false alarm,
modulation scheme and different Nakagami-m fading channels
also influence the average probability of correct classification.
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