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Abstract

d-Disjunct matrices, d-separable matrices and d-separable matrices are well studied in various problems including group testing,
coding, extremal set theory and, recently, DNA sequencing. The implications from the first two matrices to the last one are well
documented. This paper gives an implication of the other direction for the first time.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nonadaptive group testing, or pooling designs as in biology terminology, has been intensively studied recently due
to its application to biological experiments (see [1,3] for general references). Three types of binary matrices have been
found to be major tools in understanding and constructing pooling designs: we give their definitions. Consider a binary
matrix M with strictly greater than d columns. Then M is:

d-separable if no two sets of d columns can have the same boolean sum,

d-separable if no set of x columns can have the same boolean sum as another set of y columns if both x and y do
not exceed d and

d-disjunct if no column < the boolean sum of any other d columns.

Here < is in the vector sense, i.e., for two vectors V = (vy, v2, ..., v) and V' = (v], v}, - - -, v;), V < V'if and only
if v; <vj forall 1 <i<r.

These matrices have been studied elsewhere under other names. The d-separable matrix was first studied by Erdds
and Moser [5] for d =2. Their problem is to determine the maximum number of columns a 2-separable matrix can have
given ¢ rows (the problem is still open). Frankl and Fiiredi [6] called a d-separable matrix a union-free hypergraph by
treating rows as vertices and columns as edges of a hypergraph (then the boolean sum of columns becomes the union
of edges).

The d-separable matrix was first studied by Kautz and Singleton [8] as a special kind of code named U D4 (uniquely
decipherable code of order d). The d-disjunct matrix was also first studied by them under the name of ZF Dy,
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(zero-false-drop code of order d). The latter was also called a d-cover-free family by Erdés et al. [4], and called a
t-complete design [2] if it is the incidence matrix of an incomplete block design.

Let n denote the number of columns in the given matrix. It is easily seen from definitions that d-separable (d-
separable, d-disjunct) implies k-separable (k-separable, k-disjunct) for 1 <k < d < n. The following relations are also
well known [3]:

d + 1-separable = d-disjunct = d-separable => d-separable.

In particular, d-disjunct = d-separable with the option of dropping an arbitrary row.

Note that the relations between the three types of matrices miss a link from d-separable to k-disjunct or k-separable
for some k < d. In this paper we provide such a link, but not as strong as we like, i.e., k is not large enough. Therefore
the value of our link is not in its practicality in constructing efficient k-disjunct or k-separable matrices from known
d-separable matrices, but rather in calling awareness to the existence of such a link, so that further research can improve
on 1t.

2. The main results
Let B(S) denote the boolean sum of a set S of columns.
Theorem 1. Let M be a d-separable matrix. Then M is k + 1-separable, 1 <k <d — 1, if and only if M is k-disjunct.

Proof. Sufficiency: Suppose to the contrary that there exist two distinct sets S and S’ of columns in M, |S|<k + 1,
|S’| <k + 1, such that B(S) = B(S’). By the d-separable property of M, we may assume |S| < |S'| <k + 1. Then there
exists a column C € §'\S. Since C < B(S’), we obtain C < B(S), which violates the k-disjunct property of M.
Necessity:
Suppose M is not k-disjunct, i.e., there exist a column C and a set S of k other columns such that C < B(S). Then
B(S) = B(S’) where ' = SU{C} and |S], |S'| <k + 1. Hence M is not k + 1-separable. []

We next give a construction showing how to convert a separable matrix to a disjunct matrix by adding tests and
reducing d.

Theorem 2. Let M be 2d-separable. Then there exists a d-disjunct matrix by adding at most one row to M.

Proof. If M is d-disjunct, then we are done. Suppose it is not. Then there exist a column C and a set S of d other
columns such that C < B(S). Add a row R which has a 1-entry at C and a O-entry at each columns of S to break up
C < B(S) in M. Of course, there may exist C’ and §’, also with d columns, such that C' < B(S’) in M. Then we break
it up by using R in the same fashion. However, what we need to show is that this procedure of setting the entries in
R is not self-conflicting, i.e., there does not exist a column C such that C < B(S), yet on the other hand C € S’ while
B(S")>C’ # C (since then C must have a 1-entry from C < B(S), and a 0-entry from B(S") > C").

Suppose to the contrary that there exist C, C’, S, S’ as described above with | S| <d, |§’|<d in M. Define

So={C'tUSuU¥S,

S1=S0\{C},

Sy = So\{C'}.
Then

[Sol =s<2d + 1,

[S1]=s—1<2d,

1S5 =5 — 1<2d.
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The fact |S;| = s — 1 follows from C € Sy, since C € §’. Note that S| # S, but they have the same cardinality
which is at most 2d. We now show B(S7) = B(S»), thus violating the assumption of 2d-separability (which implies
(s — 1)-separability).

Since the only column in S} but not in S, is C’, whose 1-entries are covered by S’ which is in Sz, B(S1) < B(S2).
On the other hand, the only column in S, but not in S; is C, whose 1-entries are covered by S which is in Sj. Hence
B($2)<B(S1). U

Theorem 3. Let M be 2d-separable. Then there exists a d + 1-separable matrix by adding at most one row to M.

Proof. Theorem 3 follows from Theorems 2 and 1. [

3. Some impacts

A binary matrix M could be viewed as the incidence matrix of tests versus items, i.e., the rows are indexed by tests,
the columns by items and the entry m;; of cell (i, j) is 1 if test i contains item j, and O otherwise. Let 7 (d, n) denote
the minimum number of tests for a d-disjunct matrix with n items, and let #(d, n) and f (d, n) denote the counterparts
for d-separable and d-separable matrix. It is well known [3] that

O(d? log n/log d)<t(d,n)<d? log n.

Since d-disjunctness is stronger than d-separability or d-separability, the upper bound of 7(d, n) remains an upper
bound of #4(d, n) and t5(d, n). Ijowever, the lower bound is not preserved. Currently, there is no good argument for
lower bounds of #;(d, n) and t;(d, n) except

ts(d, n) >0(d log n)

from the simple-minded argument that the number of distinct d-subsets, (2), cannot exceed the number of distinct out-
comes, 2'. Theorem 3 shows that £,(d, n), £ (3, n) and z(d, n) have the same lower bound in the order of magnitude, i.e.:

Theorem 4. t,(d, n) >t,(d, n)>0(d? log n/log d).

In a sequential group-testing algorithm, the tests are done sequentially which means we can use outcomes from
previous tests to determine what to test next. Let ¢/ (d, n) or t'(d, n) denote the minimum number of tests required to
identify the d or d positive columns among n columns. Hwang et al. [7] proved:

Theorem 5. ¢'(d,n) —t'(d, n)<1.

It is easy to see that 7 (1, n) — t4(1, n) <1, but otherwise, nothing is known about the difference. Setting d = 1 in
Theorem 3, we obtain:

Corollary 6. #,(2,n) — 1,2, n) < 1.
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