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SUMMARY

Dolichol is an obligate carrier of glycans for N-linked
protein glycosylation, O-mannosylation, and GPI an-
chor biosynthesis. cis-prenyltransferase (cis-PTase)
is the first enzyme committed to the synthesis of
dolichol. However, the proteins responsible for
mammalian cis-PTase activity have not been delin-
eated. Here we show that Nogo-B receptor (NgBR)
is a subunit required for dolichol synthesis in yeast,
mice, and man. Moreover, we describe a family
with a congenital disorder of glycosylation caused
by a loss of function mutation in the conserved C ter-
minus of NgBR-R290H and show that fibroblasts iso-
lated from patients exhibit reduced dolichol profiles
and enhanced accumulation of free cholesterol
identically to fibroblasts from mice lacking NgBR.
Mutation of NgBR-R290H in man and orthologs in
yeast proves the importance of this evolutionarily
conserved residue for mammalian cis-PTase activity
and function. Thus, these data provide a genetic
basis for the essential role of NgBR in dolichol syn-
thesis and protein glycosylation.

INTRODUCTION

Nogo-B receptor (NgBR) was identified via expression cloning as

a protein that interacts with theN terminus of Nogo-B, also called

reticulon-4b (Miao et al., 2006). NgBR is a polytypic membrane

protein, and its C-terminal domain shares significant homology

with two gene products: (1) NUS1, a gene in yeast required for

survival and N-glycosylation (Harrison et al., 2011; Yu et al.,

2006) and (2) cis-prenyltransferases (cis-PTase), including genes

in yeast (RER22 and SRT1), a human ortholog, (hCIT, also called
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dehydrodolichol diphosphate synthase [DHDDS]), and bacterial

undecaprenyl pyrophosphate synthase (uppS) (Sato et al., 1999;

Schenk et al., 2001; Surmacz and Swiezewska, 2011). In lower

organisms, single subunit cis-PTases such as UPPS catalyze

the condensation reactions of isopentenyl pyrophosphate (IPP)

with farnesyl pyrophosphate (FPP) to synthesize linear poly-

prenyl pyrophosphate with specific chain lengths. Polyprenyl

pyrophosphate is dephosphorylated into polyprenol and then

reduced by a polyprenol reductase to produce dolichol (Canta-

grel et al., 2010). In mammals, the relative contribution of

Nus1/NgBR versus Rer2/Srt1/hCIT to cis-PTase activity and

dolichol synthesis is unknown since loss of function of each

grouping of genes results in reduced glycosylation.

Congenital disorders of glycosylation (CDG) are genetic dis-

eases that represent an extremely broad spectrum of clinical

presentations due to defects in several steps of protein glycosyl-

ation. Recently, there have been several reports of genetic de-

fects in the dolichol biosynthetic pathway, such as mutations

in DHDDS/hCIT and SRD5A3 (Cantagrel et al., 2010; Kasapkara

et al., 2012; Zelinger et al., 2011; Züchner et al., 2011). DHDDS-

CDG is associated with inherited retinitis pigmentosa, a disorder

causing retinal degeneration, and DHDDS-CDG patients did not

show the other typical CDG symptoms. SRD5A3-CDG affects

the final step in dolichol synthesis. Its clinical features are typical

for CDG type 1 glycosylation disorders, including psychomotor

retardation, ocular malformations, cerebellar hypoplasia, skin

lesions, and facial dysmorphism.

Here, we characterize the dolichol biosynthesis pathway in

mice and yeast and demonstrate the necessity of both hCIT

and NgBR for dolichol biosynthesis. In addition, we describe a

unique congenital disorder of glycosylation caused by a muta-

tion in NgBR, a conserved subunit of cis-PTase. Patients

harboring a R290H mutation of NgBR have congenital scoliosis,

profound psychomotor retardation, refractory epilepsy, and

macular lesions showing retinitis pigmentosa. Thus, hCIT/

NgBR heteromers are essential, conserved components of the

machinery necessary for glycosylation reactions in mammals.
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RESULTS AND DISCUSSION

Targeted Disruption of NgBR Causes Early Embryonic
Lethality In Vivo and Defective cis-PTase Activity and
Cholesterol Levels in Isolated Fibroblasts
To examine the physiological significance of NgBR, we gener-

ated a conditional knockout mouse (Figures S1A–S1C available

online). The NgBR knockout allele (NgBRD) was generated by

crossing NgBR conditional allele (NgBRf) with a protamine Cre

driver expressed in the male germline (O’Gorman et al., 1997).

Heterozygous NgBR mice (NgBRD/+) appeared normal, and in-

tercrosses with NgBRD/+ showed no viable homozygous mice

(NgBRD/D) (Figure 1A). To determine when lethality occurred,

timed pregnancies of NgBRD/+ breeding were examined at em-

bryonic day 6.5 (E6.5) and E7.5. NoNgBRD/D embryoswere iden-

tified at these time points indicating postimplantation embryonic

lethality before E6.5 (Figures 1B and 1C). Next, we established

mouse embryonic fibroblasts (MEFs) cultured from NgBRf/f

mice using an inducible Cre-loxP system. Reduced expression

of NgBR in the tamoxifen inducible NgBR knockout (NgBR

iKO) MEF cells was confirmed by PCR and western blotting for

mRNA and protein levels, respectively (Figure S1D). NgBR iKO

MEFs showed accumulation of free cholesterol as determined

by filipin staining (Figure 1D), decreased cis-PTase activity in iso-

lated membranes (Figure 1E), and mannose incorporation into

protein (Figure 1F). Transduction of cells with lentiviral human

NgBR rescues the increase in free cholesterol (Harrison et al.,

2009) and the decrease in mannose incorporation (Figures 1E

and 1F). Furthermore, we exposed cells to lovastatin, an inhibitor

of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reduc-

tase, the rate-limiting enzyme in the synthesis of isoprenoids,

and measured cell viability using an MTT assay. NgBR iKO

MEF cells were significantly more sensitive to lovastatin than

control MEF cells (Figure 1G). Since defects in protein glycosyl-

ation can induce the unfolded protein response (UPR), activation

of the UPR pathway in wild-type (WT) and NgBR iKO MEF cells

was examined by RT-PCR for marker genes of the pathway,

including Bip, Chop, and Chac (Figure 1H). All three genes

were markedly increased in NgBR iKO MEFs, implying that

defects in dolichol synthesis and protein glycosylation were acti-

vating the UPR pathway of ER stress. Thus, NgBR is essential for

early development and cis-PTase activity in vivo.

Heteromeric Organization of cis-Prenyltransferase Is
Conserved between Fungi and Mammals
The eukaryotic cis-PTase was initially presumed to be a

homodimer based on studies of UPPS of E. coli and M. luteus

(Fujihashi et al., 2001; Guo et al., 2005). Our previous work

demonstrated that hCIT or NgBR were necessary for cis-PTase

activity (Harrison et al., 2011). However, we did not provide un-

equivocal evidence that NgBR is indispensable for enzymatic

complex formation and activity. To definitively dissect the roles

of NgBR and hCIT as components of cis-PTase activity, we char-

acterized the yeast orthologs (in S. cerevisiae and S. pombe) of

NgBR and hCIT using genetic and biochemical approaches.

We hypothesized that baker’s yeast may have two heteromeric

cis-PTase complexes: Nus1-Rer2 and Nus1-Srt1. To test this,

we generated a triple deletion strain, nus1D, rer2D, srt1D,

expressing the homomeric cis-PTase from Giardia lamblia
Cell Me
(GlcisPT) to support growth (Grabi�nska et al., 2010). Indeed,

we were able to isolate yeast cells lacking chromosomal copies

ofNUS1, RER2, and SRT1 genes but bearing instead GlcisPT on

a plasmid with a URA3 marker (Figure 2A). To examine conser-

vation of the heteromeric structure of cis-PTases, the triple dele-

tion strain was transformed with MET15 and LEU2 plasmids

bearing the cDNAs indicated in Figure 2A. As expected, viable

strains were obtained after expressing NUS1/RER2 or NUS1/

SRT1 as positive controls (Figure 2A). In addition, NUS1 is

also compatible with Sprer2 or hCIT, Spnus1 with Sprer2,

Spnus1with hCIT, and NgBR with hCIT only. Reverse-phase

thin-layer chromatography (TLC) of polyprenols generated from

membranes isolated from wild-type BY4742 or transformed

mutant cells revealed that human and S. pombe enzymes syn-

thesize polyprenols similarly to that in their parental organisms

(Figure 2B). However, the size of the dominant polyprenol pyro-

phosphate synthesized by the hybrid enzymes varied, implying

that the different gene products (NgBR/Nus1 and hCIT/Rer2/

Srt1) determined polyprenol chain length.

To examine the enzymatic activities of the gene products, we

used in vitro translation (IVT) followed by cis-PTase assays on the

above combinations of the cis-PTase components. Enzymes

present in the IVT mixture were able to incorporate 14C-IPP

into short prenols up to 6 units (Figure 2C, first column) but

were unable to synthesize longer chain polyprenyl pyrophos-

phates. Expression of Nus1, Rer2, or mixtures of IVT Nus1 with

Rer2 products in equal amounts (as shown by western blotting

in the bottom panel) did not catalyze formation of polyprenols.

Interestingly, only cotranslation of Nus1 with Rer2 and its

orthologs in S. pombe or humans formed an active cis-PTase

complex producing prenols of expected lengths (Figures 2C–

2F, lane 5), indicating that both proteins are required for a func-

tional enzyme (Figures 2D–2F). Collectively, the data support the

heteromeric structure of mammalian and yeast cis-PTase and

suggest that eukaryotic cis-PTase is assembled during transla-

tion since only cotranslation, but not mixing of the proteins,

yields active enzyme. Taken together, these data provide a clear

rationale for the role ofRER2/NUS1 and related genes in dolichol

biosynthesis and advance our understanding of this important

pathway.

A Mutation on NgBR Causes Congenital Scoliosis,
Severe Neurological Impairment, Refractory Epilepsy,
Hearing Deficit, and Visual Impairment
Recently, exome sequencing of individual families with symp-

toms of a congenital disorder of glycosylation (CDG) has led

to the discovery of mutations in DHDDS (hCIT) and SRD5A3,

genes involved in the early steps of polyprenol synthesis (Canta-

grel et al., 2010; Kasapkara et al., 2012; Zelinger et al., 2011;

Züchner et al., 2011). DHDDS-CDG is associated with inherited

retinitis pigmentosa, a disorder causing retinal degeneration,

and SRD5A3-CDG patients exhibit psychomotor retardation,

ocular malformations, cerebellar hypoplasia, skin lesions, and

facial dysmorphism. In our clinic, a family of Roma origin (Fig-

ure 3A) composed of healthy, unrelated parents and four siblings

was examined, and two siblings presented with congenital scoli-

osis, severe neurological impairment, refractory epilepsy, hear-

ing deficit, and visual impairment with discrete bilateral macular

lesions.
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Figure 1. Characterization of NgBR Knockout Mouse Embryos and Fibroblasts

(A) Genotype obtained from the progeny of heterozygous mating. No NgBRD/D embryo was detected.

(B) Embryo resorption frequencies during postimplantation development. Resorption sites were apparent at E7.5 among �25% decidua.

(C) Representative decidua of E7.5 embryo resorption sites analyzed. Decidua were obtained from NgBRD/+ 3 NgBRD/+ breeding. Decidua with embryo

contained normally developed E7.5 embryo (insert). Presumptive NgBRD/D decidua exhibit implanted site for embryo without evident embryonic material

(arrowhead).

(D) Filipin staining and quantitative representation for MEF. Filipin staining was performed 48 hr after Lenti-NgBR transduction into NgBR iKOMEF cells. U18666A

was used as a positive control for inhibition of cholesterol trafficking.

(E) Microsomal cis-PTase activity assay for NgBR iKO MEF. Enzyme activity was reduced by 83% in NgBR iKO MEF compare to control.

(F) [2-3H]-mannose labeling of proteins in mouse embryonic fibroblasts. Tunicamycin (Tm) treatment was used as a control.

(G) Statin sensitivity measured byMTT assay. Cell viability was determined byMTT assay after 16 hr exposurewith various concentrations of lovastatin (1–80 mM).

Cell viability was calculated by the following equation: MTT optical density value of treated sample / MTT OD value of nontreated sample.

(H) RT-PCR for UPR pathway genes. Relative mRNA expression to control show increased expression.

Data are representative of at least three experiments. *p < 0.05. Data are mean ± SE. See also Figure S1.
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Figure 2. Mammalian and Fungi cis-PTase Is a Heteromer Consisting of NgBR/Nus1 and hCIT/Rer2/Srt1 Orthologs

(A) The rer2D, srt1D, nus1D triple deletion strain expressingG. lamblia cis-PTase from URA3 plasmid was transformed with the respective plasmids as indicated.

The cells were streaked onto complete plates (YPD) or synthetic complete medium containing 1%5-fluoroorotic acid (FOA). The Ura3 protein, which is expressed

from the URA3 marker present in the plasmids, converts FOA to toxic 5-fluorouracil. The viable combination of genes was marked with asterisks.

(B) In vitro cis-PTase assay. Reverse-phase TLC of polyprenols frommembranes prepared fromwild-type BY4742 (WT) or triple mutant expressing the respective

plasmids for hybrid cis-PTases supporting growth of the triple knockout strain.

(C–F) Reverse-phase TLC of polyprenols from cis-PTase activity assay by Nus1/Rer2 (C), Nus1/Srt1 (D), SpNus1/SpRer2 (E), or NgBR/hCIT (F) expressed in IVT.

Assays were done according to standard conditions using 20 ml of IVT for cis-PTase activity. Reaction products were extracted and developed on high-per-

formance TLC (HPTLC) RF18 plate. Expression of the HA- or myc-tagged proteins was verified by western blotting of the reaction mix. coT, cotranslation. Data

are representative of at least three experiments.
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Proband II.3 was born at termwith intrauterine growth retarda-

tion. Muscle hypotonia was present since birth, and congenital

scoliosis and developmental delay were observed since early in-

fancy. Tonic-clonic seizures, refractory epilepsy, and recurrent

attacks of status epilepticus developed from the age of

11 months. Microcephaly (3rd centile), failure to thrive (<3rd cen-

tile), regression of psychomotor development, severe axial

hypotoniab and acral spasticity developed after discharge.

Routine laboratory tests were unremarkable, and cholesterol

level was within reference range. The boy died at the age of

29months. Histopathological findings in autopsy tissue revealed

nonspecific neuronal loss in brain cortex and cerebellum. Simi-

larly to his brother, proband II.4 had generalized hypotonia,

congenital scoliosis, and significant delay in motor milestones.

Refractory epilepsy started at the age of 7 months, and he has

been hospitalized several times with severe seizures. He lost

any social interaction, and he displays no spontaneous move-

ments. At the age of 4 years, he has microcephaly (0.6th centile),

failure to thrive (<5th centile), and marked hypertrichosis. He has

severe axial hypotonia, acral spasticity with preserved deep

tendon reflexes, pseudobulbar palsy, and central visual and
Cell Me
hearing impairment. MRI of the brain revealed severe cortical

atrophy. A complete dilated fundus examination including color

fundus photography was performed under general anesthesia.

At the age of 31months, except for an opacity located in the infe-

rior half of the right cornea, therewere bilaterally no other anterior

segment abnormalities, and the vitreous was optically clear.

There were no bone spicule pigmentations, but diffuse retinal

pigment epithelium mottling could be observed bilaterally. Optic

nerves appeared paler and retinal vessels narrower. Repeated

examination at the age of 4 years documented a development

of bilateral macular lesion showing foveal hyperautoflorescence

(Figure 3B).

The exomes of parents and both affected probands were

sequenced and searched for genetic variants in the internal

exome database, the Exome Variant Server, and 1000 Genomes

databases, and only four such variants were discovered; three

are located in the autozygous region identified on chromosome

6 and one on chromosome 21 (Table S1). Corresponding genes

were evaluated based on their potential contribution to the

clinical phenotypes, and a homozygous missense mutation

c.869G > A in the NUS1 (NM_138459) or NgBR was found. The
tabolism 20, 448–457, September 2, 2014 ª2014 Elsevier Inc. 451



Figure 3. Identification of a Conserved Mutation in the NgBR Gene in Patients with a Constellation of Symptoms Consistent with a

Glycosylation Disorder

(A) Pedigree of the Czech family. Black symbols denote affected individuals, open symbols denote unaffected parents and siblings. M/+ denotes presence (M) or

absence (+) of the mutation as defined by Sanger sequencing.

(B) Dilated fundus photograph in proband II.4 reveals a granular yellow-white lesion in the fovea, pale optic nerve, and retinal vessels with signs of attenuation.

(C) Chromatograms of NgBR genomic DNA sequences showing identified mutations in the family. Left: sequence of the unaffected individual. Middle: sequence

showing heterozygous mutation c.G869 > A in the heterozygous carrier. Right: sequence showing homozygous mutation c.G869 > A in one of the probands.

(D) Schematic representation of NgBR showing the protein primary structure, location of the p.R290H mutation, and amino acid sequence alignment of the

C-terminal part of the protein. SA, putative signal anchor; TM, putative transmembrane domain. The amino acid residues are color coded: small amino acids are

red, acidic in blue, basic in magenta, and hydroxyl with amine in green. See also Table S1.
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c.869G > A mutation was confirmed by Sanger sequencing, and

the affected probands are homozygous for this mutation,

whereas their parents and healthy siblings are heterozygous

(Figure 3C). The mutation encodes for amino acid exchange

p.Arg290His (R290H), which is located in the evolutionarily

conserved C-terminal domain of NgBR (Figure 3D) and is pre-

dicted to affect protein function with a score of 0.00 according

to SIFT and to be damaging using Polyphen. This mutation

was not reported in dbSNP, 1000 Genomes, or the Exome

variant server and was not listed in our internal exome database

(>250 exomes). Targeted genotyping of genomic DNA from 255

individuals of Roma origin identified two additional heterozygous

carriers of the c.869G > Amutation. Even though the identity and

relation status of these two carriers is unknown, this finding sug-

gests that the congenital disorder of glycosylation caused by a

loss-of-function mutation of NgBR may be relatively frequent

among the European Roma population.

NgBR R290H Mutation Triggers Defects in Cellular
Cholesterol Trafficking and Dolichol Biosynthesis
To characterize the NgBR R290Hmutation, fibroblasts were iso-

lated from control and NgBR R290H patients and we examined

the levels of NgBR mRNA, protein, and interaction of NgBR

with hCIT (Figures S3A–S3C). We did not observe any significant

differences in the migration of NgBR on SDS-PAGE or the levels

of NgBR protein compared to WT (Figure S1B). This suggests

that the translation and the subsequent processing of mutant
452 Cell Metabolism 20, 448–457, September 2, 2014 ª2014 Elsevie
NgBR protein were not altered by the presence of the mutation.

NgBR was isolated as a protein that interacted with reticulon 4B,

also called Nogo-B (Miao et al., 2006). Therefore, we examined

whether Nogo-B levels and its interaction with NgBR were

altered in carriers of the NgBR mutation. The levels of Nogo-B,

its interaction with NgBR, and the localization of Nogo-B were

not different (Figures S3D–S3F). Next, we assessed three

aspects of NgBR function, free cholesterol levels, cis-PTase

activity, and glycosylation. WT cells had little filipin-positive

free cholesterol, whereas treatment with U18666A to induce a

Niemann-Pick C (NPC) disease phenotype (Cenedella, 2009)

increased free cholesterol (Figure 4A, quantified in the right

panel). In contrast, NgBR R290H mutant cells exhibited in-

creased accumulation of free cholesterol similar to cells where

NgBR was silenced (Harrison et al., 2009). Additionally, cis-

PTase activity (Figure 4B) and mannose incorporation into pro-

teins (Figure 4C) was markedly lower in NgBR R290H fibroblasts

compared to control. We also examined defective glycosylation

of proteins in patient fibroblasts by western blotting for two

known glycoproteins, LAMP-1 and ICAM-1 (He et al., 2012;

Xiang et al., 2013). Both LAMP-1 and ICAM-1were hypoglycosy-

lated in the patient fibroblasts (Figure 4D). Thus, the NgBR

R290H mutant is a loss-of-function mutation that affects cis-

PTase function of NgBR without disrupting complex formation

with hCIT or Nogo-B. The reduced cis-PTase activity in fibro-

blasts was manifested as altered dolichol profiles in the urine

or serum as assessed by mass spectrometry of all carriers of
r Inc.



Figure 4. NgBR R290H Mutation Causes

Defects in Cellular Cholesterol Trafficking

and the Dolichol Biosynthesis Pathway

(A) Filipin staining and quantitative representation

for human dermal fibroblast cells from patients (II.3

and II.4). U18666A was used as a positive control

for inhibition of cholesterol trafficking.

(B) Microsomal cis-PTase activity using isolated

membrane from fibroblasts. Compared to wild-

type, less than 20% of activity was detected in the

patient cells.

(C) [2-3H]-mannose labeling of proteins. Cells were

incubated with [2-3H]-mannose for 4 hr, and TCA

precipitated proteins were counted by scintillation.

Tunicamycin (Tm) treatment was used as a control

for loss of [2-3H]-mannose incorporation into

newly synthesized proteins. *p < 0.05. Data are

mean ± SE, with n = 4 from three independent

experiments.

(D) Western blot analysis of LAMP-1 and ICAM-1

levels in patient fibroblasts. Total lysates were

analyzed, and the loading controls Nogo-B and

Hsp90 are shown. See also Figure S2.
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the R290H mutation (Figure S4), as recently described for

patients harboring loss-of-function mutations in DHDDS(Wen

et al., 2013).

Amino Acid at the Fourth Position from the C Terminus
of NgBR Is a Functionally and Evolutionarily Conserved
Residue
Alignment of NgBR orthologs from distantly related eukaryotic

organisms reveals a high degree of conservation at the C termi-

nus, with arginine or asparagine present at the fourth position

from the C terminus (Figure 5A). To test the evolutionary conser-

vation of this position, hCIT was expressed with NgBR or NgBR

R290H in the nus1D, rer2D, srt1D triple knockout strain. Cells ex-

pressing the NgBR R290H allele have lower cis-PTase activity

(Figure 5B), overall polyprenols (Figure 5C), and dolichol levels

as measured by MS (Figure 5D). In addition, we analyzed

S. cerevisiae and S. pombe Nus1 mutants to determine the

importance of the amino acid conservation at the fourth position

from the C terminus in NgBR orthologs. S. cerevisiae Nus1

belongs to group of fungi and plants NgBR orthologs bearing
Cell Metabolism 20, 448–457, S
asparagine instead of arginine, while

S. pombe Nus1 encodes arginine at

position 255 corresponding to the R290

in human NgBR. Therefore, we compared

cis-PTase activity of the S. cerevisiae

nus1D strain expressing wild-type Nus1,

Nus1-N372H (mimicking NgBR R290H

mutation), as well as Nus1-N372R. Also,

we expressed wild-type SpNus1 or

SpNus1-R255H in the nus1D fission yeast

strain. Mutation of the same position in

Nus1 in S. cerevisiae (Figures 5E and 5F)

and S. pombe (Figures 5G and 5H) re-

sulted in a similar loss of function. Inter-

estingly, the N372R allele of Nus1 from

S. cerevisiae affects only the chain length
of the product (Figures 5F) but not the rate of incorporation of

IPP (Figures 5E).

Recently, altered ratios of plasma and urinary dolichols were

observed in retinitis pigmentosa patients carrying the K42E

mutation in DHDDS/hCIT (Wen et al., 2013). To compare the in-

fluence of NgBR R290H and hCIT K42E mutations on cis-PTase

activity, we expressed hCIT or hCIT K42E with NgBR or NgBR

R290H in the S. cerevisiae triple knockout strain and measured

enzyme activity. Introduction of this mutant into the triple

knockout strain expressing WT NgBR reduced steady-state

cis-PTase activity to an extent similar to that of NgBR R290H ex-

pressed with WT hCIT (Figure 5I), and combining the mutations

reduced activity, further demonstrating epistasis of the gene

products.

NgBR and its orthologs are essential genes, and NgBR/hCIT

heteromers are responsible for dolichol synthesis in mammalian

cells (Figures 6A and 6B). Based on previous work, NgBR can

interact with hCIT, NPC2, and Nogo-B (Figure 6B; numbered

1–3). The interaction with NPC2 was identified by an indepen-

dent broad-based screening strategy (Harrison et al., 2009).
eptember 2, 2014 ª2014 Elsevier Inc. 453



Figure 5. Characterization of NgBR/NUS1 Mutation in S. cerevisiae and S. pombe

(A) Amino acid alignment of the C terminus of NgBR orthologs. Arginine or asparagine is present at the fourth position from the C terminus.

(B and D) Shown are the cis-PTase activity measurements (B) and total dolichol level (D) measured from rer2D, srt1D, nus1D S. cerevisiae strain expressing hCIT

and NgBR or NgBR-R290H by mass spectrometry.

(C) Reverse-phase TLC separation of cis-PTase products from rer2D, srt1D, nus1D triple deletion S. cerevisiae strain expressing the indicated constructs. About

15% of dolichol was detected in the NgBR mutant-expressing cells compared to wild-type NgBR.

(E and F) Shown are cis-PTase activity (E) and reverse-phase TLC separation (F) in S. cerevisiae nus1D strain expressing the indicated constructs.

(G and H) Shown are cis-PTase activity (G) and TLC separation of the products (H) in S. pombe nus1D strain expressing the indicated constructs. Mutated form of

NgBR or Nus1-expressing cells show reduced cis-PTase activity. Not only reduced cis-PTase product, but also shortened chain length was detected in the

mutated form of protein-expressed cells.

(I) cis-PTase activity in rer2D, srt1D, nus1DS. cerevisiae strain expressing NgBR and hCIT indicated constructs. Sampleswere not dephosphorylated prior to TLC

analysis. Data are ± SE. *p < 0.05. See also Figure S3.
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Genetic evidence for the importance of this interaction stems

from data showing that NgBR knockout MEFs and patient fibro-

blasts harboring the R290H mutation exhibit increased free

cholesterol levels. Since NPC2 is a soluble glycoprotein (Naur-

eckiene et al., 2000) and glycosylation of NPC2 is important for

its function (Chikh et al., 2004), it is feasible that in addition to

a direct stabilizing effect of NgBR on NPC2, mutant NgBR can

influence NPC2 glycosylation due to reduced cis-PTase activity

contributing to this phenotype (Figure 6B). The interaction of
454 Cell Metabolism 20, 448–457, September 2, 2014 ª2014 Elsevie
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cholesterol content and may influence intracellular signaling

pathways.

Little is known about the function of dolichol species in vivo

besides its role as a glycan carrier, although in vitro evidence

suggests that dolichol can modulate biophysical properties of

membranes and serve as a cellular antioxidant (Surmacz and

Swiezewska, 2011). Patients carrying a mutation in NgBR

demonstrated altered ratios of dolichol in urine and in blood.
r Inc.



Figure 6. Functions of the NgBR/hCIT Complex in Cellular Metabolism

(A) The NgBR and hCIT complex promotes cis-PTase activity. NgBR/hCIT catalyzes the condensation of isopentenyl pyrophosphate with farnesyl pyrophosphate

to generate a polyprenol pyrophosphate. Polyprenol diphosphate is dephosphorylated by unidentified phosphatase and reduced by polyprenol reductase

(SRD5A3) to form dolichol. Finally, dolichol is phosphorylated by dolichol kinase prior to the synthesis of dolichol-linked sugars required for glycosylation

pathways.

(B) (1) NgBR and hCIT assembly is essential for cis-PTase activity generating polyprenol pyrophosphate on the cytoplasmic leaflet of the ER membrane.

Polyprenol pyrophosphate serves as an intermediate in synthesis of dolichol-linked saccharides. Dolichol-pyrophosphate tetradecasaccharide (LLO) is indis-

pensable for protein N-glycosylation reactions. Dolichol-phosphate mannose (DolPMan) is also involved in O-mannosylation, GPI-anchor synthesis, and

C-mannosylation. (2) NgBR influences cholesterol trafficking by directly interacting with NPC2 and indirectly via modifying NPC2 N-glycosylation. (3) The

interaction between Nogo-B and NgBR does not influence glycosylation or cholesterol trafficking, and the function of this interaction remains to be clarified.
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Although altered dolichol chain length ratios are important bio-

markers in patients with mutations in hCIT/DHDDS and NgBR,

alterations in dolichol chain length are unlikely to exert a domi-

nant effect since lipid-linked oligosaccharides built on as few

as 11 dolichol units seem to be efficient substrates in N-glycosyl-

ation reactions (Grabi�nska et al., 2010; Rush et al., 2010). How-

ever, the overall lower dolichol content of cell membranes not

only directly affects glycosylation but can impair membrane

structure and, in turn, affect multiple cellular processes including

sterol biosynthesis. In summary, the development of a knockout

strain of mice, the establishment of a NgBR/hCIT reconstitution

system in yeast, and the discovery of a highly conserved muta-

tion in the NgBR mutation in humans will assist in the further

characterization of the cellular functions of this essential polyiso-

prene lipid.

EXPERIMENTAL PROCEDURES

Generation of NgBR Mouse Embryonic Fibroblasts

NgBRf/f was crossed with NgBR+/D; R26CreER (Badea et al., 2003), and

primary MEFs were prepared from E13.5 embryos. Each MEF line was derived

from an individual embryo. Isolated MEFs were immortalized using an

SV40-large-T-expressing retrovirus obtained from Genecoepiea (LP-SV40T-
Cell Me
LV105-0205) according to the manufacturer’s protocol. Immortalized cells

were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with 1%

penicillin/streptomycin containing 10% FBS. The genotypes of control MEFs

and NgBR iKO MEFs used in this study are NgBRf/+ and NgBR+/D; R26CreER.

Both cell lines were treated with 1 mM 4-hydroxytamoxifen (Sigma) for more

than 5 days to induce Cre recombination. mRNA or protein expression level

was confirmed for each experiment. All experiments with NgBRfl/fl mice

were approved by the Institutional Animal Care Use Committee at Yale School

of Medicine.

Filipin Staining

Filipin staining was performed as previously described (Harrison et al.,

2009). In brief, cells were fixed in 4% paraformaldehyde for 10 min and per-

meablized in 0.1% Triton X-100 for 5 min. Cells were then incubated with a

50 mg/ml concentration of filipin (Sigma, F4767) for 1 hr. As a positive control

for induction of cholesterol accumulation, cells were treated for 8 hr with

1 mM U18666A (EMD Biosciences). Relative intensity of filipin staining was

quantified by calculating average pixel intensity using Adobe Photoshop

according to the following equation: average filipin intensity = total intensity

above low threshold / number of pixels above low threshold (Pipalia et al.,

2006).

Microsomal cis-PTase Activity Assay

For mammalian cells, crude microsomes were prepared as described before

(Rush et al., 2010) with minor modification. cis-PTase activity in mammalian
tabolism 20, 448–457, September 2, 2014 ª2014 Elsevier Inc. 455
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cells was assayed as described before (Harrison et al., 2011) with minor

modification. For S. cerevisiae and S. pombe, membrane fraction was pre-

pared as described before (Szkopi�nska et al., 1997). cis-PTase assay using

yeast membranes was performed as described (Szkopi�nska et al., 1997)

with minor modifications. For a detailed description, please see the Supple-

mental Experimental Procedures.

[2-3H]-Mannose Incorporation

D-[2-3H]-mannose (15–30 Ci/mmol) was purchased from PerkinElmer. Cells

were grown in 6-well dishes until 80%–90% confluent. Growth medium was

replaced and incubated for 1 hr with glucose-free DMEM supplemented with

0.1 mg/ml glucose and 5% dialyzed fetal calf serum. Next, 5 mg/ml of tunica-

mycin was added to media as a control for inhibition of N-glycosylation. After

1 hr, 20 uCi/ml [2-3H]-mannose was added and incubated for 4 hr at 37�C.
Then, cells were washed with PBS and lysed in RIPA buffer. Cell lysates

were then subjected to precipitation of proteins with 10% trichloroacetic

acid (TCA) for 1 hr on ice. Precipitates were resuspended in 6 M Urea/SDS

buffer and counted by scintillation.

Coimmunoprecipitation and Western Blot Analysis

Cos7 cells were transfected using Lipofectamine 2000 (Invitrogen) according

to the manufacturer’s protocol and harvested 48 hr after transfection.

Cells were collected and lysed in IP buffer (IP buffer: 50 mM HEPES,

150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1.5 mg/ml protease inhibitor

cocktail). Lysates were cleared at 12,000 rpm, and 20 ml of anti-HA agarose

(Pierce) was used to pull down the HA-tagged protein from 1 mg of cell

lysate. After incubation for 2 hr at 4�C, agarose beads were washed with IP

buffer, resuspended in SDS loading buffer, and boiled for 5min before western

blotting.

Quantitative RT-PCR

Cells were collected in RLT buffer (QIAGEN). Total RNA were extracted using

the RNeasy mini kit (QIAGEN), and 500 ng of total RNA was transcribed using

superscript First-Strand Synthesis System with oligo dT primers (Invitrogen).

Quantitative RT-PCR was performed using iQ SYBR Green Supermix (Bio-

Rad) for the detection of fluorescence during amplification. Gapdh was used

as an internal control. Expression of target genes was normalized to that of

Gapdh using the comparative DCT method. Data are presented in relative

expression to control ± SEM.

Human Subjects and DNA Analysis

The family of Roma origin was ascertained at the Department of Pediatrics of

the First Faculty of Medicine, Charles University in Prague. Investigations were

approved by the Institutional Review Board and conducted according to the

Declaration of Helsinki principles. Written, informed consent was obtained

from all subjects. Participants provided urine and venous blood. Skin biopsy

was obtained from both affected individuals, and skin fibroblasts were

cultured according to standard protocols. Autopsymaterial has been collected

from deceased proband II.3. Genomic DNA was isolated from blood using

standard technology and analyzed as described in the Supplemental Experi-

mental Procedures.

Yeast Strains, Plasmids, and Culture Methods

S. cerevisiae strains used in these studies include: KG404-16B (nus1D/pNEV-

GlcisPT), KG405 (rer2D, srt1D, nus1D/pNEV-GlcisPT), and BY4742 and their

derivatives. The S. pombe strain used was KGSP16 (Spnus1D REP42GW-

GlcisPT). For yeast culturemethods and detailed information about the strains,

please see the Supplemental Experimental Procedures.

Analysis of Dolichols by LC-MS

Serum and urine from family members and healthy unrelated controls were

collected according to standard protocols. The samples were frozen at

�80�C until the lipid extraction and the analysis. The lipid fraction was isolated

frommembranes isolated of S. cervisiae (2 mg of proteins) or fibroblast (0.5 mg

of proteins) as described before (Grabi�nska et al., 2005), and dolichol content

was analyzed by liquid chromatography and mass spectrometry (LC-MS)

(Guan and Eichler, 2011; Wen et al., 2013). For a detailed description, please

see the Supplemental Experimental Procedures.
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