JOURNAL OF ANALYSIS AND APPLICATIONS 104, 477-480 (1984)

Sums with Curves

DANIEL M. OBERLIN*

Department of Mathematics and Computer Science, Florida State University, Tallahassee, Florida 32306

Submitted by R. P. Boas

Let $C \subseteq \mathbb{R}^2$ be a fixed compact set and let $E \subseteq \mathbb{R}^2$ be a Borel set. We form the sum $E + C = \{e + c : e \in E, c \in C\}$, which is a measurable set, and inquire as to the behavior of the two-dimensional Lebesgue measure m(E + C) as $m(E) \to 0$. If C is "thin" then we expect that m(E + C) can be made small by choosing a suitable E. It is a consequence of the theorem below that if C is a curve (continuous image of [0, 1]) which is not a line segment, then m(E + C) cannot, however, be small when compared to m(E).

THEOREM. If C is a curve and E is a Borel set, then

$$m(E+C) \ge [m(C-C) \cdot m(E)]^{1/2}/13\sqrt{2}.$$

(If $E_1, E_2 \subseteq \mathbb{R}^2$, then $E_1 - E_2$ will denote the algebraic difference $\{e_1 - e_2 : e_1 \in E_1, e_2 \in E_2\}$ while $E_1 \sim E_2$ will denote the set-theoretic difference $\{e \in E_1 : e \notin E_2\}$.) It is an amusing exercise to show rigorously that if C is not a line segment, then m(C - C) > 0. On the other hand, it is clear that if C is a line segment then there exist sets E with m(E) arbitrarily small and with m(E + C) nearly a constant multiple of m(E). The number $13\sqrt{2}$ in the statement of the theorem could be improved by a more careful analysis.

The proof of our theorem is given in Sections 1-3 below. The reader who would see the idea of the proof but wishes to avoid a few technical details can omit Sections 2 and 3.

1.

Fix a positive integer N and consider the lattice of all points (j/N, k/N) where j and k are integers. Suppose that C_N is a curve formed by connecting

* Partially supported by NSF Grant MCS-7827602-01.

DANIEL M. OBERLIN

lattice points with horizontal or vertical line segments. We will prove that

$$m(E+C_N) \ge [m(C_N-C_N) \cdot m(E)]^{1/2}/\sqrt{2}$$
 (1)

for any Borel set E.

The curve C_N is the union of a finite number of horizontal or vertical line segments each having length 1/N. Let S_h (resp. S_v) be the union of the corresponding collection of open horizontal (resp. vertical) line segments. Let $a = [m(S_h - S_v)]^{1/2}$. Then

$$a \ge [m(C_N - C_N)]^{1/2}/\sqrt{2}.$$

Let $I_1, ..., I_K$ be the intervals comprising S_h , and put

$$A_1 = I_1 - S_v;$$
 $A_k = (I_k - S_v) \sim \bigcup_{j=1}^{k-1} A_j,$ $k = 2,..., K.$

Then each A_k is of the form $I_k - S(k)$ where $S(k) \subseteq S_v$ is the union of a certain collection of open vertical line segments each having length 1/N. Let n_k be the cardinality of this collection. Then

$$m(A_k) = n_k/N^2, \qquad \sum_{k=1}^K n_k/N^2 = a^2.$$

Let λ be the measure on S_h which on the interval I_k is n_k/N times arclength. The total variation $\|\lambda\|$ of λ is a^2 . Now if $m(E + S_h) \ge a[m(E)]^{1/2}$, then (1) holds. So assume that $m(E + S_h) \le a[m(E)]^{1/2}$. The convolution $\chi_E^*\lambda(x) = \int \chi_E(x-y) d\lambda(y)$ of the characteristic function of E with the measure λ is supported on $E + S_h$. Thus, by Fubini's theorem,

$$a[m(E)]^{1/2} \leqslant \frac{\|\lambda\| \cdot m(E)}{m(E+S_h)} = \frac{1}{m(E+S_h)} \int_{\mathbb{R}^2} \chi_E^* \lambda \, dm$$
$$= \frac{1}{m(E+S_h)} \int_{E+S_h} \chi_E^* \lambda \, dm$$

From this it follows that there is some x such that

$$a[m(E)]^{1/2} \leq \chi_E^* \lambda(x) = \lambda(x-E).$$

Writing $m_1(J)$ for the linear measure of a subset J of an interval I_k , we see from the inequality above that

$$a[m(E)]^{1/2} \leq \sum_{k=1}^{K} m_1((x-E) \cap I_k) \cdot \frac{n_k}{N}.$$

Now if $J \subseteq I_k$, then $m(J - S(k)) = m_1(J) \cdot n_k/N$. Since the sets $I_k - S(k)$ are pairwise disjoint, it follows that

$$a[m(E)]^{1/2} \leq m(x-E-S_v).$$

Thus (1) holds.

2.

Let C be a fixed curve and let C_N be a polygonal curve as in Section 1 which approximates C so well that $|C(t) - C_N(t)| < 3/N$ for every $t \in [0, 1]$. (Here we identify a curve with a function which defines it.) Such a C_N is easily constructed. We will show that

$$m(C_N - C_N) \ge m(C - C)/169.$$
 (2)

Fix $c_1, c_2 \in C$ and let $d_1, d_2 \in C_N$ be such that if $e_i = c_i - d_i (i = 1, 2)$ then $|e_i| < 3/N$. Now $C_N - C_N$ is the union of a certain set of closed squares whose sides are parallel to the coordinate axes in \mathbb{R}^2 and have length 1/N. Let S be one of these squares which contains $d_1 - d_2$. Since

$$c_1 - c_2 = (d_1 - d_2) + (e_1 - e_2), \qquad |e_1 - e_2| < 6/N,$$

it follows that

$$c_1-c_2 \in \bigcup_{-6\leqslant i,j\leqslant 6} \left(S+\left(\frac{i}{N},\frac{j}{N}\right)\right).$$

Now (2) follows from

$$C-C \subseteq \bigcup_{-6\leqslant i,j\leqslant 6} \left(C_N-C_N+\left(\frac{i}{N},\frac{j}{N}\right)\right).$$

3.

Let E be a Borel set. We will show that

$$m(E+C) \ge [m(C-C) \cdot m(E)]^{1/2}/13\sqrt{2}.$$
 (3)

We begin with some reductions. First, by approximating a Borel set from inside with compact sets, it is enough to prove (3) when E is compact. Now if E is compact and if (3) is true with E replaced by each set $E_j = \{x: \operatorname{dist}(x, E) < 1/j\} (j = 1, 2,...)$, then (3) is true for E. Since each E_j is open, it is enough to establish (3) for open E. Finally, (3) is true for every

open set E if it is true whenever E is the union of a finite number of disjoint and congruent open squares. So it is enough to establish (3) for such E.

Write $E = \bigcup_{i=1}^{M} x_i + S$, where S is an open square and the translates $x_i + S$ are pairwise disjoint. Let $D(0, \delta)$ denote the open disk with center at the origin and radius $\delta > 0$. Fix a small number $\varepsilon > 0$ and let S' be any Borel subset of S such that $m(S \sim S') < \varepsilon/M$ and $S' + D(0, \delta) \subseteq S$ for some $\delta > 0$. Let N be so large that $3/N < \delta$, and let C_N be as in Section 2. Then for $t \in [0, 1]$,

$$C_N(t) + S' = C(t) + S' + C_N(t) - C(t)$$
$$\subseteq C(t) + S' + D(0, \delta) \subseteq C(t) + S.$$

Write E' for $\bigcup_{i=1}^{M} x_i + S'$. Then $C_N + E' \subseteq C + E$. From this and Section 1 it follows that

$$m(E+C) \ge [m(C_N-C_N) \cdot m(E')]^{1/2}/\sqrt{2}.$$

By Section 2 and the fact that $m(S \sim S') < \varepsilon/M$ we have

 $m(E+C) \ge [m(C-C) \cdot (m(E)-\varepsilon)]^{1/2}/13\sqrt{2}.$

Since ε was arbitrary, (3) follows.