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Let C E R * be a fixed compact set and let E c R2 be a Bore1 set. We form 
the sum E + C= {e + c: e E E, cE C), which is a measurable set, and 
inquire as to the behavior of the two-dimensional Lebesgue measure 
m(E + C) as m(E) + 0. If C is “thin” then we expect that m(E + C) can be 
made small by choosing a suitable E. It is a consequence of the theorem 
below that if C is a curve (continuous image of 10, 11) which is not a line 
segment, then m(E + C) cannot, however, be small when compared to m(E). 

THEOREM. If C is a curve and E is a Bore1 set, then 

m(E + C) > Im(C - C) . m(E)]“*/13 fi. 

(If E,,E,cR’, then E,-E, will denote the algebraic difference 
(e, - e, : e, E E,, e, E E2) while E, - E, will denote the set-theoretic 
difference (e E E, : e 65 E,}.) It is an amusing exercise to show rigorously 
that if C is not a line segment, then m(C - C) > 0. On the other hand, it is 
clear that if C is a line segment then there exist sets E with m(E) arbitrarily 
small and with m(E + C) nearly a constant multiple of m(E). The number 
13@ in the statement of the theorem could be improved by a more careful 
analysis. 

The proof of our theorem is given in Sections l-3 below. The reader who 
would see the idea of the proof but wishes to avoid a few technical details 
can omit Sections 2 and 3. 

1. 

Fix a positive integer N and consider the lattice of all points (j/N, k/N) 
where j and k are integers. Suppose that C, is a curve formed by connecting 
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lattice points with horizontal or vertical line segments. We will prove that 

m(E + C,) > [m(C, - C,) * m(E)1”*/& 

for any Bore1 set E. 

(1) 

The curve C, is the union of a finite number of horizontal or vertical line 
segments each having length l/N. Let S, (resp. S,) be the union of the 
corresponding collection of open horizontal (resp. vertical) line segments. Let 
a = [m(S, - S,)] I’*. Then 

a > [m(C,- C,)\"'/fi. 

Let Z I ,..., Z, be the intervals comprising S,, and put 

k-l 

A,=Z,-S,; Ak=(zk-S”)N u AjT k = 2,..., K. 
j=l 

Then each A, is of the form I, - S(k) where S(k) c S, is the union of a 
certain collection of open vertical line segments each having length l/N. Let 
nk be the cardinality of this collection. Then 

m(A,) = nk/N*, f n,fN*=a'. 
k=l 

Let 3, be the measure on S, which on the interval I, is n,/N times arclength. 
The total variation \(I(1 of 1 is a*. Now if m(E+ Sh)>a[m(E)]*'2, then (1) 
holds. So assume that m(E + S,) < a[m(E)] “*. The convolution 
xzA(x) = 1x,(x -u) dA(y) of the characteristic function of E with the 
measure 1 is supported on E + S,. Thus , by Fubini’s theorem, 

1 = 
m(E+ Sk> I 

x,*ldm. 
Etsh 

From this it follows that there is some x such that 

a[m(E)j"2 <@n(x)= L(x -E). 

Writing m,(J) for the linear measure of a subset J of an interval I,, we see 
from the inequality above that 

a[m(E)]"' < 2 
k=L 

m,((x-E)nZ,).?. 
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Now if JC I,, then m(J- S(k)) = ml(J) . n,/N. Since the sets I, - S(k) are 
pairwise disjoint, it follows that 

apn(E)1 l’* < m(x -E - S,.). 

Thus (1) holds. 

Let C be a fixed curve and let C, be a polygonal curve as in Section 1 
which approximates C so well that 1 C(t) - C,(t)1 < 3/N for every f E 10, 11. 
(Here we identify a curve with a function which defines it.) Such a C, is 
easily constructed. We will show that 

m(C, - C,) > m(C - C)/169. (2) 

Fix c,, c2 E C and let d, , d, E C, be such that if e, = ci - di(i = 1, 2) then 
1 e,/ < 3/N. Now C, - C, is the union of a certain set of closed squares 
whose sides are parallel to the coordinate axes in R* and have length l/N. 
Let S be one of these squares which contains d, - d,. Since 

cl - c2 = (4 - d,) + (e, - e2), le,-e,ICW, 

it follows that 

Now (2) follows from 

3. 

Let E be a Bore1 set. We will show that 

m(E + C) > [m(C - C) * m(E)]“*/13 fi. (3) 

We begin with some reductions. First, by approximating a Bore1 set from 
inside with compact sets, it is enough to prove (3) when E is compact. Now 
if E is compact and if (3) is true with E replaced by each set 
Ej = {x: dist(x, E) < llj}(j = 1,2,...), then (3) is true for E. Since each Ej is 
open, it is enough to establish (3) for open E. Finally, (3) is true for every 
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open set E if it is true whenever E is the union of a finite number of disjoint 
and congruent open squares. So it is enough to establish (3) for such E. 

Write E = uyxi + S, where S is an open square and the translates xi + S 
are pairwise disjoint. Let D(O,6) denote the open disk with center at the 
origin and radius 6 > 0. Fix a small number E > 0 and let S’ be any Bore1 
subset of S such that m(s - S’) < E/M and S’ + D(O,6) G S for some 6 > 0. 
Let N be so large that 3/N < 6, and let C, be as in Section 2. Then for 
t E [O, 11, 

C,(t) + S’ = C(t) + S’ + C,(t) - C(t) 

c C(t) + S’ t D(O,6) c C(t) t s. 

Write E’ for U~y xi + S’. Then C, t E’ c C t E. From this and Section 1 it 
follows that 

m(E + C) > [m(C, - C,y) . m(E’)] “*/fi* 

By Section 2 and the fact that m(S N S’) < E/M we have 

m(E t C) > [m(C - C) . (m(E) - &)]“‘/13 fi. 

Since E was arbitrary, (3) follows. 


