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Prediction of outcome for melanoma patients with surgically resected macroscopic nodal metastases is very
imprecise. We performed a comprehensive clinico-pathologic assessment of fresh-frozen macroscopic nodal
metastases and the preceding primary melanoma, somatic mutation profiling, and gene expression profiling to
identify determinants of outcome in 79 melanoma patients. In addition to disease stage oII at initial
presentation, the following clinical and pathologic factors were independent predictors of improved outcome
(odds ratios for survival 44 years, 90% confidence interval): the presence of a nodular component in the
primary melanoma (6.8, 0.6–76.0), and small cell size (11.1, 0.8–100.0) or low pigmentation (3.0, 0.8–100.0) in the
nodal metastases. Absence of BRAF mutation (20.0, 1.0–1000.0) or NRAS mutation (16.7, 0.6–1000.0) were both
favorable prognostic factors. A 46-gene expression signature with strong overrepresentation of immune
response genes was predictive of better survival (10.9, 0.4–325.6); in the full cohort, median survival was 4100
months in those with the signature, but 10 months in those without. This relationship was validated in two
previously published independent stage III melanoma data sets. We conclude that the presence of BRAF
mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome
in melanoma patients with macroscopic stage III disease.
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INTRODUCTION
Most melanoma patients who ultimately die of their disease
will, at some point, have metastases resected from a draining
lymph node field, and outcome in surgically resected American
Joint Committee on Cancer (AJCC) (Balch et al., 2009) Stage III
disease is highly uncertain. Only 30–40% of AJCC stage III

patients will survive beyond 5 years, and a similar proportion
will die within 1 year; however, there are at present no reliable
and validated biomarkers of outcome in this setting (Thompson
et al., 2009). The patients most likely to benefit from potentially
toxic adjuvant systemic therapy are therefore difficult to define,
and stratification of these patients for adjuvant therapy trials is
correspondingly confounded.

Protein biomarkers have prognostic value in primary
melanoma (Gould Rothberg et al., 2009; Gould Rothberg
and Rimm, 2010) and claims have been made for the utility of
more complex molecular profiles (Winnepenninckx et al.,
2006). However, it is still unclear whether the latter can
contribute validated information independent of well-defined
and more simply determined clinical and pathologic vari-
ables, such as Breslow thickness, ulceration, and mitotic rate
(Schramm et al., 2012). Several studies have reported
molecular signatures associated with prognosis in stage III
melanoma, but these studies have not taken into account the
prognostic effects of important clinical and pathologic
variables, and thus the truly independent effect of gene
expression profiles is uncertain (John et al., 2008; Bogunovic
et al., 2009a).
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Furthermore, these prior studies have not assessed the
effect, if any, of oncogenic mutations in BRAF or NRAS
that commonly occur in melanoma. This is of particular
important clinical relevance following the recent demonstra-
tion in clinical trials of the efficacy of potent inhibitors
of V600 mutant BRAF in the majority of patients with
BRAF mutant metastatic melanoma (Flaherty et al., 2010;
Chapman et al., 2011). Despite the lack of effect of
BRAF mutation on prognosis (disease-free survival) in patients
with primary melanoma (Maldonado et al., 2003; Shinozaki
et al., 2004; Akslen et al., 2005; Edlundh-Rose et al., 2006),
we hypothesized that, in those with tumors that have
metastasized, these mutations might influence the probability
or rate of further disease progression to relapse and death.
A recent analysis of a prospectively collected, consecutive
series of patients from our Institute (with no overlap
of the patient cohort with that of the current series)
provided preliminary evidence supporting this hypothesis
(Long et al., 2011).

We therefore studied a series of prospectively accrued
stage III melanoma patients. First, we established which
clinical and pathologic variables were associated with long-
term melanoma-specific survival, and showed that the
absence of BRAF mutation or NRAS mutation was indepen-
dently associated with better survival. Then we derived a
gene expression set associated with long-term survival and
established that it was equally effective as a predictor to the
combined clinical, pathologic, and mutation status variables.
A combined model incorporating clinical, pathologic, muta-
tion, and gene expression status was the most effective of all.
The gene set was validated as a predictor in the two
independent, published stage III data sets referred to above
and is strongly characterized by genes associated with
immune activation.

RESULTS
Clinical, pathologic, and mutation characteristics

The prevalence of selected clinical, pathologic, and somatic
genetic variables in the full cohort, and in the subsets selected
for more favorable (‘‘better’’) or less favorable (‘‘worse’’)
prognosis, is summarized in Table 1. Tumors in the worse
prognosis group were more likely, at the time of resection of
nodal metastases, to be large, to show extranodal spread, to
be more strongly pigmented, and to be positive for BRAF or
NRAS mutation; however, none of these differences was
significant at the 5% level. The antecedent primary tumors
also differed between the better and worse prognosis groups,
although again no individual parameter reached significance
at the 5% level: primary tumors preceding worse prognosis
tumors tended to be thicker, to have more mitoses, to be
ulcerated, to show more regression, and were less likely to
have a nodular component or to be situated in a chronically
sun-exposed site.

BRAF mutations were observed in 40.5% of tumors
overall, 52% of worse prognosis tumors, and 39% of better
prognosis tumors. NRAS mutations were observed in 37%
overall, 40% of worse prognosis, and 22% of better prognosis
tumors. No tumors carried both a BRAF and NRAS mutation.

Only two cKIT mutations were observed, with 30% of the
preceding primary tumors occurring on chronically sun-
exposed sites. PIK3CA (PI3 kinase) mutations were infrequent
in the group as a whole (3/79), and all were identified in
worse prognosis tumors. Occasional tumors were identified
with mutations in FLT3, PDGFR, and MET. ERBB4 mutations
were observed in 3.8% of tumors.

Association of clinical, pathologic, and mutation variables
with outcome
As shown in Figure 1a, multivariable logistic regression using
a random forest-based multiple resampling procedure identi-
fied the following clinical, pathologic, and mutation variables
as associated with more favorable prognosis: AJCC disease
stage oII at presentation, the presence of a nodular
component in the primary melanoma (odds ratio 8.0, 90%
confidence interval 0.51–126), and smaller cell size (6.1,
0.58–63.4) or lower pigmentation (3.1, 0.97–9.7) in the nodal
metastases. Absence of BRAF mutation (15.5, 0.49–488) or of
NRAS mutation (24.3, 0.45–313) were each strong positive
prognostic factors.

This model produced a 6-fold cross-validation error rate
of 27%.

Gene expression profiles associated with outcome
in combined model

Gene expression array data were then tested for association
with outcome, allowing for the previously established
clinical, pathologic, and gene mutation prognostic factors.
By using differentially expressed genes alone, a minimum
cross-validation error rate of 25% was achieved, using the 60
top-ranked probes, representing 46 genes (Table 2). The
prevalidated expression estimates were added as an addi-
tional variable to the clinical data and the now combined
expression and clinical data were analyzed using logistic
regression. Variables used in the model were the original six
from the clinical model and the prevalidated gene expression
variable. Figure 1b shows the final model from this part of the
analysis, which produces a 6-fold cross-validation error rate
of 23%. The combined model thus performed somewhat
better than either the clinical/pathologic/mutation profile
model or the gene expression data alone.

Notably, the effect of none of the clinical, pathologic, and
mutation variables was weakened significantly by incorpora-
tion of the gene expression variable. This indicates that the
gene expression-profiling signature (Table 2) does not
specifically reflect any of those parameters, but is an
independent prognostic variable. For example, it cannot
simply be a molecular footprint of the mitogen-activated
protein (MAP) kinase (BRAF or NRAS) pathway mutational
activation.

Figure 2 shows dendrograms based on supervised cluster-
ing using the gene expression signature, in order to visualize
its association with prognosis. Figure 3 shows the perfor-
mance of the gene expression classifier alone in predicting
survival of the full cohort of stage III patients. The patient
group in which this classifier is expressed includes all the
long-term survivors.
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Molecular subgroups revealed by unsupervised clustering are
not correlated with prognosis

In supplementary Figure S2 online, we show dendrograms of
the full Stage III tumor cohort based on unsupervised
hierarchical clustering of expression levels of the 1,000
probes with the highest variance in expression. As others
have shown in metastatic melanoma, there are distinct
subsets of tumors; however, both more favorable and less
favorable prognosis tumors are present in all these subsets, as
are BRAF and NRAS mutant tumors (data not shown).

Molecular pathways overrepresented in genes differentially
expressed by prognosis

The genes from the 60-probe expression signature associated
with a more favorable prognosis have a distinctive biological
profile that can be characterized as immune activation.
The top ten canonical biological pathway maps most
significantly enriched by that gene list, ranked from

lowest to highest map significance P-value, are shown in
Supplementary Table S1 online.

External validation of the gene expression signature

The 60-probe signature identified in this study was applied
to two independent data sets providing gene expression
and prognostic data for patients with stage III melanomas
(John et al., 2008; Bogunovic et al., 2009a). As shown
in Table 3, the signature identified in this study was
significantly associated with more favorable outcome in
both the external data sets. Owing to the limited clinical,
pathologic, and mutation data provided in those studies, the
combined model could not be tested.

DISCUSSION
The patient with AJCC stage IIIb or IIIc melanoma has a
highly uncertain prognosis (Thompson et al., 2009). Recent

Table 1. Selected characteristics of 79 AJCC stage III melanoma patients and their tumors

Variable
Whole cohort

(n=79)
Poor survival
group (n=25)

Good survival group
(n=23)

Good versus
poor (P-value)1

Age (mean) 63.4 60.0 61.3 0.76

Sex (% F) 36.7% 40.0% 43.5% 1

Survival (days) (median, range) 812 (27, 3,439) 201 (27, 362) 2,176 (1,499, 3,205) NA

Previous primary melanoma

Body site (% chronic sun exposure) 30.0% 19.0% 35.0% 0.31

Stage at diagnosis (% stage oII) 37.2% 16.0% 45.5% 0.05

Breslow thickness (median) (mm) 1.8 2 1.5 0.12

Mitotic rate (median, /mm2) 3 3 2 0.44

Histologic type (% with a nodular component) 43.8% 36.8% 50.0% 0.52

Presence of regression 47.8% 45.0% 73.7% 0.10

Ulceration 27.9% 38.1% 21.1% 0.31

Nodal tumor analyzed

Metastasis max size (median, mm) 35 45 35 0.12

Extranodal spread 42.3% 48.0% 21.7% 0.07

Cell size (large) 53.9% 58.3% 54.6% 1

Pigmentation (present) 35.1% 40.0% 27.3% 0.54

Mutation status

BRAF 40.5% 52.0% 39.1% 0.40

NRAS 36.7% 40.0% 21.7% 0.22

PI3KCA 1.3% 4.0% 0.0% 1

cKIT 2.5% 0.0% 4.4% 0.48

ERBB4 3.8% 4.0% 4.4% 1

FLT3 1.3% 0.0% 4.4% 0.48

MET 2.5% 4.0% 4.4% 1

PDGFRA 1.3% 4.0% 0.0% 1

EGFR 0.0% 0.0% 0.0% NA

Abbreviations: AJCC, American Joint Committee on Cancer; NA, not applicable.
1By Fisher’s exact test, except for: age (t-test), and Breslow thickness, mitoses, and metastasis size (Mann–Whitney).
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studies have indicated that the molecular phenotype of
metastatic melanomas, as indicated by their gene expression
profile, might help identify those with a more or less
favorable prognosis (John et al., 2008; Bogunovic et al.,
2009a; Jonsson et al., 2010). However, these studies have not
fully taken into account factors already known to influence
clinical outcome, nor have they tested for any effect of BRAF
mutations, which we have recently shown to be prognos-
tically significant in patients with metastatic melanoma (Long
et al., 2011). The latter is particularly important now that
potent inhibitors of V600 mutant-BRAF are not only available
but have revolutionized the treatment of metastatic melano-
ma (Flaherty et al., 2010; Chapman et al., 2011).

We therefore conducted a multivariate analysis that
initially constructed a model of clinical, pathologic, and
mutational determinants of outcome (time from nodal
resection to death), and then tested for any additional value
contributed by gene expression profiling. Patients were
selected from a single institution in which tumor is routinely
banked, analyzed, and correlated to systematically reviewed
characteristics of the preceding primary melanoma and to
long-term follow-up. We hypothesized that the strongest
determinants of outcome in this setting, where clinically
detectable nodal metastasis has already occurred in all
patients, would differ from those already well identified to
affect long-term survival in primary melanoma.

The analysis showed that, although better and worse
prognosis tumors tended to differ by several features of their

antecedent primary melanoma, only early stage at presenta-
tion (I or II) and the presence of a nodular component were
predictive of better survival once resectable stage III disease
was present. Other features, such as Breslow thickness,
ulceration, and mitotic count, important to prognostication in
primary melanoma, were not independently predictive when
stage, nodularity, and features of the resected stage III disease
were taken into account. This suggests that they are more
strongly associated with the probability of metastasis than
with the rate of progression of metastatic disease. The
association of a nodular component with better prognosis
might reflect a propensity for an expansile but localized,
rather than spreading, growth pattern.

MAP kinase pathway activating mutations in BRAF and
NRAS each conferred an adverse prognosis in patients with
stage III melanoma. BRAF mutation is not associated with
outcome in primary melanoma (Maldonado et al., 2003;
Shinozaki et al., 2004; Akslen et al., 2005; Edlundh-Rose
et al., 2006); however, our finding in stage III melanoma is
consistent with our recent report that BRAF mutation may be
associated with worse outcome in stage IV melanoma (Long
et al., 2011). The finding of an association of NRAS mutation
with worse outcome in the present study of patients with
stage III melanoma is consistent with preliminary results
recently reported in abstract form (Jakob et al., 2011) and
helps clarify the discrepancy between studies of BRAF in
primary and metastatic melanoma. This suggests that the
presence of MAP kinase–activating mutations provides an
essential genetic background for more rapid evolution of the
metastatic phenotype once early metastatic events have
occurred. The probability of metastasis per se is possibly less
strongly influenced by these mutations than by others present
in poor prognosis primary melanomas, and currently may be
most sensitively indicated by clinico-pathologic features such
as Breslow thickness, ulceration, and mitotic rate.

The study lacked power to assess the prognostic effect of
lower-frequency mutations, which most commonly affected
cKIT, PIK3CA, and ERBB4.

Our analysis is more definitive than previous reports of a
prognostically significant gene expression profile in meta-
static melanoma, because it was independently prognosti-
cally significant after allowing for the effect of other factors:
not only a comprehensive profile of clinical and pathologic
variables but also somatic mutations. The gene expression
signature alone had equivalent predictive power, based on
cross-validation error rates, to the combined model of
clinical, pathologic, and mutation status (stage at presenta-
tion, cell size, pigmentation, BRAF mutation, NRAS muta-
tion). A model combining these clinical, pathologic, and
molecular data performed best to predict outcome; however,
the gene expression signature alone was effective in
identifying all long-term survivors in the cohort as a whole.

The gene expression signature that performed best in the
combined model was readily characterized by a simple gene
ontology analysis as immune response gene activation.
However, it did not identify a specific molecular subset of
tumors in hierarchical clustering analysis, nor did the
subgroups evident in unsupervised clustering show any
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Figure 1. Factors independently associated with melanoma-specific survival

44 years on multivariable logistic regression analysis. (a) Model

incorporating clinico-pathologic variables* alone; (b) model incorporating

clinico-pathologic variables and signature of differentially expressed genes

(according to Tibshirani and Efron (2002)). *Stage II or stage III at presentation;

the presence of nodular histological component; large cell size; increased

pigmentation; the presence of activating BRAF or NRAS mutation.
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Table 2. Top-ranked differentially expressed genes (in alphabetical order)

Gene symbol Entrez ID Gene description Probe ID

ADAMDEC1 27,299 ADAM-like, decysin 1 ILMN_2103107

ALDH1A31 220 Aldehyde dehydrogenase 1 family, member A3 ILMN_1807439;

ILMN_2139970

ALOX5 240 Arachidonate 5-lipoxygenase ILMN_1680996

APOL3 80,833 Apolipoprotein L, 3 ILMN_1756862

BIRC3 330 Baculoviral IAP repeat-containing 3 ILMN_1776181

CCL51 6,352 Chemokine (C–C motif) ligand 5 ILMN_1773352;

ILMN_2098126

CCL8 6,355 Chemokine (C–C motif) ligand 8 ILMN_1772964

CD2 914 CD2 molecule ILMN_1695025

CD2471 919 CD247 molecule ILMN_2377669;

ILMN_1676924

CD3D1 915 CD3d molecule, delta (CD3–TCR complex) ILMN_2325837;
ILMN_2261416

CD52 1,043 CD52 molecule ILMN_2208903

CD79A 973 CD79a molecule, immunoglobulin-associated alpha ILMN_1734878

CD8A1 925 CD8a molecule ILMN_2353732;

ILMN_1768482

CXCL10 3,627 Chemokine (C-X-C motif) ligand 10 ILMN_1791759

CXCL9 4,283 Chemokine (C-X-C motif) ligand 9 ILMN_1745356

EPSTI1 94,240 Epithelial stromal interaction 1 (breast) ILMN_2388547

GBP11 2,633 Guanylate binding protein 1, interferon-inducible, 67 kDa ILMN_1701114;

ILMN_2148785

GBP2 2,634 Guanylate binding protein 2, interferon-inducible ILMN_1774077

GBP4 115,361 Guanylate binding protein 4 ILMN_1771385

GBP5 115,362 Guanylate binding protein 5 ILMN_2114568

GIMAP4 55,303 GTPase, IMAP family member 4 ILMN_1748473

GZMA 3,001 Granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine esterase 3) ILMN_1779324

GZMB 3,002 Granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1) ILMN_2109489

HLA-DPA1 3,113 Major histocompatibility complex, class II, DP alpha 1 ILMN_1772218

HLA-DQA1 3,117 Major histocompatibility complex, class II, DQ alpha 1 ILMN_1808405

HLA-DRB3 3,125 Major histocompatibility complex, class II, DR beta 3 ILMN_1717261

HLA-DRB4 3,126 Major histocompatibility complex, class II, DR beta 4 ILMN_1752592

IGJ 3,512 Immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides ILMN_2105441

IRF8 3,394 Interferon regulatory factor 8 ILMN_1666594

IRX3 79,191 Iroquois homeobox 3 ILMN_1811468

LCP1 3,936 Lymphocyte cytosolic protein 1 (L-plastin) ILMN_1662932

LOC652493 652,493 Ig kappa chain V-I region HK102-like ILMN_1739508

LOC652694 652,694 Similar to Ig kappa chain V-I region HK102 precursor ILMN_1680274

LYZ 4,069 Lysozyme ILMN_1815205

MAGEC2 51,438 Melanoma antigen family C, 2 ILMN_2088876

MS4A6A 64,231 Membrane-spanning 4-domains, subfamily A, member 6A ILMN_1797731

PLEK 5,341 Pleckstrin ILMN_1795762

PLEKHB1 58,473 Pleckstrin homology domain containing, family B (evectins) member 1 ILMN_1783231

PMEL 6,490 Premelanosome protein ILMN_1665994

QPCT 25,797 Glutaminyl peptide cyclotransferase ILMN_1741727

Table 2 Continued on following page
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relationship with prognosis. This contrasts somewhat with the
data of Jonsson et al. (2010), who have made a
related observation in stage IV melanoma. However, their
signature was derived and tested differently: they first
observed that a distinct subset of tumors was characterized
by immune activation, and then showed that the expression

of a selected panel of immune activation genes was
associated with survival.

We have recently shown, by a systematic review and
detailed cross-validation of all reported prognostically
significant gene expression signatures in metastatic melano-
ma, that immune response activation and MAP kinase

Table 2. Continued

Gene symbol Entrez ID Gene description Probe ID

RAC2 5,880 Ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) ILMN_1709795

RGS1 5,996 Regulator of G-protein signaling 1 ILMN_1656011

STAT11 6,772 Signal transducer and activator of transcription 1, 91 kDa ILMN_1691364;

ILMN_1690105

TSPAN10 83,882 Tetraspanin 10 ILMN_1656194

UBD 10,537 Ubiquitin D ILMN_1678841

VCAM1 7,412 Vascular cell adhesion molecule 1 ILMN_2307903

1Gene identified among the top-ranked differentially expressed genes from two separate probes.
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Figure 2. Supervised hierarchical clustering gene expression based on the 60-probe (46 gene) signature with strongest association with prognosis in 48

American Joint Committee on Cancer (AJCC) stage III melanoma patients.
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activation via NRAS are common features of all these
signatures (Schramm et al.,2012). Importantly, the gene
expression signature identified in the present study was
shown to be associated with better outcome in two
independent stage III melanoma data sets (John et al., 2008;
Bogunovic et al., 2009a), although our full model could not
be tested because comprehensive clinico-pathologic data
were not analyzed or reported in those studies.

In summary, we have derived a model that is effective in
identifying patients with stage III melanoma who will survive
long term after nodal resection, and those who will not.

Unlike prior studies, the model takes account of clinical,
pathologic, gene mutation, and gene expression data and, to
the best of our knowledge, has identified the previously
unreported key negative prognostic effect of MAP kinase
activating mutations, as well as a positive effect of a gene
expression signature indicating immune response activation.

MATERIALS AND METHODS
Specimens, clinical, and pathologic data

The study was conducted according to Declaration of Helsinki

Principles. Tumor samples were obtained from the Melanoma

Institute Australia (MIA) Biospecimen Bank, a prospective collection

of fresh-frozen tumors accrued with written informed patient consent

and Institutional Review Board approval (Sydney South West Area

Health Service institutional ethics review committee (Royal Prince

Alfred Hospital (RPAH) Zone) Protocol No. X08-0155/HREC 08/

RPAH/262, No. X11-0023/HREC 11/RPAH/32, and No. X07-0202/

HREC/07/RPAH/30) since 1996 through MIA, formerly the Sydney

Melanoma Unit (Carter et al., 2010). Samples eligible for this study

(n¼ 79) were obtained from lymph node specimens in which

macroscopic tumor was observed, obtained from patients believed

to be without distant metastases at the time of tumor banking based

on clinical examination and computerized axial tomographic

scanning of the brain, chest, abdomen, and pelvis. Specimens were

macrodissected at the time of banking and subsequently reviewed to

meet minimum criteria for tumor cell content (480%) and amount

of necrosis (o30%).

Banked fresh-frozen nodal melanoma metastasis samples se-

lected for analysis were reviewed by a pathologist (Richard A.

Scolyer) and scored for the following parameters: % of nontumor

cells, % of necrosis, degree of pigmentation, predominant cell

shape, and cell size of the most cellular portion of the tumor, as

previously described (Viros et al., 2008). Linked pathologic data

were obtained for number of nodes involved, largest nodal

metastasis size, and the presence of extranodal spread. Linked

clinical and pathologic data were obtained from the MIA melanoma

research database for any previous primary melanoma, including the

following: age, sex, stage at diagnosis, body site (classified by pattern

of sun exposure: chronic/continuous, intermittent, rarely exposed),

the presence of an associated nevus, degree of solar elastosis in the

peritumoral skin, Breslow thickness (mm), Clark level, histologic

melanoma subtype, and the presence of regression, ulceration,

vascular, or lymphatic invasion. In cases in which more than one

previous primary melanoma had been diagnosed (n¼ 16), the one

with greatest Breslow thickness was designated the index melanoma

determining prognosis; in all but four cases this was also the most

probable melanoma to have given rise to the banked metastatic

tumor on clinical and anatomic grounds.

Genotyping and transcriptome analysis

DNA was extracted from 20–30 mg tumor tissue sample using the

QIAamp DNA mini kit (Qiagen, Clifton Hill, Victoria, Australia) with

RNAse digestion on the column. Briefly, tissue was pulverized using

liquid nitrogen, and then incubated with Buffer ATL (Qiagen) and

proteinase K for 96 hours at 56 1C for complete digestion. Somatic

mutation profiling was conducted using the Sequenom OncoCarta

v1.0, MelaCarta v1.0, and MassARRAY mass spectroscopy (Thomas

et al., 2007).
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Figure 3. Melanoma-specific survival in 79 American Joint Committee on

Cancer (AJCC) stage III patients according to the presence or absence of a

favorable 60-probe (46 gene) signature. KM, Kaplan–Meier.

Table 3. Results of external validation of gene
expression signature on previously published data sets

Independent validation,
logFC used to rank
genes from the two

public data sets

Feature selection

method

Number of

selected genes

John et al.

(2008)

Bogunovic

et al. (2009b)

2-Fold change1 111 40.001 0.004

2-Fold change using

robust modeling2
141 40.001 0.003

Bss/Wss 60 0.290 0.980

Median robust method 60 40.001 0.038

Abbreviations: Bss, between sum of squares; Wss, within sum of squares.
1This was performed with the package limma where log(M) 41 was
selected; where M is represents the logFC of the coefficient estimates to
the linear model y=Xb+e (see Materials and Methods).
2Robust fold change was calculated as per the fold change case, but using
robust linear modeling.
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Transcriptome analysis
Total RNA was extracted from 20–30 mg of fresh frozen tissue. Tissue

samples were homogenized using a high-speed agitation polytron

blender (Kinematica, Luzern, Switzerland) in the presence of Trizol.

The RNA was isolated and purified with an RNeasy purification kit

(Qiagen RNeasy purification kit; Qiagen) with DNAse I digestion on

the column. The quality of the RNA preparations was assessed using

the Agilent 2100 Bioanalyser (Agilent Technologies, Palo Alto, CA).

RNA integrity scores were 48 for all the samples analyzed.

cRNA amplification and labeling with biotin were performed

using the Illumina TotalPrep RNA amplification kit according to the

manufacturer’s directions (Ambion, Austin, TX) with 250 ng total

RNA as input material. Gene expression analysis was performed

using the Sentrix Human-6 v3 Expression BeadChips (Illumina, San

Diego, CA) and BeadStation system from Illumina according to the

manufacturer’s instructions.

Expression BeadChip using array annotation based on R-2.11.0

and illuminaHumanv3.db. Quality control was performed on all chips

using R/Bioconductor and the lumi package (www.bioconductor.

org). Data normalization was performed using a variance-stabilizing

transform and quantile normalization as implemented in the lumi

package for R/Bioconductor. To reduce false positives, unexpressed

genes (detection P-value 40.01) were removed, reducing the number

of probes analyzed from 48,802 to 26,085.

Statistical analysis

The clinical, pathologic, mutation, and gene expression data sets

were interrogated systematically to identify a combined model

predictive of melanoma-specific survival after resection of macro-

scopic AJCC stage III disease. First, the distribution of survival times

was analyzed and more favorable (‘‘better’’) and less favorable

(‘‘worse’’) prognosis groups were defined as having time from

surgery to death from melanoma greater than 4 years with no sign of

relapse (n¼ 23) or less than 1 year (n¼ 25), respectively, as shown in

Supplementary Figure S1 online.

A model predicting better survival in the absence of gene

expression information was then derived. Clinical and pathologic

data comprised 19 continuous, discrete, and categorical variables

with an overall 10.4% proportion of missing datum. Multiple

imputation was applied using Amelia II (King et al., 2001) with five

imputed data sets constructed. For each of the five complete

data sets, logistic regression was applied with variables reduced

using the Bayesian information criterion. The five models were

aggregated using their mean coefficient value with an inclusion fre-

quency of 50%. The final model contained six variables: stage at primary

diagnosis, nodular histology, BRAF mutation status, NRAS mutation

status, tumor cell size, and tumor cell pigmentation (Model 1).

To identify differentially expressed gene probes according to

prognostic groups, gene probes were selected by ranking them

using the ‘‘median robust method’’, i.e., by absolute difference in

the groups’ medians for each probe. The optimal number of

expressed probes classifying the tumors by prognostic group was

derived using leave-one-out cross-validation error rate. The lowest

leave-one-out cross-validation error rate was obtained using the 60

top-ranked probes.

The clinical, pathologic, and mutation variables comprising

Model 1 were combined with the expression data as previously

described (Tibshirani and Efron, 2002). The expression data were

added to the regression in the form of a single prevalidated variable,

which had been obtained via 6-fold cross-validation using the top 60

probes ranked by the median robust method. To obtain the final

regression model, all eight coefficients (seven variables plus the

intercept) were remodeled without any variable selection (Model 2).

Confidence intervals for these coefficients were obtained, with an

inflated SE associated with multiple imputations at the 90% level.

Independent data set validations, correlating gene expression

with survival in resected stage III melanoma, were obtained from the

study by John et al. (2008) and Bogunovic et al. (2009a). Such a

validation applied a gene set test using the obtained DE gene list

from our study and evaluated whether this list was more significantly

associated with survival than random in the two published data sets

in which their genes were ranked via logFC. Other gene lists,

selected in alternate ways including fold change, fold change

modeled through robust regression, and ‘‘between sum of squares

over within sum of squares’’ were also obtained for our data set and

compared with the independent data for validation purposes. These

gene set tests were applied using the limma package in R (Ihaka and

Gentleman, 1996; Smyth, 2004).

Biological pathway analysis of genes from the 60-probe expres-

sion signature was undertaken in MetaCore (from GeneGo, CA),

identifying the most strongly represented canonical pathway maps

using the ‘‘enrichment analysis’’ workflow, default parameters.

Supervised hierarchical clustering was performed (Figure 2) using

the 60-probe gene expression signature to illustrate its association

with prognosis. Unsupervised hierarchical clustering was also

performed, based on the 1,000 probes with the greatest variance

in the cohort (Supplementary Figure S2 online). The dendrograms of

samples were created using the complete agglomeration method,

using both correlation and Euclidean distance measures.
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