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A slowly inactivating calcium current works as a calcium sensor in 
calcitonin-secreting cells 
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Calcitonin {CT)-secreting cells (C-cells) are remarkably sensitive to changes in the extracelhdar Ca2+ concentration. In order to detect the mecha- 
nism by which C-cells monitor Ca*+, we compared a C-cell line responding to Ca2+ (rMTC cells) with another one known to have a defect in 
this Car+ signal transduction (TT cells). Rises of the Ca2+ concentration caused rMTC cells to depolarize and/or elicited spontaneous action poten- 
tials. Under voltage-clamp conditions, rMTC cells showed a slowly decaying Ca2+ inward current which was sensitive to dihydropyridines but 
not to Ni2+ at a low concentration. In contrast, the ‘defective’ TT cells neither depolarized nor fired action potentials with high Ca2+; they only 
exhibited an Ni2+-sensitive, transient Ca2+ current. The data strongly suggest that the slowly inactivating Ca2+ current is a prerequisite for Ca*+- 

sensitivity of C-cells and that fast inactivating channels are not sufficient to act as sensors of the extracellular Ca2+ concentration. 

Calcitonin-secreting cell; rMTC cell; TT cell; Calcium current 

1. INTRODUCTION 

Calcitonin (CT)-secreting cells (C-cells) are preferen- 
tially located in the thyroid gland and are considered to 
play an important role in the complex regulatory net- 
work of Ca2+ homeostasis. Previous reports on the per- 
manent C-cell line rMTC [1,2] revealed a close correla- 
tion between the extracellular Ca2+ concentration and 
both the intracellular Ca2+ concentration [3] and CT 
release. The Ca2” -dependent CT release was blocked by 
nitrendipine [4] or verapamil [S], mimicked by Bay K 
8644 [4,6] and potentiated by (+)202-791 [7), In con- 
trast, C-cells of the TT-line IS], due to an unknown 
defect, are unable to respond to Ca2’, but CT secretion 
rises after electropermeabil~ation 191. Although these 
findings have suggested a prominent role of voltage- 
dependent Ca2+ channels [4,7,10] for the Ca2’ sen- 
sitivity of C-cells, no electrophysiological data suppor- 
ting this hypothesis are yet available. Here we report on 
whole cell recordings of voltage-dependent Ca2’ cur- 
rents in rMTC and TT cells. 

2. MATERIALS AND METHODS 

2.1. Cell culture 
Rat MTC cells (rMTC 44-2 C-cell line) were grown in monolayer 

culture usinn DMEM (Biochrom. Berlin. FRG) supplemented with 
15% horse &urn and 2.5% fetal calf serum (Gibci, Paisley, UK). 
Human MTC cells (TT cells, hMTC C-cell line) were grown in the 
same way except for the use of RPMI-1640 medium (Gibco, Paisley, 
UK) supplemented with 16% fetal calf serum. 

Correspondence address: J. Hescheler, Pharmakologisches lnstitut 
der Freien Universitat Berlin, Thielallee 69-73, D-1006 Berlin 33, 
FRG 

2.2. Secretion experiments 
Confluent rat and human C-cells were pr~ncubated with serum- 

free DMEM or RPM1 medium for 2 h, washed twice with PBS buffer 
and incubated again with medium containing test agents or vehicle for 
1 h. Then medium was removed and stored at - 2O*C until assayed 
for immumoreactive CT [12]. CT secretion was standardized to 
cellular protein content. 

2.3. Electrophysiology 
For electrophysiological investigations, cells were cultured on small 

glass slides (density 2-5 cells/mm2). After transfer into a chamber (0.2 
ml), the attached cells were superfused at a constant rate of about 5 
ml/min. The whole cell membrane currents were measured according 
to the method described by Hamill et al. [ 111 for special modifications 
(see 1131). The patch electrodes had an average resistance of 5 MB 
(open diameter about 1 hm), which allowed to obtain GQ seals within 
about 30 s. After disruption of the membrane patch under the tip of 
the patch pipette, a whole cell configuration was obtained, suitable 
for measuring membrane currents under voltage-clamp conditions 
(see [l 1 I). Or, alternatively and in order to avoid a major disturbance 
of the cytoplasma, e.g. change of the intracellular Ca*’ buffering 
capacity, we assessed the cytoplasma using the nystatin method 
[14,15]. 

2.4. Solutions 
External solution El contained (in mM): 135 NaCl, 1.2 CaCls, 1 

MgClr, 5.4 KC!, lOglucose and 10 Hepes (pH 7.4 with NaOH, 37’C). 
Solutions E2-E4 contained: 135 or 125 TEA-Cl, 1 MgClr, 10 glucose, 
10 Hepes @H 7.4 with TEA-OH, 37”C), TTX (200 nM) and 1.2 CaCls 
(solution E2) or 10.8 CaClz (solution E3) or 10.8 BaC12 (solution E4). 
Solutions E5-E6 contained: 135 or 125 NaCl, 1 MgCl2, 5.4 CsCl, 10 
glucose, 10 Hepes @II 7.4 with NaOH, 37”C), 200 nM TTX and 1.2 
BaCl2 (solution E5) or 10.8 BaCls (solution E6). Pipette solution 11 
contained (in mM): 90 K-aspartate, 50 KCl, 4 MgClr, 10 Hepes (pH 
7.4 with KOH, 37OC), 3 Nar-ATP and was supplemented with freshly 
prepared nystatin (100 200 fig/ml). I2 contained: 120 CsOH, 120 L- 
aspartate, 20 CsCl, 4 MgClr, 3 Naz-ATP, 10 Hepes (pH 7.4 with 
TEA-OH) and was supplemented with freshly prepared nystatin (100 
200 pg/ml). 13 contained: 100 CsCl, 40 CsOH, 4 MgClr, 3 Nar-ATP, 
10 Hepes @H 7.4 with CsOH, 37’C), 10 EGTA, 6.0 CaClz; the 
calculated free concentration of Ca2+ in this solution was 0.1 PM. 
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2.5. Statistics 
Data are presented as the meant SE. Statistical significance was 

assessed by the Wilcoxon rank sum test. 

3. RESULTS 

3.1. Secretion experiments 
Table I shows the effects of high Ca*+ and the Ca*+ 

channel agonist Bay K 8644 on CT release from rMTC 
and TT cells. Rising Ca’+ from 1.1 to 2.0 mM or adding 
10 PM Bay K 8644 increased CT secretion from rMTC 
cells but did not affect CT release from TT cells, agree- 
ing with previous reports [6,9]. 

3.2. Spontaneous action potentials 
rMTC cells exhibited resting potentials of -44.5 + 

1.6 mV (n = 38). Rising the Ca*+ concentration from 
1.2 to 1.8 mM elicited spontaneous action potentials 
(Fig. 1 1A) and/or depolarized the cells by 12.1 f 2.3 
mV (n = 9) . The action potentials evoked by high Ca2+ 
could be reversibly suppressed by the Ca2+ channel 
blocker isradipine (PN 200-l 10,l mM) (Fig. 1C). At 1.2 
mM Ca*’ , 1 mM Bay K 8644 often induced a few initial 
spikes but then led to a continuous depolarisation by 
16.3 + 2.9 mV (n= 10). Washing out Bay K 8644 
repolarized the cells (Fig. lE).In contrast, the resting 
membrane potential of TT cells was affected neither by 
high Ca*+ (Fig. 1B) nor isradipine (Fig. 1D) nor Bay K 
8644 (Fig. 1F); their resting potential stayed at - 37.9 
+ 1.8 mV (n= 13). 

3.3. C$’ currents during voltage-clamp steps 
To measure the Ca2’ currents, K+ and Na+ currents 

were blocked with Cs+ , TEA and tetrodotoxin. Under 
these conditions and with 1.2 mM Ca*+ as divalent 
charge carrier, rMTC cells exhibited slowly inactivating 
inward currents (Fig. 2A) which had a maximal current 
density of 9.3 + 0.7 pA/pF (n= 12) at - 10 mV. The 
current-voltage (Iv) relationship revealed a threshold at 
about - 50 mV and an apparent reversal potential at 30 
mV. Increasing the Ca*+ concentration to 10.8 mM 
raised the maximal current 2.5fold and shifted the 
threshold of the Iv-curve to about - 40 mV (data not 
shown). Semilogarithmic plotting of the Ca” current- 
inactivation during depolarisation pulses for 3 s [la] 
revealed two inactivation constants 71 and 72 in rMTC 

Table I 

Effects of Ca*+ and Bay K 8644 on calcitonin secretion. 

Calcitonin release 

rMTC cells TT cells 
(pg.mg protein-‘.h-‘) (ng.mg protein-‘.h-‘) 

Control 126 f 5.8 4.58 f 0.32 
10pM Bay K 8644 229 f 8.0* 4.70 f 0.27”’ 
2 mM Ca*+ 257 f 10.2’ 4.37 f 0.24”’ 

Basal Ca*+ concentration was 1.1 mM. Mean f SEM (n= 5). 
*p<o.o1; “‘not significant to control 
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Fig. 1. Effects of Ca” , a Ca” channel blocker and an agonist on 
membrane potentials in C-cells. The effects of 1.8 CM Ca*+ (Ca) (A 
and B), 1 PM isradipine (PN) (C and D) and 1 CM Bay K 8644 (Bay) 
(E and F) on membrane potentials of rMTC (left) and TT (right) cells 
are shown. The substances were added as indicated by the horizontal 
lines. Solutions: pipette solution 11 and external solution El. External 
solution El with 1.8 instead of 1.2 PM Ca’+ was applied as marked 

in (A) and (B) and throughout in (C) and (D). 

cells. With 1.2 mM Ca2+ and at 37”C, ~1 amounted to 
168 + 11 ms and 72 to 4.9 + 0.7 s (n = 5) for depolarisa- 
tion steps from - 80 to - 10 mV. 

Under 1.2 mM Ca’+, TT cells showed negligibly 
small currents. At 10.8 mM Ca2+ , transient inward cur- 
rents were detectable which completely inactivated 
within about 40 ms (Fig. 2B). Compared to the current 
of rMTC cells, the current density was about 4.5-fold 
smaller and the ZY curve was obviously shifted to the 
left. In agreement with the described properties of the 
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Fig. 2. Whole-cell recordings of Ca*+ currents in C-cells. Original 
current traces of rMTC (A) and TT (B) cells are shown during 300 ms 
long voltage clamp pulses from - 80 mV to various test potentials as 
indicated by the numbers. The membrane patch under the tip of the 
pipette was disrupted and free access to the cytoplasm was obtained. 
Solutions: pipette solution I3 for both rMTC and TT cells; external 
solutions E2 (1.2 CM Ca’+) for rMTC and E3 (10.8 pM Ca*+) for TT 
cells. Vertical and horizontal calibration marks correspond to 30 pA 

and 30 ms. Cell capacity: 12.1 pF (A) and 15.9 pF (B). 
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Fig. 3. Effect of Ba2+ on inward currents in a single rMTC cell at 
various holding potentials. The rMTC cell was voltage-clamped at the 
indicated potentials for 2 min. For the period marked in between the 
vertical arrows Bazc was raised from 1.2 mM (solution E5) to 10.8 
mM (solution E6); pipette solution 12. Horizontal arrows mark the 
zero current level. Calibration marks correspond to 15 s and 20 pA. 

2+ Fig. 4. Effects of Ca channel blockers and an agonist on Ca2+ cur- 
rents in C-cells. The effects of 10 PM Ni2+ (Ni) (A and B), 1 CM 
isradipine (PN) (C and D) and 1 CM Bay K 8644 (Bay) (E and F) on 
currents of rMTC (left) and TT (right) cells are shown. CON refers to 
the controls. Test pulses from - 60 to 0 mV and from - 80 to - 30 
mV were applied to rMTC and to TT cells, respectively. Solutions: 
Pipette solution I3 and external solution E4. Arrows mark the zero 
current level. In (A, C and E), calibration marks correspond to 20 ms 

and 100 pA, in (B, D and F) to 10 ms and 30 pA. 

Cell capacity: 14.3 pF. 

transient T-type Ca” currents [17,18], the threshold 
was about - 60 mV and the maximum (5.1 f 0.5 
pA/pF, n = 9) occurred at about - 30 mV. 

The permeability ratio of Ba2’ /Ca2+ (10.8 mM) 
amounted to 2.1 + 0.2: 1 (n = 5) for Ca2+ channels in 
rMTC cells and to 1.1 f 0.1: 1 (n = 4) for Ca2+ channels 
in TT cells. The midpoint voltage of the steady-state in- 
activation curve of the Ca2+ current as measured with 
10.8 mM Ca2+ was - 24 + 2.5 mV (n = 5) for rMTC 
cells and - 59 + 2.9 mV (n = 4) for TT cells. 

3.4. Effect of Bd’ on inward currents 

[17]. In line with these reports, the fast inactivating 
Ca2+ current of TT cells was inhibited by 65 + 3% 
(n = 5) under 10 PM Ni2+ (Fig. 4B); but the slowly inac- 
tivating current of rMTC cells was not or only minimal- 
ly affected (Fig. 4A). A reverse sensitivity was found in 
the case of dihydropyridines (Fig. 4C-F). Isradipine 
(PN 200-110, 1 PM) suppressed the Ca2+ current of 
rMTC cells by 57 + 5% (n = 6) and the Ca2+ channel 
agonist Bay K 8644 (1 PM) stimulated it by 34 + 4% 
(n = 4). Both isradipine and Bay K 8644 did not affect 
the current of TT cells (n=7). 

To provide direct evidence for a steady-state conduc- 
tivity of Ca2+ channels underlying the Ca2+ sensitivity 
of rMTC cells, we voltage-clamped C-cells at fixed 
holding potentials for several minutes and measured the 
current response to rises of Ba2+ from 1.2 to 10.8 mM. 
At - 40 mV, rMTC cells produced an inward current 
which was maximal (23.0 * 8.6 pA, n = 9) after about 
5 s and then slowly decayed. Fig. 3 3 demonstrates the 
voltage dependence of this inward current for potentials 
between - 60 to 0 mV. The elicited Ba2+ inward current 
displayed a U-shaped voltage dependence with a 
threshold of about - 50 mV. In contrast to rMTC cells, 
TT cells failed to display any inward current in 
analoguous experiments (data not shown). 

4. DISCUSSION 

3.5. Pharmacological characterization 

A major role of dihydropyridine-sensitive Ca2+ cur- 
rents for the Ca2+ sensitivity of C-cells has been sug- 
gested by the effects of Ca2+, organic Ca2’ channel 
blockers and agonists on calcitonin secretion and 
cytosolic Ca2+ concentration in C-cells. (i) The Ca2+ - 
induced calcitonin release is blocked by Ca2’ channel 
blockers [4,5, lo]. (ii) The calcitonin release is 
stimulated by Ca2+ channel openers [4,6,10,12]. (iii) 
The intracellular Ca2+ is highly dependent on the ex- 
tracellular Ca2+ concentration [3]. (iv) The intracellular 
Ca2+ rises with Bay K 8644 and falls with nifedipine [6]. 
(v) Increasing the extracellular K+ concentration causes 
a depolarisation, an increase in the cytosolic Ca2+ and 
a subsequent calcitonin release [ 1,3,19]. 

The difference between rMTC and TT cells with 
respect to their Ca2+ currents became more apparent by 

Our electrophysiological studies provide direct 

their different pharmacology. Ni2+ at low concentra- 
evidence for a voltage-dependent, dihydropyridine- 
sensitive, long lasting Ca2+ current in rMTC-cells and 

tions is known to specifically block T-type currents its essential role in the Ca2+ sensitivity of C-cells as 
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evidenced by C-cells of the ‘defective’ TT cell line which 
lack this Ca2+ current and are unable to regulate 
calcitonin secretion in response to Ca2+; the fast inac- 
tivating Ca2+ current that can be detected in TT cells 
fails to substitute as sensor of the extracellular Ca2+ 
concentration. The differing Ca2’ sensitivity of rMTC 
and TT cells cannot be attributed to species differences 
(rat and human, respectively), as normal human C-cells 
and several primary cultures of human C-cell car- 
cinoma have been shown to respond to Cati [10,20,21]. 

To monitor the extracellular Ca2+ concentration, C- 
cells need to have a steady state conductivity for Ca2+. 
Voltage-clamping rMTC cells near their resting poten- 
tial demonstrated a steady state-inward current through 
Ca2+ channels which depended on the concentration of 
the divalent charge carrier. Analyzing the Ca2+ current- 
inactivation we determined a fast (168 ms) and a slow 
inactivation time constant of 4.9 s. With physiological 
Ca2’ concentrations and at 37YJ, inactivation con- 
stants as long as 4.9 s have not been reported for other 
cells 1221, e.g. in cardiocytes, inactivation occurs within 
about 100 ms [23]. Whether the two inactivation time 
constants are due to different inactivated states of the 
Ca2+ channel [24] or the presence of different types of 
Ca2’ channels remains to be evaluated. 

C-cells are known to generate tetrodotoxin- and 
D600-sensitive action potentials [ 19,251. Ca2+ influx 
through dihydropyridine-sensitive Ca2+ channels ap- 
parently plays an important role therein. Increasing 
Ca2+ or adding Bay K 8644 induced action potentials 
and/or depolarized rMTC cells; isradipine suppressed 
the Ca2+ -evoked action potentials. In addition, the 
similarity between the activation threshold of the Ca” 
current and the resting potential of rMTC cells argues 
for a role of the slowly inactivating Ca2+ current in the 
generation of spontaneous activity (compare with [26]). 
T-type Ca2+ currents regarded to be involved in spon- 
taneous activity in other cell types 127,281 were not seen 
in rMTC cells. Moreover, TT cells which exhibited only 
fast inactivating Ca2+ currents did not display spon- 
taneous action potentials. Thus T-type Ca2+ currents 
by themselves seem not to be sufficient to generate 
pacemaking activity. 
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