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Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energymetabolism and
provides approximately 40% of the proton-motive force that is utilized duringmitochondrial ATP production. The
dysregulation of complex I function – either genetically, pharmacologically, ormetabolically induced – has severe
pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species
(ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia
in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygen-
ation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex
I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely,
however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/
deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions
like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current
knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available struc-
tural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D
transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a
strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury. This article is part
of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The aerobic catabolism of carbohydrates, lipids, and proteins by eu-
karyotes, which provides energy for cellular needs, includes the transfer
of electrons originating frommetabolites to NAD+, the universal carrier
of reducing equivalents. Complex I (NADH:ubiquinone oxidoreductase,
Type I NADH dehydrogenase) of the mitochondrial respiratory chain
catalyzes NADH oxidation by regenerating NAD+. This giant enzyme is
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located in the inner mitochondrial membrane and remarkable recent
progress in understanding its molecular structure [1–3] is reviewed in
this special issue (see especially the articles of Zickermann, Sazanov,
and Brandt). Since the mammalian enzyme is a large complex with 7
out of 44 subunits encoded inmitochondrial DNA (i.e., theNDsubunits),
genetic defects in the oxidative phosphorylation system can originate
from mutations in either nuclear or mitochondrially encoded subunits
of complex I. Complex I defects can alter energy metabolism and are
linked tomultisystemic disordersmanifested in early childhood in high-
ly metabolizing tissues like brain and heart [4].

During NADH oxidation by complex I (forward reaction), electrons
are transferred from the primary electron acceptor FMN via a chain of
FeS-clusters to ubiquinone, the hydrophobic electron carrier in the
inner mitochondrial membrane. The free energy change of this redox
reaction drives the translocation of four protons across the membrane
[5–7], contributing 40% to the formation of the proton-motive force
that is utilized by ATP-synthase for the production of ATP. Complex I
holds a key role in energy metabolism as the main consumer of NADH
in the mitochondrial matrix.

Since electron transfer from NADH to ubiquinone and proton trans-
location are spatially separated, conformational change-driven models
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of coupling are the consensus in the field [1,8–10]. At least two different
semiquinone intermediate signals were identified in complex I by
EPR [11,12], and therefore most of the proposed mechanisms include
a conformational change driven by production [3] or stabilization
(so-called E and P-states) [8] of negatively charged semiquinonemole-
cules. However, the exact coupling mechanism of energy transduction
for complex I is still not resolved.

The catalytic properties of eukaryotic complex I are profoundly
multi-facetted (see [13] for a review). The reaction catalyzed by com-
plex I is fully reversible, and at the expense of proton-motive force,
the enzyme can also transfer electrons from ubiquinol “upstream” for
NAD+ reduction (so-called reverse electron transfer (RET)). Under
physiological conditions, complex I can catalyze the production of reac-
tive oxygen species (ROS) such as superoxide and hydrogen peroxide
and can also be a target of ROS [14]. Another interesting feature of mito-
chondrial complex I from mammals is the so-called active/deactive
(A/D) transition [13,15,16]. The existence of two distinct catalytic
forms of the enzyme was shown in vitro [15,17,18], in cultured cells,
and inmouse and rat tissue under ischemic conditions [19–22]. Recent-
ly, the structural differences between the two catalytic forms as well as
the physiological role of this processwere studied in detail by our group
and by others. In this review, we aim to summarize current knowledge
on the characteristics andmechanismof the A/D transition ofmitochon-
drial complex I. In addition, this review discusses the impact of the A/D
transition on the production of ROS by complex I since the modulation
of transient “deactivation” of complex I might be a promising strategy
to prevent oxidative damage under pathophysiological situations in-
volving tissue ischemia.

2. Characterization of transition

The A/D transition,whichwas first characterized for themammalian
enzyme [15], is also evident in other vertebrates and certain yeasts but
has not been detected in prokaryotes (Rhodobacter capsulatus,
Paracoccus denitrificans, or Escherichia coli) [23,24]. During steady-
state aerobic respiration, the catalytically active form (A-form) is pre-
dominant. It couples the physiological oxidation of NADH by ubiqui-
none and proton translocation with a rapid reaction rate of
10,000 min−1. If the enzyme is incubated in vitro at physiological tem-
peratures or in situ when respiration is blocked, e.g., by lack of oxygen
(ischemia), the A-form spontaneously converts into the deactive, dor-
mant form (D-form). This form of the enzyme has a different conforma-
tion and can potentially be reactivated during slow (~1min−1) catalytic
turnover(s) of NADH oxidation by ubiquinone [15,25,26]. When tested
in vitro, the D-form demonstrates a considerable lag-phase during
Fig. 1. Subunits involved in the A/D transition ofmitochondrial complex I. (A) Relative location o
enzyme [1] (PDB ID: 4WZ7). N, Q, and P stand for NADH-dehydrogenase, Quinone reduction, an
(grey) are shown. Yellow spheres indicate the position of FeS-clusters, the positions of FMN and
subunits of the Q module and the P module. The subunits are colored individually and labelled
Horizontal transverse helix of ND5 is shown in grey for orientation. Cys-40 (in Y. lipolytica corre
the partially resolved loop of ND3 (THM 1-2ND3).
continuous assay of the NADH:ubiquinone oxidoreductase reaction.
This lag-phase represents the conformational transition of the D-form
into the A-form during slow initial catalytic turnover(s), after which
complex I becomes fully active [15,17,19]. In any given preparation of
complex I (e.g., within submitochondrial particles (SMP), there are
two different enzyme forms present as a slowly equilibrating mixture
[27,28]. The equilibrium in vitro can be rapidly shifted toward the D-
form at physiological temperatures, but the addition of both substrates
(NADH and Q) can reactivate the enzyme back into the A-form [28]. The
kinetics of the A/D transition and the diagnostic activity assays for the
determination of the A/D ratio are covered in several comprehensive re-
views [13,16,28]. We should stress that many aspects of the conforma-
tional changes during the transition (A → D or D → A) have not been
comprehensively studied and only a few structural differences between
the two enzyme forms have been identified to date. From what we
know, the A/D conformational changes affect the Q-module at the junc-
tion region between the hydrophilic N-module (where all redox centers
are localized) and the membrane proton pumping P-module (Fig. 1A).

2.1. Subunits involved

The first characterization of a structural change during the A/D tran-
sition of mitochondrial complex I was undertaken by Vinogradov's
group [29] and were based on the different sensitivities of the A- and
the D-form in bovine heart SMP to SH-reactive reagents observed
a long time ago [30]. SMP containing the A-form of the enzyme were
treated with N-ethylmaleimide (NEM), washed, and labelled with N-
fluorescein maleimide after deactivation. After crude purification of
complex I, and separation of the subunits, specific incorporation of the
fluorescence label into an unknown subunit of approximately 15 kDa
was observed [29]. This technique was further developed by Galkin
et al. using doubled SDS-PAGE [31] to unambiguously identify Cys-39
of mitochondrially encoded ND3 as the residue that determines SH sen-
sitivity of the D-form [32] (Fig. 1). The predicted matrix orientation of
the long, Cys-39-containing hydrophilic loop (THM 1-2ND3) connecting
the first and second transmembrane helices [32]was later confirmed by
the crystal structure of the prokaryotic enzyme (homologous subunit
NuoA in E. coli) [10]. This loop is an important hot spot for mutations
in complex I deficiencies. Single amino acid changes in this domain of
ND3 lead to various mitochondrial encephalopathies as well as Leigh
syndrome, indicating the significance of this loop in complex I function
or regulation [33–37]. Although Cys-39 of ND3 is highly conserved
among the eukaryotes (99% conserved over 108 sequences), its pres-
ence does not correlate with the apparent ability of complex I to under-
go the A/D transition [38].
f the hydrophilic loop ofND3 subunit (THM1-2ND3) based onX-ray structure of Y. lipolytica
d Proton translocationmodules, respectively. The relative positions of ND3 (red) and ND5
Q are assigned by respective schematic structural formulas. (B) Interface between central
with text in the same colors (ND3 red, ND1 pink, PSST blue, 49 kDa beige, 39 kDa green).
sponding to Cys-39 in the bovine enzyme) is shown as spheres at the proposed location of

Image of Fig. 1
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Despite the recent availability of partial structures of yeast and mam-
malian complex I, the exact location of the loop is not well defined, prob-
ably indicating it is highly flexible in eukaryotic enzymes [1,2]. In our
initial work, we suggested two scenarios explaining the exposure of this
region in the D-form: an intrinsic movement of the ND3 loop or changes
in position of adjacent subunits [32]. The recent structural data indicate
that the second scenario is highly unlikely and suggest that the flexibility
of this ND3 hydrophilic loop enables its exposure to the outside after de-
activation (see Supplemental Video 1S with the online version of this ar-
ticle), rendering the sensitivity of the D-form to SH-reagents.

Knowing the nature and approximate location of the critical SH-
group, we exploited a range of thiol-specific crosslinking reagents
to identify the neighboring subunits. Using a 6.8 Å SH/NH2 hetero-
bifunctional cross-linker (N-succinimidyl 3-(2-pyridyldithio) propio-
nate), a conformation-specific cross-linked product between the ND3
subunit and the accessory subunit 39 kDa (NDUFA9) was observed ex-
clusively in the D-form of the enzyme [39]. The data suggested that the
39 kDa subunit is located near the ND3 loop andmight also be involved
in the conformational change. In order to examine this further, we
applied lysine-specific fluorescence labelling, and a two-dimensional
difference gel electrophoresis approach to confirm that the 39 kDa sub-
unit is indeedmore exposed in the D-form, than in the A-form [40]. The
close proximity of the ND3 loop and 39 kDa subunit was later proven by
the X-ray structure of eukaryotic complex I [1,2]. However, it is hard to
predict what part of the 39 kDa subunit is involved since only three
quarters of this subunit was determined in the bovine structure. The
39 kDa subunit is homologous to a nucleotide-binding short-chain
dehydrogenase/reductase and bears a tightly bound NADPH molecule
that is most likely not involved in the redox reactions during steady-
state oxidation of NADH [9,41,42]. Despite earlier theoretical indications
[43] and predictions of membrane-spanning regions software (TMpred),
no association of 39 kDa subunit with the membrane was found [1,2].

Using a similar fluorescent labelling, we identified that the mito-
chondrially encoded subunit ND1 is also more exposed in the D-form
of the enzyme [40]. As later revealed in the structure of Yarrowia
lipolytica enzyme [1], not only membrane parts of ND1 and ND3 are in
close contact, but the hydrophilic loop of ND3 (THM 1-2ND3) is in fact lo-
cated above the transmembrane helixes of ND1 (Supplemental Video 1S).
Therefore, it is not surprising that amovement of theND3 loop upon the
deactivation of the enzyme coincides with the exposure of, as yet, a
non-identified part ofND1. The position of Cys-39, adjacent to four acid-
ic residues in the interhelical loop of ND1 (TMH5–6ND1), could explain
the rather basic pKa value of 10.2 determined for this thiol group in
the D-form of the bovine enzyme [29].

As shown in Fig. 1B, subunits ND3, ND1, and 39 kDa are located at
the junction between the hydrophilic and membrane arms of complex
I [1–3]. Furthermore, 39 kDa flanks the Q-module being adjacent to cat-
alytic PSST subunit and partially encloses the ND3 loop (THM 1-2ND3)
(Fig. 1B, see also Supplemental Video 1S). It is now known that mem-
brane helixes of ND3 and ND1 form the entrance to the binding pocket
for the ubiquinone molecule and that they harbour its hydrophobic tail
when the head accepts electrons from cluster N2 [1,3]. Subunits 49 kDa,
TYKY, and PSST, located at the interface between P- and N-modules, are
also involved in the formation of the Q-binding site (Fig. 1). Based on
structural data provided by Zickermann et al. [1], the D-formof complex
I represents a conformation in which the access of the ubiquinone head
group to the terminal FeS-cluster N2 is somehow restricted. Our recent
results [40], together with structural data [1–3], support the conclusion
that activation (i.e., D → A transition) is due to a concerted conforma-
tional rearrangement of ND1, ND3, and 39 kDa subunit. This might re-
sult in the formation of a functional ubiquinone-binding site in the
A-form that is able to catalyze the physiological reaction. Despite
numerous attempts utilizing various amino acid side-specific covalent
labels, we were unable to detect any subunits in the A-form that were
more exposed than in the D-form (A. Galkin, unpublished data). Since
only a small number of subunits are differentially exposed in the
D-form [32,40], it suggests rather discrete changes in shape at the
quinone-binding region. Therefore, we believe that the resting D-form
is a “relaxed” conformation of that region while activation converges
the involved subunits and the A-form corresponds to “tense” conforma-
tion of the Q-binding site. Although our hypothesis is highly speculative,
it may be helpful for further experimental work to test the proposed
mechanism. There are several questions aimed to resolve the mecha-
nism of the A/D transition:

(i) Are additional subunits in that region also involved in the A/D
transition? Based on the Y. lipolytica structure, PSST middle
alpha helix (aa 127–135) and loop β1–β2 of N-terminal β-
sheet of 49 kDa subunit closely approach the hydrophilic loop
THM 1-2ND3. However, currently, no data indicate that the posi-
tion/exposure of these subunits is affected by the A/D transition.
Either this is because respective parts of PSST and 49 kDa are bur-
ied inside the tertiary structure and are not accessible formodifi-
cation, or the conformation of these subunits does not change
during the A/D transition.

(ii) What could be the driving force of the activation? Assuming that
in the D-form the entrance to the active center is somehow
restricted [1], and there is an equilibrium between the A- and
the D-form [27], the following scenario can be suggested: a ubi-
quinone molecule, by virtue of Brownian motion, makes repeat-
ed attempts to enter the opening at the membrane part of
complex I toward the Q-binding site. If the enzyme is in equilib-
rium, switching between the A- and theD-states, one of these at-
tempts will coincide with an unrestricted state, which would
facilitate the substrate entering the hydrophobic ramp [44,45].
A slow D → A transition can be related to poorly populated con-
formational states regulated by internal dynamics of membrane
subunits at the opening where ubiquinone is able to access the
entrance pathway andpotentially accept electrons fromN2mak-
ing a “priming” redox step. Similar mechanisms are recognized
for enzymes with a buried active center [46–48], and the site
of ubiquinone reduction, located 30 Å from the opening at the
membrane arm of complex I, serves as a good example [45].
Evidently, energy released from NADH oxidation by the D-form is
used to drive the initial activation step resulting in the conforma-
tion change. However, the exact molecular mechanism that drives
the transition is not clear. The final activation step is completed
when the Q-binding site is enabled to catalyze terminal electron
transfer from N2 during steady-state reaction and a ubiquinone
molecule is present. Since reduced A-form of the idle enzyme is
converted into the D-form with the same rate [15,19], neither
NADH alone nor reduction of terminal cluster N2 itself can initiate
the activation. Furthermore, the availability of ubiquinole for
oxidized enzyme is also not sufficient for activation [19,49]. A
“priming” redox event should be considered as a main cause
of conformational changes leading to formation of the functional
Q-site. Therefore, it seems reasonable that formation of a
ubisemiquinone species within Q-binding cavity may drive slow
conformational change [1] as was suggested more than 25 years
ago [15]. This “priming” step can be considered as a slow process
partially resembling part of the catalytic cycle (one electron trans-
fer fromN2 to ubiquinone); however, it is different fromany states
that occur during the fast steady-state reaction of the A-form.

(iii) Is there any similarity between the D-form and proposed catalytic
states of the enzyme? The resemblance of the A/D transition with
the states of the enzymeoccurring during catalytic turnovermerits
special consideration. Despite progress in resolving the complex I
structure, the actual mechanism of energy transduction from the
Q-binding site toward the proton translocating subunits at the
membrane part is not completely understood and several models
for the coupling have been suggested [8,50–52]. Most likely, ener-
gy released at the final redox step of electron transfer from N2 to
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ubiquinone drives the translocation of protons by the
mitochondrially encoded subunits in the membrane. A possible
connection between a conformation occurring during the final
stages of catalytic cycle of complex I (N2 to ubiquinone electron
transfer) and the structure of the D-form is not clear. In our opin-
ion, a time point when a ubisemiquinone molecule has been al-
ready produced and subunits change from the D to the A-state
has been initiated, while the Q-pocket is not yet in a “catalytic
state”would correspond to the E-state proposed in Brandt's two-
state stabilization-change mechanism [8]. However, during this
step, the free energy released in NADH:Q reductase reaction is
not transmitted downstream to the P-modules but is instead uti-
lized for maintaining ND3, ND1, 39 kDa, and possibly 49 kDa/
PSST subunits together into functional, “tense” Q-pocket capable
of rapid catalytic turnover.
2.2. Regulation of the A/D transition

In the last 25 years, significant progress has beenmade in studying of
the regulation of the A/D transition, and a number of physiology-
relevant effectors have been identified for the mammalian enzyme.
Due to some uncertainty in the current literature, we should emphasize
the necessity to distinguish between three fundamentally different
ways of affecting the equilibrium between the A and the D form
in vitro and in situ. (i) Reversible effects on kinetics of the deactiva-
tion/activation (e.g., rate of the change): several low and highmolecular
weight ligandsmay influence the kinetics of the A/D transition. (ii) Sub-
strates availability: in steady state in the presence of limited amounts of
NADH and ubiquinone, slow flux of electrons via complex I could main-
tain the enzyme partially in the A-state, shifting A ↔ D equilibrium to
the left. (iii) Effect of irreversible covalent modifications of the D-form
that prevent reactivation: the persistent inhibition of complex I by nitric
oxide (NO) observed in [53–55] was in fact due to nitrosation of Cys-39
in the D-form by NO metabolites [56]. In vitro treatment of such modi-
fied enzyme by reducing agents (glutathione or dithiothreitol) could
reduce the critical thiol group and fully restore physiological activity.
The lifetime of Cys-39 S-nitrosation in situ and the nature of enzymatic
systems able to reverse covalent thiol modification are still obscure [22,
57]. The effect of deactivation on various covalent modifications of the
D-form is covered by Babot et al. [16].

After prolonged incubation of the idle enzyme preparation at differ-
ent temperatures, only 10% of the enzyme stays in theA-form [27]. Tem-
perature significantly decreases the time to reach equilibrium, so that
time necessary to complete the process is in the range of 5–10 min at
35 °C and as long as 60 min at 30 °C (bovine heart SMP in vitro). This
is correct only for the idle enzyme in the absence of reduced nucleotides
and ubiquinone. In conditions when complex I turnover is allowed
in vitro (e.g., in the presence of oxygen and NADH), enzyme in SMP
could be maintained in the A-form for a very long time [56]. This is
also true for intactmitochondria, which retainmatrix nucleotides: incu-
bation of such preparation aerobically at elevated temperatures unlikely
results in complete deactivation due to the slow electron transfer from
various endogenous substrates to oxygen via complex I. In practice, con-
ditions providing any slow reaction involving complex I can be used for
shifting A↔D equilibrium to the left. Therefore, several approaches can
be used to support the enzyme in the A-form at 25–35 °C: slow-
oxidizing substrate NADPH [29], substoichiometric amount of NADH
provided by the regenerating system of alcohol dehydrogenase/ethanol
[56], or NADH:fumarate reductase [19,20].

Provision of the enzyme turnover is opposite to the situation
when insufficient oxygen supply is provided in situ. In conditions
of tissue ischemia, mitochondrial redox centers are over-reduced due
to the slowing of cytochrome c oxidase. Consequently, complex I turn-
over becomes restricted by the lack of electron acceptor ubiquinone.
Accumulation of reduced ubiquinone not only decreases the availability
of substrate for the enzyme but also inhibits the physiological oxidore-
ductase activity of complex I [58,59]. In this situation, the steady-state
equilibrium in the A↔ D reaction is shifted to the right and within mi-
nutes complex I is converted into theD-form [21,60]. A similar effect can
be induced by metabolic hypoxia [61], a situation when available oxy-
gen cannot be used due to an increase in NO that competeswith oxygen
and inhibits cytochrome c oxidase [61]. More generally, the inhibition of
energy transfer downstream of complex I in situ (ROS/RNS-damage,
release of cytochrome c as well as “chemical hypoxia” by cyanide or
carbon monoxide) would strongly synergize with hypoxia to induce
the deactivation of complex I.

Several physiological low molecular weight effectors influence the
kinetics of the A/D transition. Divalent cations and alkalinisation strong-
ly inhibit the activation of enzymes from bovine [62,63] and rat heart
[64] in vitro. Recently, we analysed the effects of monovalent cations
on the rate of activation. At neutral pH (7.0–7.5), only sodium was
able to increase the rate of activation (D → A conversion) while all
other alkali cations were not. This stimulating effect of sodium was
caused not by an increase in ionic strength but probably by specific ef-
fects on membrane subunits. At alkaline pH, all tested metal ions
showed a pronounced inhibitory effect on activation, which could be
explained by an increase in ionic strength.

It has been shown over the time that lipophilic compounds such as
free fatty acids inhibit electron transport fromNADH to oxygen via com-
plex I [65,66]. Recently, it was found that palmitate affects not only
physiological NADH:Q reductase activity of complex I, but it also de-
creases the rate of activation by several orders of magnitude [25].
These intriguing effects of free fatty acids [25,63] are highly relevant in
several physiological situations. Free fatty acid content of themitochon-
drial membrane increases several fold in acute cerebral or cardiac ische-
mia [67–69]. In ischemic cardiac tissue, the deactivation of complex I
[19] occurs in the same time scale as the inhibition of β-oxidation and
accumulation of acyl-carnitines and acyl-CoAs [70]. Therefore, we ex-
pect that the A/D equilibrium in situ could be significantly modulated
by the content of fatty acid metabolites that accumulate when the oxy-
gen supply is restricted, and that the rate of deactivation in tissues is
probably higher than in vitro. The time course of complex I A → D con-
version after cardiac arrest showed a faster rate in brain when com-
pared to heart tissue [38]. Since no tissue-specific isoforms of complex
I have been characterized so far, the diverse fatty acid and lipid content
of brain and cardiac mitochondria may determine differential time
frames of the A/D transition [71].

The existence of specific high-molecular weight effectors of the A/D
transition has not been studied yet. In principle, proteins frommatrix or
intermembrane sidemay interact with complex I and affect the kinetics
of the A/D transition. Also, some of the numerous accessory subunits
of complex I could regulate the A/D transition. A suppressing effect of
methylation-controlled J protein on complex I activity observed in
[72] suggests that this protein might regulate the balance between the
two forms of the enzyme. Based on Y. lipolytica structure, subunits
NB4M and ACPM1 (B14 and SDAP orthologs in bovine) form a domain
at the base of the hydrophilic arm above the critical ND3 loop. It has
been suggested that NB4M could come in contact with the loop and
may bind so-far-unidentified factors that can regulate theA/D transition
[73].

Another important question is whether any chemical/pharmacolog-
ical compound could affect activation/deactivation of the enzyme in a
turnover-independent way. Rotenone is a classical hydrophobic inhibi-
tor of complex I that binds to the Q-pocket. It was shown that this inhib-
itor binds to the A-form of the enzyme with an almost two fold higher
affinity than to the D-form [27]. Due to this fact, rotenone had a pro-
found effect on the slow equilibration between the A- and the D-form.
Incubationwith inhibitor partially protected the enzyme against deacti-
vation and reactivated the D-form by shifting equilibrium of the A ↔ D
reaction to the left. It is possible that a bound rotenone molecule could
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act as a clamp, catching the enzyme in the A-conformation [27],
or induce activating conformational D→ A changes without a turnover.

Pharmaceutical compounds that modulate the A/D transition rate
can be of specific therapeutic interest. For a long time, metformin was
the first-line drug for the treatment of type II diabetes. It has been re-
ported that metformin, as well as some other biguanides, directly in-
hibits complex I [74–76]. Moreover, the rate of the inhibition of NADH
oxidation was significantly higher if metformin was preincubated with
the D-form than with the A-form [76]. It was suggested that the deacti-
vation of the enzyme may facilitate the binding of biguanides to
complex I in the region of the critical ND3 loop (THM1-2ND3) [76]. Anal-
ysis of direct effects of biguanides on both forms of complex I revealed
that deactivation greatly enhances the sensitivity of the enzyme toward
biguanides, leading to the inhibition of the activity [64]. Based on the
data presented in both studies, an alternative explanation is also possi-
ble. Apparent suppression of NADH-oxidase activity observed in refs.
[64,76] cannot be explained only by the inhibition of the D-form but
rather by specific effects of biguanides on the rate of activation. Similar-
ly, at alkaline pH (N8.5) and in the presence of divalent cations (1–5mM
Ca2+ or Mg2+), the rate of the D→ A transition is decreased by several
orders of magnitude [62]. Hence, the preset time frame of an NADH-
oxidase assaymight be not long enough tomonitor the complete activa-
tion of the enzyme (see also diagnostic tests for the A/D ratio determi-
nation [16]). When activation is greatly slowed, the rate of NADH
oxidation corresponds to the (small) fraction of the A-form that is pres-
ent during the initial phase of the assay.

3. ROS production by complex I and the A/D transition

Themitochondrial complex I has been recognized for decades as one
of the main sources of reactive oxygen species inside mitochondria –
largely superoxide (O2

.−) and its dismutation product hydrogen perox-
ide (H2O2) [77–86]. Complex I-related ROS production has been directly
linked to neurodegenerative diseases [87,88], oxidative damage occur-
ring during ischemia/reperfusion (I/R) [89], and aging [90,91]. Complex
I is not only a source of detrimental ROS but also a target of oxidative
and nitrosative damage in several pathological situations [14,21,53,54,
88,92]. We identified that sensitivity of complex I to redox modifica-
tions is different for the A- and D-forms [14,16,21,22,56], which makes
theA/D transition a key factor in determining enzymevulnerability dur-
ing oxidative stress. This part of the review attempts to give anoverview
of the mechanisms and circumstances that lead to complex I-related
superoxide/H2O2 production and focuses specifically on the impact of
the A/D transition and thiol redox modifications in I/R.

3.1. ROS generation by complex I

Several factors should be taken into considerationwhen interpreting
experimental data on complex I ROS production. In SMP, complex I
redox centers are exposed to the outside medium and in intact mito-
chondria, the hydrophilic part of the enzyme is in its natural environ-
ment surrounded by a highly concentrated solution of proteins and
low-molecular weight metabolites. While measuring complex I super-
oxide production is straightforward in SMP, it is technically challenging,
if not impossible, in preparations of intact mitochondria given the pres-
ence of numerous ROS-metabolizing systems. In our opinion, data obtain-
ed from complex I-mediated ROS generation in SMP and “emission” of
ROS [93] in preparations of intact mitochondria should be compared
with great caution.

Moreover, recent detailed studies in intactmitochondria revealed that
other enzymes (e.g., the dihydroliponamide dehydrogenase subunits of
PDH and OGDH complexes) are the major sources of superoxide/H2O2

in the presence of NADH-generating substrates and inhibitors of the qui-
none site [86,94,95]. This can be explained by the link between these en-
zymes and complex I via mitochondrial NADH/NAD+ pool, so that the
inhibition of complex I impedes the reoxidation of NADH, which in turn
promotes ROS generation from the dihydrolipoamide dehydrogenases.
This finding also has important implications for the oxidative damage
that occurs in mitochondria during the inhibition of complex I operating
in the forward mode. Complex I generated superoxide is completely re-
leased into the mitochondrial matrix [96,97], while the Qo-site of cyto-
chrome bc1 complex, another mitochondrial superoxide producer [98],
releases superoxide mostly into the intermembrane space (IMS) [96,
97]. In accordancewith these results, it was recently shown that complex
I and complex III ROSproduction target different protein-thiols in isolated
intact rat heartmitochondria, i.e., complex I linked ROS – induced by 2-n-
decyl-quinazolin-4-yl-amine (DQA) – only oxidized matrix and inner
membraneproteins,while complex III linkedROS– inducedby antimycin
A – also oxidized proteins of the IMS and the outer membrane [99]. Sub-
units of the PDH andOGDH complexeswere among the targets that have
been originally assigned to ROS generated at complex I [99]. Considering
the results of Brand and colleagues, these two enzymes are themain ROS
producers when complex I is inhibited at the Q-site [86,94]. Therefore, it
seemsmuchmore likely that the oxidizing ROSwere generated by the in-
trinsic dihydroliponamide dehydrogenase of those complexes than by
the flavin site of complex I. This might also apply to other proteins that
have been initially assigned as “complex I ROS targets” [99].

Inhibitory analysis is still the most common tool for the studying
production of ROS by mitochondria. Hydrophobic inhibitors like rote-
none, piercidin A, or DQA bind at the Q-pocket and do not cause a note-
worthy increase in the rate of superoxide production by purified
complex I or bovine SMP [81,82]. However, the fraction of electrons
that are transferred onto molecular oxygen is largely increased in the
presence of a quinone-like inhibitor (or in the absence of oxidized ubi-
quinone) [83]. These results seem to be in stark contrast to investiga-
tions on isolated mitochondria where hydrophobic inhibitors always
increase the rate of ROS emission, indicating that there could be
other enzymes involved in H2O2 formation [80,94,100]. An alternative
explanation is that in intact mitochondria, the redox state of the
NADH pool in the steady state (i.e., in the absence of an inhibitor), is
more oxidized than in related experiments with the isolated enzyme
or with SMP, where usually 100% NADH is applied for the “control”.
Hence, the large increase in intact mitochondria can be – at least
partially – explained by a rise of theNADH/NAD+ ratio, which largely af-
fects the ROSproduction by complex I (see below). The situation is com-
plicated by the fact that either superoxide or hydrogen peroxide (H2O2)
could be the primary reactive species produced by complex I. Of the
total ROS production, lipid-activated purified bovine heart complex I
releases 95% as superoxide [83], whereas the enzyme isolated by Hatefi
procedure produces around 80% [101].

Despite experimental data on purified enzyme, SMP, and intact mi-
tochondria, there is still no absolute consensus in the field on the site
and mechanism for ROS production by the enzyme (see the articles by
Hirst andVinogradov in this Special Issue). Complex I can operate in for-
ward and reversemode as a fully reversible proton pump [8,102] (Fig. 2,
left, bottom). Under physiological conditions, mitochondrial complex I
catalyzes the “forward” (i.e., energetically favored “downhill”) electron
transfer fromNADH provided bymatrix substrate dehydrogenases via a
chain of iron–sulfur clusters to a ubiquinone (Fig. 2, left, top). This
is coupled with translocation of protons from matrix to the inter-
membrane space. Inmembrane preparations of the enzyme (SMP or in-
tactmitochondria), it is possible to reverse this reaction (RET). Electrons
can be transferred (energetically “uphill” against the difference of redox
potentials) from ubiquinol via the FeS clusters to NAD+ andmost likely
protonmovement from intermembrane space tomatrix drives this pro-
cess. RET requires the presence of proton-motive force across themem-
brane and availability of ubiquinol (Fig. 2, left, bottom). The latter can be
produced during oxidation of succinate, 3-glycerophosphate, or acyl-
CoAs. It has been recognized that ROS production can occur under
both operation modes, albeit with different rates [80–83,103–105] and
probably also involving different sites [85,86,106,107]. Experiments
on isolated enzyme [81,83,107] showed that at ambient oxygen



Fig. 2. Superoxide generation by complex I is influenced by the direction of electron flow and the A/D transition. Under normal physiological conditions, electrons are transferred from
NADH to the Q-pool and superoxide production is low (left, top). Inhibition of complex I by Q-site inhibitors results in an increased superoxide production. Also A → D transition
should stimulate superoxide production from the flavin-site (right, top). In the RET mode, proton-motive force (PMF) drives electrons from ubiquinol “uphill” into complex I. The main
source under these conditions is still under debate and may include a contribution of the flavin site and the Q-site of complex I (left, bottom). When complex I is in the D-form,
RET-driven superoxide production is completely suppressed, because a conformational change in the nearby Q-binding pocket prevents the electron transfer to N2 (right, bottom).
FMN, FeS clusters, and ubiquinone molecules are shown schematically. Blue filling of the redox centers of complex I reflects degree of their reduction.
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concentration the rate of NADH-dependent superoxide production is
around 10–40 min−1 (Y. lipolytica and bovine complex I) [81,83]. Al-
though experimental conditions were different, these values corre-
spond to rate obtained from the enzyme in bovine SMP [82,108].

What could be sources for ROS production in complex I? Thermody-
namically, any of the eight FeS clusters of the enzyme may react with
molecular oxygen, and the most obvious candidates are low potential
cluster N1a [100] and high-potential terminal cluster N2 [101,109].
However, both FeS clusters are located at great distance from the nucle-
otide-binding site, and the inhibitory effect of NAD(P)H on superoxide
production of complex I is then hard to explain [82]. Mutations in
Y. lipolytica and E. coli affecting redox potential of cluster N1a had no ef-
fect on superoxide production [108], therefore excluding it from the list
of possible candidates. Redoxmidpoint potential of N2 is pH-dependent
in the range between pH 5.5 and 7.5 [110,111], which is too low to ex-
plain the pH profile of superoxide production of the isolated enzyme
(steep increase with alkalinization above pH 7) [81]. As it was shown
later, a decrease in the reduction state of N2 was associated with an el-
evated superoxide production and an increased signal from tightly
bound semiquinones [84]. Finally, mutant complex I from Y. lipolytica
lacking a detectable cluster N2 exhibited the same rate of ROS produc-
tion as a wild type enzyme [81]. Thus, it provides further evidence for
excluding N2 as the site of ROS production.

Tightly bound ubisemiquinoneswere proposed as a source of ROS in
complex I by several groups [80,84,112]. Since semiquinones cannot be
detected in idle enzyme [113], these intermediates of electron transfer
should only be considered in line with a final step of ubiquinone reduc-
tion during complex I steady-state activity. However, RET-induced su-
peroxide production by bovine enzyme has a potential dependence
consistent with a reduced flavin and not with a ubisemiquinone [107].
Studies with SMP and purified mitochondrial complex I from different
sources have revealed that the ratio of NADH/NAD+ determines the
rate of ROS in the forwardmode, i.e., it is highest when [NADH] N [NAD+]
[82,83,101,114]. Consistent with these results, a similar relation between
NAD(P)H oxidation state and superoxide/H2O2 production has been ob-
served in intact mitochondria [100,114,115]. The membrane potential
only has a minor effect on the initial rate of ROS production by complex
I operating in the forward mode [81,83,107,116]. It should be noted that
a steep rise in ROS emission in intact mitochondria with augmentation
of potential is most likely due to the increase of reduction state of en-
zymes redox centers as well as both NADH/NAD+ and QH2/Q ratio [117].

Most of the experimental data support the view that the reduced
FMN is the source for superoxide/H2O2 in complex I operating in the
forward mode [81–83,85,101,102,106,107]. Strong pH dependence of
the superoxide production rate and inhibitory effect of NAD+ [83] or
NADH [82] also indicate that flavin, in its reduced or semi-reduced
form, generates superoxide. Dramatic effect of point mutations within
the NADH-binding site on ROS production by bacterial enzyme also fa-
vors FMN as main site of oxygen reduction by complex I [118,119].
The rate of superoxide production in the forward mode is highest at
NADH concentrations below physiological level in the matrix [82,101,
120], which could be explained by the blocking of oxygen access to
the flavin by bound substrate nucleotides in the active site. The resolved
structure of complex I with bound nucleotide [121] suggests that NAD+

partially overlays the isoalloxazine ring of the FMN molecule that pro-
trudes into the cavity therefore hindering oxygen access.

Complex I reverse reaction is associated with higher rates of super-
oxide generation [103,104,106,122–124]. The uncoupling [82,104,117]

Image of Fig. 2


952 S. Dröse et al. / Biochimica et Biophysica Acta 1857 (2016) 946–957
or inhibition of complex II (reviewed in [125]) – which impedes the
build-up of proton-motive force or the reduction of the Q-pool –
attenuates the superoxide/H2O2 generation during RET. Rotenone-like
inhibitors acting at the Q-binding site also decrease the ROS production
in RET [82,104,106], while the same inhibitors increases ROS produc-
tion in the presence of NADH-linked substrates (Fig. 2, left, top).
Diphenyleneiodonium covalently binds to the reduced FMN [126]
and also inhibits RET-induced ROS generation in intact mitochondria
in the presence of succinate [122,127,128]. A detailed analysis by
Pryde and Hirst [107] showed that both hydrophobic inhibitors of the
quinone site and inhibitors of the flavin site (rotenone/piericidin and
ADP ribose, respectively) suppressed RET-driven superoxide produc-
tion by coupled bovine heart SMP. Hydrophobic, rotenone-like inhibi-
tors decrease the superoxide production from both flavin and quinone
sites by interrupting the electron flow from the Q-pool to FMN. On the
other hand, flavin site inhibitors a priori only effect ROS production
from the flavin site. In addition, binding of NAD+ and acetyl-NAD+

decreased the rate of succinate-supported superoxide production in
coupled SMP [82,105]. These data favor reduced flavin as the dominant
source of ROS during reverse reaction.

A critical issue of these investigations is the fact that the maximal
rate of superoxide production by complex I in intact mitochondria
[106,107,114] is considerably higher than in coupled SMP [107]. In mi-
tochondria, rates during RET are considerably higher than in the pres-
ence of NADH-generating substrates and inhibitors of the quinone
site. We should stress that when SMP or reconstituted enzyme are
used at RET-like conditions in the presence of the proton-motive force
and quinole, there is no actual transfer of electronswithout exogenously
added NAD+. In such conditions, the over-reduction of complex I redox
centers (including FMN) could result in the generation of ROS. The situ-
ation is the opposite in intact mitochondria, where internal NADH/
NAD+ is always present and therefore affects complex I ROS generation
[82,83,114]. In investigations with intact mitochondria, it was shown
that the superoxide production from the flavin site correlates with
the redox state of the NADH/NAD+ pool [86,129]. Applying this to
succinate-supported respiration by mitochondria, only ~7% of the
superoxide/H2O2 production could be attributed to theflavin site of com-
plex I [86]. This would suggest the possibility that the majority of the
rotenone-sensitive superoxide production may come from other sites.

3.2. Effects of the A/D transition and redox modifications on superoxide
production by complex I and ischemia/reperfusion (I/R) injury

Most experimental data on complex I-related production of ROS by
the A and the D-forms could be explained in the view of the recently
published structure of mitochondrial enzyme [1,2]. The functional sim-
ilarity (i.e., breach in electron transfer between cluster N2 and ubiqui-
none molecule) between the D-form of complex I and the rotenone-
inhibited enzyme can be deduced from the structural data provided
by Zickermann et al. [1]. As explained above, the D-form of complex I
represents a conformation in which the access of the ubiquinone head
group to the terminal FeS-cluster N2 is somehow restricted due to the
structural rearrangement of subunits that built the ubiquinone-binding
pocket. The functional outcome of this is similar to the blockage of elec-
tron transfer within the A-form by amolecule of rotenone-like inhibitor
bound at the quinone site. If electrons are supplied in the forwardmode
from NADH, both scenarios will hamper the terminal electron transfer
onto ubiquinone, which in turn leads to an over-reduction of the up-
stream redox centers and largely increases the chance of ROS produc-
tion at flavin site. During RET, both scenarios prevent the electron
transfer from ubiquinol onto FeS-cluster N2 and thereby superoxide
production (Fig. 2, right, bottom), irrespective of whether the reactive
species are formed at the quinone or flavin site of complex I. These
structural presumptions explain available experimental data very well.

The effect of the A/D transition on the superoxide production by com-
plex I was first investigated by Vinogradov's group [105] using coupled
SMP from bovine heart mitochondria. Observed catalytic activities and
EPR spectra of the D-form were found to be similar to those of the
rotenone-inhibited complex I [105,130]. The deactivation of the enzyme,
as well as binding of rotenone-like inhibitors, has strong effects on both
forward/reverse reaction [15] and superoxide production [82,105].

The inhibition of NADH oxidation by rotenone or locking complex I
in the D-form increased the amounts of produced superoxide by around
50% in bovine SMP [82,105]. A similar increase in superoxide production
during NADH oxidation was measured for the D-form using rat heart
SMP [64]. This effect was significantly more pronounced at the alkaline
pH [64] probably for two reasons. First, after a given period of NADHox-
idation, there would be more D-form in the assay since activation
(D → A transition) takes much longer at alkaline than at neutral pH
[62]. Second, the rate of superoxide production increases steeply with
alkalinisation of the assay medium above pH 7.0 [79,81].

When electrons were supplied from succinate by RET, locking com-
plex I in the D-form almost completely stopped superoxide production
[62,105] (Fig. 2, right, bottom). In the D-form, transfer of electrons from
ubiquinol to cluster N2 is interrupted. Therefore, upstreamcomponents,
including flavin, cannot be reduced, which also impairs ROS production.
These fundamental findings provide the mechanistic basis for under-
standing the critical role that complex I has in generating ROS in early
stage of reperfusion.

Increased ROS production by mitochondria is associated with detri-
mental consequences in several pathophysiological situations including
I/R injury [131–133]. Decreasing oxidative stress during the early stage
of reperfusion by various means (preconditioning or antioxidant thera-
py) protects tissues from injury [14,132,134,135]. At the same time,
acute ischemia induces the deactivation of complex I within minutes
in tissues like heart, brain,muscles, and kidney [19,21,22,60]. If complex
I deactivation occurs during the ischemic period, what would be the
adaptive role of this transition? A detailed explanation is shown in
Fig. 3. Paradoxically, complex I deactivation results in an apparent in-
crease in the rate of superoxide production rates in forward reaction
(Fig. 3, center, middle; see also Fig. 2, right, top). According to mass
action law, the reaction rate is determined by reactant concentration.
For the superoxide production, one of the reactants is the reduced
formof complex I ROS-generating site (e.g.,flavin) and the second is ox-
ygen. If oxygen is present, the rate of the superoxide production by the
D-form is greater than by the A-form due to the higher degree of flavin
reduction. At the same time, in conditions of ischemia, deactivation as
such does not make any effect on complex I ROS generation, which is
negligible when [O2] = 0 (Fig. 3, left column). A completely different
situation occurs after ischemia at the early stage of reperfusion, when
oxygen is introduced to the systemwhere all redox centers are reduced
and a potential across the membrane is present (Fig. 3, center, top).
High succinate concentration can accumulate under ischemia/hypoxia
in various tissues, [136–139]. In these conditions, complex I is potential-
ly able to catalyze RET and therefore generates superoxide at a consid-
erable rate [106,124,140] (Fig. 3, center, top). The deactivation of the
enzyme in situ may prevent RET-mediated ROS production leading to
oxidative stress and tissue injury at the beginning of reperfusion. After
the ischemic period, most of the complex I is present in the D-form
and is unable to catalyze electron transfer from ubiquinol to flavin dur-
ing oxygen resupply. Therefore, the slow activation of the enzyme
(D→ A transition) upon tissue reoxygenationmay function as an intrin-
sic protective mechanism and decrease ROS production at the level of
complex I. Moreover, the deactivation of the enzyme can prevent the
burst of respiration via retention of electron transfer from the reduced
NADHpool downstreamof complex I (i.e., to complex III) at the early re-
perfusion stage,when the oxygen level is high andmetabolic intermedi-
ates are not balanced. Therefore, transition of complex I into the D-form
in ischemia plays a significant role in attenuating the “oxidative burst”
that occurs during I/R [21,22].

This mechanistic model explains very well the experimental data
showing that the reversible inhibition of complex I during cardiac or



Fig. 3. Effect of the A/D transition and differential SH-redoxmodification on ROS generation during ischemia/reperfusion. Under normoxic conditions, the large majority of complex I is in
the A-form, and therefore, Cys-39 of ND3 is not accessible (top panel). During ischemia, A → D transition takes place in a time-dependent manner and Cys-39 is exposed (DSH) (left,
middle). The matrix succinate concentration is highly increased by the reversal of complex II. In the early phase of reperfusion, this succinate can be oxidized and this drives RET if
complex I is in the A-form (center, top). This is accompanied by a massive oxidative burst via complex I. Complex I in the D-form is only marginally contributing to this burst at the
flavin site fueled by electrons from NADH. Exposed Cys-39 is now prone to oxidation by ROS or RNS, leading to an irreversibly deactivated complex (DS⁎) (center, middle). While some
of the A-form complex I that has not been damaged in the burst phase could go back to normal catalytic function after oxygen has been reintroduced, the DS⁎ complex will directly and
indirectly (via NADH-linked matrix substrate dehydrogenases, e.g., OGDH and PDH) contribute to an increase in ROS generation (center, middle). In the presence of nitrosothiols
(bottompanel), themodification of Cys-39 locks complex I in the D-form (DSNO) (left, bottom), which reduces the damaging oxidative burst upon reperfusion (center, bottom). However,
unlike the oxidized DS⁎-form, the DSNO can be recovered by the action of thiol reducing systems and then undergo the D→ A transition (right, bottom). OGDH and PDH stand for
2-oxoglutarate dehydrogenase and pyruvate dehydrogenase, respectively; II stands for respiratory complex II (succinate dehydrogenase).
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cerebral postischemic reperfusion would protect mitochondria and
decrease I/R damage in various animal models [22,138,141–144].
At the same time, deactivation increases susceptibility of complex I to
covalent modifications such as nitrosation and oxidation. Complex I
inhibition by NO metabolites was demonstrated in preparations of in-
tact mitochondria and cells a long time ago [145–147]. Prolonged expo-
sure to high concentrations of NO led to the persistent inhibition of
complex I in cells, which was attributed to nitrosation of critical thiol
residue(s) [53–55,148–150]. Later, we found that sensitivity of complex
I to peroxynitrite and S-nitrosothiols is governed by the A/D status of
the enzyme [19,56]. NO metabolites can react with critical Cys-39 of
the ND3 subunit in the D-form and arrest its activation [19,56] (Fig. 3
middle and bottom rows). It was possible to restore the activity of the
S-nitrosated enzyme by reducing agents [19,56] (Fig. 3, bottom panel),
while oxidation of Cys-39 by peroxynitrite or ROS was found to be irre-
versible (Fig. 3 middle, center) [19,21,56]. In a further elegant study
from Murphy's laboratory, Cys-39 was identified as a critical residue
nitrosated by mitochondrially targeted nitrosothiol MitoSNO which re-
sulted in the inhibition of complex I [22]. Administration of theMitoSNO
before reperfusion significantly decreased volume of cardiac infarction
and decreased oxidative damage during I/R [22,151]. It was proposed
that nitrosation of Cys-39 delays activation of the enzyme after reintro-
duction of oxygen and therefore decreases production of ROS. Due to
the reversibility of S-nitrosation, the cysteine residue can be subse-
quently recovered by a denitrosating thiol-reducing system in themito-
chondrial matrix [22,152–154] (Fig. 3, right, bottom). Importantly, it
seems plausible that in conditions of oxidative or nitrosative stress,
transient nitrosation (Fig. 3, bottom row) prevents oxidation of critical
Cys-39 of ND3 by ROS or peroxynitrite (Fig. 3, center row), protecting
the enzyme from irreversible damage. The exact timeframe of such pro-
cess in vivo is not exactly known at present, but it is likely to occurwith-
in minutes [22].

Complex I could contribute to I/R damage via other mechanisms. A
detailed metabolomic analysis revealed that ischemic accumulation of
succinate observed previously in many laboratories [136–138,155] is
mediated by the reversal of complex II reaction [139]. Succinate dehy-
drogenase can reduce fumarate to succinate via reoxidizing ubiquinol,
provided by oxidation of NADH by complex I. Reversal of succinate de-
hydrogenase has been observed many years ago in bovine SMP as the
NADH:fumarate reductase reaction is able to support ATP production
[156]. On the other hand, the rate of fumarate reduction in vitro is
only 1–2% of the full NADH-oxidase reaction and it drops dramatically
with an increase in the succinate/fumarate ratio (Fig. 4). Therefore, it
is hard to explain how this reaction could contribute to the ischemic
conversion of fumarate to succinate in the presence of a high concentra-
tion of the latter proposed in [139]. One possibility is that in vivo succi-
nate generated from fumarate by complex II is readily transported from
thematrix to the cytoplasm, so that low succinate/fumarate ratio allows
the reversal of the enzyme. At the same time, slow NADH:fumarate re-
ductase reaction was shown to support complex I in the A-form during
ischemia [19,60]; therefore, abating the protective ischemic deactiva-
tion of the enzyme considered above. The accurate estimation of the de-
activation dynamics, potential fumarate reductase activity in situ, and
determination of rate and nature of possible covalent modification are
a prerequisite for the development of any therapeutic intervention
aimed on attenuation of I/R damage. In addition, a role of OGDH should

Image of Fig. 3


Fig. 4. The dependence of NADH:fumarate reductase activity of SMP on succinate/fumarate
ratio. Bovine heart SMPwere treated as described earlier but without oligomycin incubation
[56]. NADH:fumarate reductase was measured spectrophotometrically at 340 nm (ε340 =
6.22 mM−1 × cm−1) at 25 °C in the standard mixture comprised of 125 mM KCl, 14 mM
NaCl, 20 mM HEPES, 0.2 mM EGTA pH 7.2, 2 mM KCN, different succinate/fumarate ratios
(total concentration kept 20 mM), and SMP (75 μg/ml). The reaction was initiated
by 130 μM NADH followed by addition of succinate. The NADH-oxidase activity of
SMP, measured under exactly the same conditions without cyanide, was 2 μmol
NADH × min−1 × mg protein−1 and was not affected by the presence of succinate up to
10 mM. All activities were fully sensitive to 1 μM rotenone.
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be further reinforced, since this complex is linked via the NADH/NAD+

pool affecting complex I-related ROS production. Recent data unambig-
uously support the view that complex I-related ROS and initial mito-
chondrial energy failure are largely responsible for the damage that
occurs upon reperfusion after a prolonged ischemic period in organs
like heart or brain. The ROS inflict severe oxidative injury and can lead
to mitochondrial permeability transition, apoptosis, and necrosis deter-
mining long term inflammatory tissue response [89,157].

4. Conclusions and perspectives

Impressive progress has been achieved in the last years in studies of
the structure and molecular biology of complex I. Vast amounts of data
on biomedical implications of this enzyme have also been accumulated.
The surprising success of potential complex I inhibitors for averting cog-
nitive decline in Alzheimer's disease requires additional studies for un-
derstanding the mechanisms behind its therapeutic actions [158].
Recent phase I clinical trial of the therapeutic compound R118 resulted
in a number of serious adverse effects due to complex I inhibition,
representing a potential risk to the recipients of mitochondria-
targeted drugs [159]. We would like to emphasize that the studies of
the regulation of complex I remain an important area for current trans-
lational medicine [4,22,158,160,161].

There are still many open questions in regard to the A/D conforma-
tional change. What is the driving force for the A/D transition, and are
there any other subunits involved in the conformational change?
What is the physiological role of the enzyme deactivation in ischemia
and is it possible to affect the A/D ratio in situ? Of the greatest impor-
tance is the identification of compounds specifically targeting the rate
of activation or deactivation, so that we could modulate mitochondrial
response to tissue ischemia. We believe that further characterization
of the A/D transition may provide an understanding of the regulation
of the mitochondrial response to hypoxia and help to develop novel
therapeutic interventions for conditions like stroke, cardiac infarction,
and other ischemia-associated pathologies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbabio.2015.12.013.
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