
reflect a unique predisposition for
individual LRR-containing
proteins to promiscuity in their
functional interactions with other
proteins, spelling trouble for
functional genomics studies in the
future.
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Color Vision: Color Categories
Vary with Language after All

An intriguing new study with Russian and English participants has
provided compelling support for the view that ‘categorical perception’ of
color categories is verbally mediated and varies with culture and
language.
Debi Roberson
and J. Richard Hanley

Humans can perceptually
discriminate several million shades
of color, but generally we classify
them into a small number of
‘basic’ categories. Basic color
categories are those that are used
by all observers, described with
mono-lexemic terms and not
subsumed within the range of any
other color word [1]. Languages
vary considerably in the number
of basic categories that they use;
different cultures use anything
between 2 and 22 terms to describe
the full range of perceptible
colors [2]. Yet, until recently,
it was widely accepted that
the underlying cognitive
categorization of color is universal
[3,4] and impervious to these
variations in linguistic description.
According to this view, there is
a fundamental, possibly innate,
set of universally perceived
category divisions — red, blue,
green, yellow, pink, purple, orange,
brown, black and white — and all
the world’s languages are at some
point along an evolutionary
trajectory towards a fully formed
system in which all these
categories will eventually be
labeled.
This account stemmed, in part,
from an influential cross-cultural
investigation of a traditional culture
[3,5]. Recent reports [6–9] from
studies of other remote cultures,
however, have consistently failed
to find evidence of a universal set of
cognitive color categories. For
example, Himba speakers fail to
show categorical perception at
boundaries that they do not
distinguish linguistically, such as
that between green and blue.
Categorical perception is
a phenomenon that has been
reported not only for color, but for
other perceptual continua, such as
phonemes, musical tones and
facial expressions, in which
a smooth perceptual continua
comes to be perceived as
a discontinuous set of discrete
categories with a sharp increase in
discriminability around the
category boundary [10]. These
findings suggest that the cognitive
organization of color categories
reflects linguistic organization and
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varies considerably between
cultures.

A new study of Russian and
English color matching [11] has
shown that Russian speakers
show categorical perception at
a boundary between two different
types of blue that is unique to the
Russian language. We already
knew that siniy (dark blue) and
goluboy (light blue) are distinct
‘basic’ color terms for speakers of
Russian [12,13]. In the new study
[11], when asked to select which
of two colors matched a siniy
target, participants were faster if
the distractor was goluboy than if
it was a different shade of siniy.
These results were observed even
though the physical difference
between targets and distractors
was equated and the target
remained on the screen throughout
so that participants did not have
to hold it in memory. Such a
discrimination advantage for
cross-category over within-
category discrimination is the
hallmark of categorical perception.
English speakers, who would call
all the stimuli ‘blue’, did not
show the same cross-category
advantage. When Russian
participants had to perform a
secondary task that was designed
to interfere with verbal coding, the
category advantage disappeared,
suggesting that it arose because
participants accessed their verbal
labels for colors whilst performing
the matching task.

Previous cross-cultural studies
found differences in categorical
perception as a function of
differences in linguistic
categorization, but this new work
[11] addresses several criticisms of
those earlier studies. It has been
argued that the poor color memory
displayed by participants, such
as the Himba, who are speakers
of languages from remote
communities reflects a lack of
education and lack of experience
with man-made colors, rather than
simply a lack of an extensive color
vocabulary [14]. The use of Russian
participants [11] answers this
criticism. It cannot reasonably be
argued that Russian speakers
perform differently from English
speakers simply because they lack
education or technological
expertise.
The new study [11] also
addresses a second criticism of
previous field studies, which is
that they employed memory tests
to investigate the underlying
cognitive organization of color.
Such tasks may encourage the use
of verbal labeling as a short-term
memory code and thus
over-estimate differences in
categorization across cultures [14].
Russian participants instead
demonstrated categorical effects
on a perceptual matching-
to-sample task that makes little
or no demands on memory.

Recent studies with English
speakers [15,16] have also
employed perceptual tasks without
any obvious memory component
such as visual-search. The
visual-search procedure requires
participants to fixate on a cross in
the centre of the computer screen.
They are then asked to report the
location of an ‘oddball’ colored
target appearing amongst an array
of identically colored distractors.
The results showed that English
speakers were faster to locate
a target from a different category to
distractors (for example, a green
target amidst blue distractors),
than from the same category (for
example, a blue target amidst
blue distractors), even though the
degree of physical difference of
targets from distractors was
equated [15].

But this effect was only observed
when the target appeared in right
visual field; participants were no
faster for cross-category targets
than within-category targets in the
left visual field. Because
information presented to the right
visual field has preferential access
to lexical representations in the left
hemisphere, whereas access to
these representations from the left
visual field would require transfer
of information across the corpus
callosum, this finding was
interpreted as providing strong
evidence for a linguistic influence
on the cognitive representation of
color.

A second study [16], using
another visual search task,
replicated the basic finding of
stronger categorical perception
effects in the right visual field,
suggesting that categorical
perception of color arises through
labeling, but both these studies
used English speakers and
investigated the boundary between
green and blue, two categories that
have been proposed to be part of
a cognitively universal set.

This new study’s [11] importance
lies in its demonstration of
categorical perception at the
boundary between two categories,
siniy and goluboy, that do not exist
for English speakers and have
never been proposed to be part
of a universal set of categories.
Russian is not the only language
that has more basic color terms
than English [2,6], and our
unpublished study of Korean color
categories with a visual search
task supports the findings of
Winawer et al. [11] for a boundary
that exists for Korean speakers,
but which is not marked in
English. Using a visual search task
similar to that used by Winawer
et al. [11], we also found
categorical perception at the
category boundary by Korean,
but not by English speakers, and
we also found that the effect
appeared to originate from
processing in the left hemisphere.
Together, these results suggest
that perceptual categorization
of color varies between cultures
with different linguistic
terminology.

These results are incompatible
with the view that there is
a restricted set of universally
perceived category divisions — red,
blue, green, yellow, pink, purple,
orange, brown, black and
white — representing basic colors,
or that all the world’s languages
are developing towards a fully
formed system in which all
these categories will eventually
be labeled. Russian, at least, has
already surpassed that restricted
set, and their additional categories
display all the same advantages
of categorical perception that
English speakers display for their
basic set of 11 color categories,
and Himba and Berinmo show for
their 5.

The methodologies employed by
recent color studies, such as the
one carried out with Russian
speakers [11], have avoided many
of the potential pitfalls of earlier
investigations. The participants
were drawn from populations with
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equal degrees of technological
sophistication, and similar
educational levels. Nevertheless,
the findings mirror those with
traditional cultures [7–9] and
confirm that superior
discrimination of stimuli that cross
a category boundary — such as
that found for English speakers at
the boundary between blue and
green — is not sufficient evidence
for a set of universal color
categories, hard-wired in the
human visual system. These
studies provide a clear
demonstration that categorical
perception of colors is constrained
by culture and language.
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a photon is absorbed triggers an
enzymatic cascade that generates
an electrical signal for transmission
to postsynaptic bipolar cells and
horizontal cells. The visual signal is
transformed as it passes through
the retina, and the results are
relayed to the brain by ganglion
cells sending axons through the
optic nerve [2]. A small number of
these ganglion cells send signals to
neurons in the SCN, and it was
generally assumed that these
transmit information about light
and dark sensed by rods and
cones. This idea has been
spectacularly revised by
experiments using a mouse
completely lacking functional rods
and cones; the mouse was still
perfectly capable of adjusting its
body clock to changes in the light–
dark cycle, although this ability was
lost when the eyes were removed
[7,8]. The obvious conclusion was
that the retina contains some other
type of light-sensitive neuron that
controls circadian entrainment.

This mysterious new
photoreceptor has now been
identified as a special class of
intrinsically photosensitive retinal
ganglion cell (ipRGC), which
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