ON VARIETIES OF CYLINDRIC ALGEBRAS WITH APPLICATIONS TO LOGIC

I. NÉMETI
Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O. Box 127, H-1364 Hungary

Communicated by D. Van Dalen
Received 31 May 1985; revised 3 March 1986

Abstract

$\mathrm{Mn}_{\alpha}, \mathrm{Mg}_{\alpha}$, and Bg_{α} denote the classes of minimal, monadic-generated, and binarygenerated cylindric algebras of dimension α respectively, and $\overline{\mathrm{Eq}} K$ denotes the equational theory of the class K of algebras. In Theorem 2, we characterize those classes $K \subseteq \mathrm{Mg}_{\alpha}, \alpha>2$, for which $\overline{\mathrm{Eq}} K$ is recursively enumerable (r.e.). As a corollary we obtain that $\overline{\mathrm{Eq}} \mathrm{Mn}_{\alpha}$ is not r.e. ${ }^{1}$ iff $\alpha \geqslant \omega$, $\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ is not r.e. iff $\alpha>2$, $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$ is r.e. for $\alpha \geqslant \omega$ and $\overline{\mathrm{Eq}} \mathrm{Mn}_{\alpha}=\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ iff ($\alpha=0$ or $\alpha \geqslant \omega$). These results solve Problems 4.11, 4.12 and the problem in item (1) on p. (ii) of the introduction of Part II of Henkin-Monk-Tarski [11] and continue the investigations started in Monk [22]. We discuss at length the logical meaning and consequences in the introduction and in Section 2. The proofs of the above results rely on the fact that the set of satisfiable Diophantine equations is not decidable. We also show that the equational theory of monadic-generated relation algebras is not r.e. Some further results can be found in Theorems 5 and 6: in Theorem 5 we give a single equation that characterizes being of characteristic 0 in Mg_{ω}, in Theorem 6 we investigate how big Mg_{α} is. We do some investigations concerning the lattice of varieties of $\mathrm{CA}_{\alpha}{ }^{\prime} \mathrm{s}, \alpha \geqslant \omega$.

Introduction

Boolean algebras (BA's) and cylindric algebras (CA's) are algebraizations of propositional and predicate (i.e., first-order) logic respectively. A CA is minimal, or monadic-generated resp., if it is generated by the empty set, or by a set of one-dimensional elements respectively. (One-dimensional elements correspond to formulas with at most one free variable. See the end of this introduction for precise definition.) The classes Mn_{ω} and Mg_{ω} of minimal and monadic-generated CA's respectively correspond to first-order logic having only equality ($=$), and to first-order logic having only unary predicate symbols (beside equality) called monadic logic respectively (for definitions of $\mathrm{CA}_{\omega}, \mathrm{Mn}_{\omega}, \mathrm{Mg}_{\omega}$ see the end of this introduction). The set of theorems (i.e., valid formulas) of propositional logic is decidable while that of first-order logic is undecidable but recursively enumerable (r.e.). And indeed, the equational theory of BA's is decidable while that of the representable CA's is undecidable but r.e. It is known that monadic logic is

[^0]decidable. Therefore one might expect $\overline{\mathrm{Eq}} \mathrm{Mg}_{\omega}$ to be decidable, too. And indeed, it was announced, mistakenly, in the 1971 edition of [11, p. 258] and in [22, Theorem 22] that the equational theories $\overline{\mathrm{Eq}} \mathrm{Mn}_{\omega}$ and $\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ of Mn_{ω} and Mg_{α} are decidable. Later in [11, Problems 4.11, 4.12], these were asked as open problems. We prove in the present paper that $\overline{\mathrm{EqMn}_{\omega}}, \overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ are not r.e. in spite of the facts that monadic and equality logics are decidable.

What logical meaning does this bear? To answer this, we define what a formula scheme is.

Definition 0.1. FmV denotes a countable set of formula variables (i.e., variables ranging over formulas) and $V=\left\{v_{i}: i \in \omega\right\}$ is our set of 'normal' variables. The set of formula schemes (or just schemes) is defined to be the smallest set satisfying
(i) φ is a scheme if $\varphi \in \mathrm{FmV}$.
(ii) $v_{i}=v_{j}$ is a scheme if $i, j \in \omega$.
(iii) $\exists v_{i} \sigma, \neg \sigma, \sigma \wedge \xi$ are schemes if $i \in \omega$ and σ, ξ are schemes.

For example, $\varphi \wedge \psi \rightarrow \psi$ is a scheme if φ, ψ are formula variables. Another scheme is $\varphi \rightarrow \exists v_{1} \varphi$ where $\varphi \in \mathrm{FmV}$. (We use the derived connectives $\rightarrow, v, \forall v_{i}$ etc. the usual way.) In the everyday mathematical life we more often use formula schemes than formulas themselves. See, e.g., any axiomatization of first-order logic. We note that the formula schemes in ordinary mathematical life frequently have 'side-conditions', for example in " $\forall v_{i}(\varphi \rightarrow \psi) \rightarrow\left(\varphi \rightarrow \forall v_{i} \psi\right)$, provided that v_{i} does not occur freely in φ ".

In what follows, by a first-order formula we mean one without operation symbols. We say that a first-order formula φ is equality ${ }^{2}$ (monadic) if the only atomic formulas occurring in φ are $v_{i}=v_{j}$ for $i, j \in \omega$ (all the atomic formulas occurring in φ are unary or $v_{i}=v_{j}$ for some $i, j \in \omega$).
Let σ be a formula scheme. An (equality, monadic) instance of σ is a first-order formula we get from σ by replacing the formula variables in σ with (equality, monadic) first-order formulas. We say that σ is (equality, monadic) valid if every (equality, monadic) instance of σ is a valid first-order formula.

Now we turn to the connection between formula schemes and cylindric equations. Recall that a CA_{α} is an algebra of the type $\langle A ;+, \cdot$, $\left.-, 0,1, c_{i}, d_{i j}\right\rangle_{i, j \in \alpha}$ such that $\langle A ;+, \cdot,-, 0,1\rangle$ is a BA and $c_{i}, d_{i j}$ are unary operations and constants resp.

Definition 0.2 (Scheme as a CA-equation). Our set of variables is $X=\left\{x_{i}: i \in \omega\right\}$ when we want to speak about CA's. Let $t: \mathrm{FmV} \mapsto X$ be arbitrary but one-one. We associate a CA_{ω}-term $\operatorname{tr}(\sigma)$ to any scheme σ as follows.
(i) $\operatorname{tr}(\varphi)=t(\varphi)$ if $\varphi \in \mathrm{FmV}$.
(ii) $\operatorname{tr}\left(v_{i}=v_{j}\right)=d_{i j}$ for $i, j \in \omega$.

[^1](iii) $\operatorname{tr}\left(\exists v_{i} \sigma\right)=c_{i} \operatorname{tr}(\sigma), \operatorname{tr}(\neg \sigma)=-\operatorname{tr}(\sigma), \operatorname{tr}(\sigma \wedge \xi)=\operatorname{tr}(\sigma) \cdot \operatorname{tr}(\xi)$ if $i \in \omega$ and σ, ξ are schemes.
The CA_{ω}-equation eq (σ) associated to the scheme σ is defined to be $\operatorname{tr}(\sigma)=1$.
Clearly, every CA_{ω}-term (written up by using -, $\cdot, c_{i}, d_{i j}$) is of form $\operatorname{tr}(\sigma)$ for some scheme σ, hence every CA_{ω}-equation e is equivalent to eq (σ) for some scheme $\sigma . \mathrm{Rp}_{\alpha}$ denotes the class of representable CA_{α} 's, for definition see the end of this introduction.

Proposition 0.3. Let σ be a scheme. Then (i)-(iii) below hold.
(i) σ is equality valid iff $\mathrm{Mn}_{\omega} \vDash \mathrm{eq}(\sigma)$.
(ii) σ is monadic valid iff $\mathrm{Mg}_{\omega} \vDash \mathrm{eq}(\sigma)$.
(iii) σ is valid iff $\mathrm{Rp}_{\omega} \vDash \mathrm{eq}(\sigma)$.

Proof. (i) and (ii) follow from $\mathbf{M n}_{\omega} \subseteq \mathbf{M g}_{\omega} \subseteq \mathbf{S P C r}_{\omega}^{\text {reg }}$, see [11].
(iii) follows from $\mathrm{EqRp}_{\omega}=\mathrm{Eq}\left(\mathrm{Cs}_{\omega}^{\text {reg }} \cap \mathrm{Lf}_{\omega}\right)$, see [11]. The details are very similar to those of the proofs of 4.3.61-65 in [11, pp. 173-174]. Therefore we omit them.

In the light of Proposition 0.3, the results that $\overline{\mathrm{Eq}} \mathrm{Mn}_{\omega}, \overline{\mathrm{Eq}} \mathrm{Mg}_{\omega}$ are not r.e. announced in the abstract imply the following: Though the set of valid equality (monadic) formulas is decidable, the set of equality (monadic) valid formula schemes is not even recursively enumerable. This happens in spite of the fact that equality logic does have an axiomatization using schemes only! Therefore the schemes derivable from this axiomatization are enough to yield all the valid equality formulas as instances but are far less than all the valid schemes. In a sense, we obtain that the set of valid schemes is much bigger than that of the derivable ones. It is impossible to give a sound inference system for monadic logic (or equality logic) by which all valid schemes (of this logic) would be provable. One might think that this is caused by some second-order behaviour of the schemes. But this is not the case, namely:
The set of valid schemes of first-order logic is recursively enumerable but not decidable. This follows from the theorem that $\overline{\mathrm{Eq} R p_{\omega}}$ is r.e. (Monk [23]) but undecidable (Tarski). For several different enumerations of the first-order valid schemes see section 4.1 of [11], more specifically 4.1.9, 4.1.15, 4.1.20 and Problem 4.1. Thus allowing only unary predicate symbols causes that we have much more valid schemes than when we allow binary predicates as well. Allowing no predicates at all does not imply more valid schemes than when unary predicates are allowed: the equality valid and monadic valid schemes co-incide. This follows from our theorem $\overline{\mathrm{Eq}} \mathrm{Mn}_{\omega}=\overline{\mathrm{Eq}} \mathrm{Mg}_{\omega}$.
How is it possible that the equality formulas are decidable but the schemes are not? When we want to decide a scheme, we have to enumerate all its instances and decide them one-by-one. That the schemes are not decidable means that when we want to decide a scheme, the 'structure' of the scheme (only finitely many
variables occur in the scheme explicitly) does not tell us how many more variables (or 'structure') are involved in the possible non-validity of the scheme. In the first-order case the opposite is true: if we want to know whether a scheme is valid or not, the 'structure' of the scheme does tell us how complex instances we should check only. Namely: Let σ be a scheme. Assume that all the variables occurring in σ are among v_{0}, \ldots, v_{N}. Replace every formula variable $\varphi \in \mathrm{FmV}$ occurring in σ with the first-order formula $R_{\varphi}\left(v_{0}, \ldots, v_{N}\right)$. Then we get a first-order instance σ^{\prime} of σ. Now [11, 4.3.62] states that $\mathrm{Rp}_{\omega} \vDash \mathrm{eq}(\sigma)$ if σ^{\prime} is valid. (For some detail of this proof see Remark 1.7(a) in Section 1.) Thus σ is a first-order valid scheme iff σ^{\prime} is a valid first-order formula. This gives an enumeration of all the valid schemes of first-order logic. As a contrast, in the cases of equality logic and monadic logic there is no general algorithm assigning such a formula σ^{\prime} to every scheme σ.

Let $\alpha<\omega$ be an ordinal. An α-scheme is a scheme in which only $v_{i}(i \in \alpha)$ occur as (normal) variables. A formula of the first-order logic L_{α} using only a variables is a first-order formula in which only $v_{i}(i \in \alpha)$ occur as variables, but we require further that all the atomic formulas are either $v_{i}=v_{j}(i, j \in \alpha)$ or of the form $R\left(v_{0} \cdots v_{n}\right)$ where R is an $(n+1)$-ary relation symbol and $n<\alpha$. These logics L_{α} are well investigated, see e.g. [$\left.8-10,13,19,25,31\right]$. We call an α-scheme α-valid if we arrive at valid formulas whenever we substitute formulas of L_{α} for the formula variables. Thus an α-valid scheme is a valid scheme of the first-order logic L_{α} using α variables. It can be proved analogously to Proposition 0.3 that an α-scheme σ is α-valid (equality, monadic α-valid) iff $\mathrm{Rp}_{\alpha} \vDash \mathrm{eq}(\sigma)$ (or $\mathrm{Mn}_{\alpha} \vDash \mathrm{eq}(\sigma), \mathrm{Mg}_{\alpha} \vDash \mathrm{eq}(\sigma)$). Let $3 \leqslant \alpha<\omega$. Then the equality α-valid schemes are decidable while the monadic α-valid schemes are still not r.e. (The reason is tha1 the unary predicates can somehow play the role of the missing variables v_{i}, $i \geqslant \alpha$.) The 2 -valid schemes as well as the 2 -valid monadic ones are decidable. Bu the reason is not that 2 -logic is too simple: there are 2^{ω} many different monadic 'scheme-theories' (schemes valid in a fixed class of monadic models) in L_{2}.

For precise statements of the above mentioned logical results see Section 2.
For more general connections between logic and CA see Andréka-NémetiSain [2] and Blok-Pigozzi [5].

Now we turn to defining the main cylindric algebraic notions we will use in ths present paper.

Let α be any ordinal. The class CA_{α} is a variety defined by 7 simple schemes o equations in [11, p. 162] (we do not have to remember the specific forms of thest herein). The symbol \triangleq stands for "equals by definition". Let $\mathfrak{H} \in \mathrm{CA}_{\alpha}$ ans
 then $\mathrm{Sg}^{\text {eq }} X$, or simply $\mathrm{Sg} X$, denotes the subuniverse of \mathfrak{A} generated by X. Now

$$
\mathrm{Mn}_{\alpha} \triangleq\left\{\mathfrak{H} \in \mathrm{CA}_{\alpha}: A=\mathrm{Sg} 0\right\} \quad \text { and } \quad \mathrm{Mg}_{\alpha} \triangleq\left\{\mathfrak{A} \in \mathrm{CA}_{\alpha}: A=\mathrm{SgNr}_{1} \mathfrak{A}\right\} .
$$

Thus $\mathrm{Mn}_{\alpha} \subseteq \mathrm{Mg}_{\alpha} \subseteq \mathrm{CA}_{\alpha}$. By a representable CA_{α} (an Rp_{α}), $\alpha \geqslant 2$, we mean ;
CA_{α} isomorphic to a generalized cylindric set algebra ($\mathrm{a} \mathrm{Gs}_{\alpha}$): AGs_{α} is a Boolean set algebra with greatest element (i.e., with unit) a disjoint union V of Cartesian spaces ${ }^{\alpha} U$ of dimension α. The nonboolean operations $c_{i}, d_{i j}(i, j \in \alpha)$ are defined in terms of the structure of these spaces, namely for any $X \subseteq V$ we have

$$
C_{i}^{[V]} X \triangleq\left\{s \in V:(\exists z \in X)(\forall j \in \alpha, j \neq i) s_{j}=z_{j}\right\} \quad \text { and } \quad D_{i j}^{[V]} \triangleq\left\{s \in V: s_{i}=s_{j}\right\} .
$$

By a subbase of a Gs_{α} we understand the base U of one of the spaces ${ }^{\alpha} U$ the union of which is the unit. A cylindric set algebra (a Cs_{α}) is a Gs_{α} with unit element a single Cartesian space. (For $\alpha \leqslant 1, \mathrm{Rp}_{\alpha}$ is defined as $\mathbf{S P C s}_{\alpha}$.) A fundamental theorem of CA-theory is that Rp_{α} is a variety and Rp_{α} 〔 CA_{α} for $\alpha \geqslant 2$.
ω denotes the smallest infinite ordinal. We will extensively use the fact that every ordinal is the set of smaller ordinals. Thus ω is the set of all finite ordinals (natural numbers). For undefined notation and terminology we use in the present paper we refer the reader to [11]. However, we tried to make the paper understandable for that reader who, not wanting to use [11], simply ignores those sentences in which undefined notation occurs (but keeps on reading). At the end of the paper there is a list of notation. We note that the monograph [11] in itself contains all the material we rely on in the present paper. However, besides referring to [11], we usually quote the paper where the result in question appeared first.

In Section 1 we formulate the main results, in Section 2 we reformulate the results in their logical form and in Section 3 we give all the proofs. We number items in a section by giving first the number of the section then the number of the item, e.g. Theorem 2.7 is the seventh item in Section 2. We make an exception in Section 1: there we number the theorems separately from the rest and we do not give a section number, e.g. Theorem 3 is the third theorem in Section 1.

1. Formulating the results

Let α be an ordinal. Then $\mathrm{Mn}_{\alpha}, \mathrm{Mg}_{\alpha}$ and Rp_{α} denote the classes of all minimal, monadic-generated, and representable cylindric algebras respectively (for definition see the end of the introduction). For any class K of algebras, $\overline{\mathrm{Eq}} K$ and $\theta \rho K$ denote the equational theory and the first-order theory of K respectively.

It is proved in Monk [22] that $\mathrm{Mg}_{\alpha} \subseteq \mathrm{Rp}_{\alpha}$ and in [11, 4.2.1, 4.2.24, 4.2.23, 4.1.9-10, 4.2.18, 4.2.9] that $\theta \rho \mathrm{Mn}_{\alpha}$ is decidable for $\alpha<\omega, \overline{\mathrm{EqCA}}_{1}$ is decidable (Comer [6]) but $\theta \rho \mathrm{CA}_{1}$ is undecidable (Rubin [32]), $\overline{\mathrm{EqRp}_{\alpha}}$ is r.e. (Monk [23]) but not decidable for $\alpha>2$ (Tarski), decidable for $\alpha=2$ (Scott [34]). All the above results can be found in [11].
For any class K of algebras, $\mathrm{Eq} K, \mathrm{Un} K$ and $\mathrm{El} K$ denote the smallest
equational, universal and first-order axiomatizable classes containing K resp., cf. [11, 4.1.1]. Then EqK $=$ HSP $K, \operatorname{Un} K=\operatorname{SUp} K$ and $\mathrm{El} K=\operatorname{UfUp} K$ where $I K$, $\mathbf{H K}, \mathbf{S K}, \mathbf{P} K, \mathrm{Up} K$ and Uf K denote the classes of all isomorphic images, homomorphic images, subalgebras, algebras isomorphic to direct products, ultraproducts and ultrafactors of members of K respectively. $K \subset L$ denotes that K is a proper subclass of L. The first two statements of the following theorem are special corollaries of Theorem 2.

Theorem 1. (i) $\overline{\mathrm{Eq}} \mathrm{Mn}_{\alpha}$ is not recursively enumerable (r.e.) iff $\alpha \geqslant \omega$.
(ii) $\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ is not r.e. iff $\alpha>2$.
(iii) $\mathrm{EqMn}_{\alpha}=\mathrm{EqMg}_{\alpha}$ iff $(\alpha \geqslant \omega$ or $\alpha=0)$.
(iv) $\mathrm{EqMg}_{\alpha} \subset \mathrm{Rp}_{\alpha}$ iff $\alpha>2$, moreover $\mathrm{ElMg}_{2} \subset \mathrm{UnMg}_{2}=\mathrm{Rp}_{2}, \mathrm{Mg}_{1}=\mathrm{Rp}_{1}$.

Let $n \in \omega$. Then $\bar{d}(n \times n)$ denotes the CA_{n}-term $\Pi\left\{-d_{i j}: i<j<n\right\} .|X|$ denotes the cardinality of the set X.

Definition 1.1. Let α be an ordinal.
(i) Let $K \subseteq \mathrm{CA}_{\alpha}$. Then K is said to be bounded iff $(\exists n \in \omega \cap(\alpha+1))$ $K \vDash \bar{d}(n \times n)=0 . K$ is said to be unbounded iff K is not bounded.
(ii) Let $n \in \omega$. Then $\mathfrak{H} \in \mathrm{Mg}_{\alpha}^{n}$ iff $\left(\exists X \subseteq \mathrm{Nr}_{1} \mathfrak{H}\right)[A=\operatorname{Sg} X$ and $|X| \leqslant n]$. (Cf. [11, 4.2.4].) Let $K \subseteq \mathrm{Mg}_{\alpha}$. Then K is said to be boundedly generated iff ($\exists n \in \omega$) $K \subseteq \mathbf{S P M g}_{\alpha}^{n} . K$ is said to be unboundedly generated iff K is not boundedly generated.

Remark 1.2. It can be proved that K is bounded iff there is $n \in(\alpha+1) \cap \omega$ such that every element of K is isomorphic to a Gs_{α} with all subbases smaller than $n . K$ is boundedly generated iff there is $n \in \omega$ such that every element of K is isomorphic to a subdirect product of cylindric set algebras generated by fewer than n monadic (i.e., 1 -dimensional) generators. The above are easy to prove using [11].

Theorem 2. Let $\alpha>2, K \subseteq \mathrm{Mg}_{\alpha}$. Then (i)-(iii) below hold.
(i) $\overline{\mathrm{Eq}} K$ is either decidable or not r.e.
(ii) For $\alpha \geqslant \omega, \overline{\mathrm{Eq}} K$ is r.e. iff K is bounded.
(iii) For $\alpha<\omega$, $\mathrm{Eq} K$ is r.e. iff K is boundedly generated.

Remark 1.3. For $\alpha \leqslant 1, \overline{\mathrm{Eq}} K$ is decidable for every $K \subseteq \mathrm{Mg}_{\alpha}$. This follows from the proof of Monk's result [11, 4.1.22] (Monk [24]), since in the proof of [11, 4.1.22], all the subvarieties of CA_{1} are described and it turns out that each proper subvariety of CA_{1} is generated (as a variety) by one finite CA_{1}. There are $K \subseteq \mathrm{Mg}_{2}$ with $\overline{\mathrm{Eq}} K$ not r.e. This follows from the fact that there are 2^{ω} varieties of $\mathrm{EqMg}_{2}=\mathrm{IGs}_{2}$ (a result of J. Johnson, see [11, 4.1.28]). We do not know whether there are $K \subseteq \mathrm{Mg}_{2}$ with $\overline{\mathrm{Eq}} K$ r.e. but not decidable. One might think
that Theorem 2(i) is true because the set of all equations not valid in K is always r.e. for any $K \subseteq \mathrm{Mg}_{\alpha}, \alpha>2$. This is not the case; a counterexample can be obtained by 'translating to CA_{α} ' the example given in Remark 2.2(b). We also note that Theorem 2(ii) above generalizes to subclasses of CA_{α} in the following form: Let $\alpha \geqslant \omega$ and $K \subseteq \mathrm{CA}_{\alpha}$. Then $\overline{\mathrm{Eq}} K$ is decidable iff K is bounded. This is proved in [29].
Bg_{α} denotes the class of all binary-generated CA_{α} 's, i.e., $\mathfrak{A} \in \mathrm{Bg}_{\alpha}$ iff $A=$ $\mathrm{SgNr}_{2} \mathfrak{U}$.

Theorem 3. (i) $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$ is r.e. but not decidable for $\alpha \geqslant \omega$.
(ii) $\mathrm{EqBg}_{\alpha}=\mathrm{EqBg}_{\alpha}^{1}=\mathrm{Rp}_{\alpha}$ for $\alpha \geqslant \omega$, where $\mathrm{Bg}_{\alpha}^{1} \triangleq\left\{\mathfrak{H} \in \mathrm{CA}_{\alpha}:\left(\exists x \in \mathrm{Nr}_{2} \mathfrak{H}\right)\right.$ $A=\operatorname{Sg}\{x\}\}$.

Remark 1.4. (a) R. Maddux showed us that: $\overline{\mathrm{Eq}} \mathrm{Bg}_{3}$ is undecidable because in [17] actually the following is proved: If $3 \leqslant \alpha<\omega$ and $\mathrm{Bg}_{\alpha} \cap \mathrm{Rp}_{\alpha} \subseteq \mathrm{EqK} \subseteq \mathrm{CA}_{\alpha}$, then $\overline{\mathrm{Eq}} K$ is undecidable. (To see this, one has to notice that $\operatorname{Rg} f \subseteq \mathrm{Nr}_{2}(\mathfrak{C}$ in the last part of the proof in [17].) Therefore the second part of Theorem 3(i) can be sharpened by saying " EqBg_{α} is undecidable iff $\alpha>2$ " (since for $\alpha \leqslant 2$, $\mathrm{Bg}_{\alpha}=\mathrm{CA}_{\alpha}$ and $\overline{\mathrm{Eq}} \mathrm{CA}_{\alpha}$ is decidable). We do not know whether $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$ is r.e. or not for $2<\alpha<\omega$.
(b) The condition $\alpha \geqslant \omega$ is necessary in Theorem 3(ii), since $\mathrm{Bg}_{\alpha} \nsubseteq \mathrm{Rp}_{\alpha}$ for all $1<\alpha<\omega$. For $\alpha \geqslant 5$ this was shown by R . Maddux: Let $\alpha \geqslant 5$. It is proved in [20, Theorem 7], that there is a nonrepresentable relation algebra \mathfrak{R} with an α-dimensional cylindrical basis. Hence $\mathfrak{R} \in \mathbf{S R a}^{*} \mathrm{Nr}_{3} \mathrm{CA}_{\alpha}$ by [20, Theorem 6].
 $\mathfrak{R} \subseteq \mathfrak{R a} \mathfrak{B}$, hence \mathfrak{B} is not representable since \mathfrak{R} is not representable. Clearly, $\mathrm{Bg}_{2}=\mathrm{CA}_{2} \nsubseteq \mathrm{Rp}_{2}$ (cf. [11]). Monk [22, p. 199] notes that $\mathrm{Bg}_{3} \nsubseteq \mathrm{Rp}_{3}$. Also, $\mathrm{Bg}_{4} \nsubseteq \mathrm{Rp}_{4}$ can be seen as follows: Let \mathfrak{R} be a nonrepresentable relation algebra. Then by [11, 5.3.17] there is $\mathfrak{B} \in \mathrm{Bg}_{4}$ such that $\mathfrak{R} \subseteq \mathfrak{R a} \mathfrak{N r} \mathfrak{r}_{3} \mathfrak{B}$. If \mathfrak{B} were representable, so would be \mathfrak{R}. Hence $\mathfrak{B} \notin \mathrm{Rp}_{4}$.

Relation algebras (RA's) form another algebraization of first-order logic, see e.g. Tarski-Givant [35] (and Remark 3.19 in Section 3 herein). Tarski proved that the equational theory of RA's as well as that of the representable RA's are undecidable but r.e. For RA theory see either one of Jónsson [14, 15], Maddux [16], Section 5.3 of [11] or Chapter 8 of [35]. Recall that in RA theory the semi-colon ';' denotes the operation of relation-composition.

Definition 1.5. We call a relation algebra \mathfrak{R} monadic-generated iff ($\exists G \subseteq R$) $[R=\operatorname{Sg} G$ and $(\forall x \in G) x ; 1=x]$.

Theorem 4. The equational theory of monadic-generated RA's is not r.e. Every monadic-generated $R A$ is representable.

Now we turn to subclasses of Mg_{α} which were touched upon in Theorem 2. Recall from [11, 2.4.61, 2.4.62] that a $\mathrm{CA}_{\alpha} \mathfrak{N}$ is of characteristic 0 iff $\mathfrak{G} \vDash\left\{c_{(n)} \bar{d}\left(n^{\prime} \times n\right)=1: n \in \omega \cap(\alpha+1)\right\}$ and $|A| \neq 1$, where $c_{(n)} \triangleq \triangleq c_{0} c_{1} \cdots c_{n-1} x$. For $\mathfrak{A} \in \mathrm{Gs}_{\alpha}, \alpha \geqslant \omega$ this means that every subbase of \mathfrak{A} is infinite (and $|A| \neq 1$). (This is in a sense the opposite of being bounded. Namely, \mathfrak{U} is of characteristic 0 iff $\mathbf{H} \mathscr{A}$ contains no (nondiscrete) bounded subclass.)

Notation (cf. [11, 3.1.5] for $\alpha \geqslant \omega$). For any $K \subseteq \mathrm{CA}_{\alpha}$ we denote ${ }_{\infty} K \triangleq\{\mathfrak{A} \in K: \mathfrak{A}$ is of characteristic 0 or $|A|=1\}$.
${ }_{\infty} \mathrm{Gs}_{\alpha}$ or ${ }_{\omega} \mathrm{CA}_{\alpha}, \alpha \geqslant \omega$ cannot be characterized inside Gs_{α} or CA_{α} by a single formula because there is a system of minimal Cs_{α} 's with finite bases such that an ultraproduct of this system is of characteristic 0 . Below we prove the opposite for Mg_{α}. Namely, we shall prove that within Mg_{α} the property of being of characteristic 0 can be expressed by a single equation. (We note that, because of the above ultraproduct reason, there is no Σ_{1}^{0}-sentence characterizing ${ }_{\infty} \mathrm{Mg}_{\alpha}$ inside Mg_{α}.)

For a set Σ of formulas, Mod Σ denotes the class of all algebras in which Σ is valid.

Theorem 5. There is a single equation e such that ${ }_{\alpha} \mathrm{Mg}_{\alpha}=\mathrm{Mg}_{\alpha} \cap \operatorname{Mod}\{e\}$ for every $\alpha \geqslant \omega$, hence ${ }_{\infty} \mathrm{Mn}_{\omega}=\operatorname{Mn}_{\omega} \cap \operatorname{Mod}\{e\}$.

We turn to formulating results to the effect that Mn and Mg are 'very large'. Their various closures contain all bounded classes of CA's or Lf's (depending on the closure). For the precise formulation we need some notation. For a $\mathrm{Gs}_{\alpha} \mathfrak{U}$, $\operatorname{Subb}(\mathfrak{A})$ denotes the set of all subbases of \mathfrak{U} and base $(\mathfrak{H}) \triangleq \bigcup \operatorname{Subb}(\mathfrak{A})$.

Definition 1.6.

$\mathrm{Fb}^{\prime} \mathrm{Gs}_{\alpha} \triangleq\left\{\mathfrak{H} \in \mathrm{Gs}_{\alpha}:|\operatorname{base}(\mathfrak{H})|<\omega\right\}$.
$\mathrm{Bb}^{\prime} \mathrm{Gs}_{\alpha} \triangleq\left\{\mathfrak{H} \in \mathrm{Gs}_{\alpha}:(\exists n \in \omega)(\forall U \in \operatorname{Subb}(\mathfrak{A}))|U|<n\right\}$.
Let K be any class of algebras similar to $\mathrm{CA}_{\alpha}^{\prime} \mathrm{s}$. Then
$\mathrm{FK} \triangleq\{\mathfrak{H} \in K:|A|<\omega\}$,
$\mathrm{Fb} K \triangleq K \cap \mathbf{I F b}^{\prime} \mathrm{Gs}_{\alpha}, \quad \mathrm{Bb} K \triangleq K \cap \mathbf{I B b}^{\prime} \mathrm{Gs}_{\alpha}$.
(Here Fb refers to finite base and Bb to bounded sub-base.)
Note that for $\alpha \geqslant \omega, \mathfrak{A} \in \mathrm{BbCA}_{\alpha}$ iff $\{\mathfrak{H}\}$ is bounded (using [11, 3.2.11(vi)]).
Recall from [11] that $\mathrm{Lf}_{\alpha} \triangleq\left\{\mathfrak{N} \in \mathrm{CA}_{\alpha}:(\forall x \in A)|\Delta x|<\omega\right\}$.
Theorem 6. (i) $\mathrm{EqMg}_{\alpha}=\mathrm{EqMn}_{\alpha}=\mathrm{EqFbCs}_{\alpha}$ for $\alpha \geqslant \omega$.
(ii) $\mathbf{H S U p M n} \mathrm{H}_{\alpha} \subset \mathbf{H S U p M g}_{\alpha}$ for $\alpha \geqslant 2$, i.e., there is a universal disjuntion of equations that holds in Mn_{α} but not in Mg_{α}.
(iii) $\mathrm{UnMg}_{\alpha}=\mathrm{UnFbMg}_{\alpha}=\mathrm{UnBbGs}_{\alpha}$ for any α.
(iv) $\mathrm{BbLf}_{\alpha} \subseteq \mathbf{S M g}_{\alpha}$ for any α.
(v) There is a Π_{2}-formula distinguishing the hereditarily nondiscrete $\mathbf{M n}_{\alpha}$'s and Mg_{α} 's for $\alpha \geqslant \omega$.

Remark 1.7. (a) We prove in this paper, when proving Theorem 2(ii), directly that EqMn_{ω} is not r.e. (in Part (A) of that proof). By the first part $\mathrm{EqMg}_{\omega}=\mathrm{EqMn}_{\omega}$ of Theorem 6(i) we get a second proof: namely proving that EqMn_{ω} is not r.e. as a corollary of " EqMg_{ω} is not r.e." However, using the second part $\mathrm{EqMn}_{\omega}=\mathrm{EqFbCs}_{\omega}$ of Theorem 6(i), one can give still another proof for " EqMn_{ω} is not r.e." (not using anything else). We sketch here this alternative proof.

We shall use the facts that the set of formulas valid in the finite models is not r.e., and that FbCs_{ω} corresponds somehow to the finite models. Let φ^{\prime} be any (first-order) formula. We may assume that φ^{\prime} is restricted by [11, 4.3.6]. Let the variables occurring in φ^{\prime} be among v_{0}, \ldots, v_{N}. Replace each primitive subformula $R\left(v_{0}, \ldots, v_{n}\right)$ in φ^{\prime} with $\forall v_{n+1} \cdots v_{N} R\left(v_{0}, \ldots, v_{N}\right)$. Then we get another formula φ such that each relation symbol occurring in φ has rank (arity) $M \triangleq N+1$, all variables occurring in φ are among v_{0}, \ldots, v_{N} and [φ is valid in the finite models (FMod) iff φ^{\prime} is valid in FMod]. From now on, the proof is basically the same as that of [11, 4.3.62]: Recall the cylindric term $\tau \mu^{\prime} \varphi$ associated to φ from [11, 4.3.60]. We will show that $\mathrm{FMod} \vDash \varphi$ iff $\mathrm{FbCs}_{\omega} \vDash \tau \mu^{\prime} \varphi=$ 1. Assume $\mathfrak{M} \notin \varphi$ for some $\mathfrak{M} \in \mathrm{FMod}$. Then $\mathfrak{C} \mathfrak{s}^{\mathfrak{M}} \notin \tau \mu^{\prime} \varphi=1$ and $\mathfrak{S}^{\mathfrak{M}} \in \mathrm{FbCs}_{\omega}$ can easily be seen, where $\mathfrak{C} \mathfrak{J}^{\mathfrak{M}}$ is defined in [11, 4.3.4]. Assume $\mathfrak{c} \notin \tau \mu^{\prime} \varphi=1$ for
 reduct of \mathfrak{C}, hence $\mathbb{C}^{\prime} \nexists \tau \mu^{\prime} \varphi=1$ for some $\mathfrak{E}^{\prime} \in \mathrm{FbCs}_{M}$ by Lemma 3.22(ii) in the proof of Theorem 6 herein. From this \mathbb{G}^{\prime} then one can easily construct a model $\mathfrak{M} \in \mathrm{FMod}$ for which $\mathfrak{M} \notin \varphi$. The above shows that $\overline{\mathrm{Eq}} \mathrm{FbCs}_{\omega}$ is not r.e.

The present direction of producing a simple proof for the special corollary Theorem 1(i) can be carried even further. Namely, in the above proof we used Theorem 6(i) which, in turn, is proved in Section 3. In Section 2, in Remark 2.6, we modify the proof of Theorem 6(i) by optimizing it with the simpleminded goal of obtaining a streamlined proof for the particular corollary Theorem 1(i) saying " $\overline{\mathrm{Eq}} \mathrm{Mn}_{\omega}$ is not r.e.", and trying to make this special proof as simple as possible.
(b) Theorem 6(iv) is not true for Lf_{α} in general, neither for those $\mathrm{Gs}_{\alpha} \cap \mathrm{Lf}_{\alpha}^{\prime} \mathrm{s}$ with all subbases finite. To show this, let $\left\{U_{i}: i \in \omega\right\}$ be a set of disjoint sets such that $(\forall i \in \omega)\left|U_{i}\right|=i+2$. Let $V=\bigcup\left\{{ }^{\alpha} U_{i}: i \in \omega\right\}$ and let $s \subseteq \bigcup\left\{{ }^{2} U_{i}: i \in \omega\right\}$ be a one-one function with no fix-point and with domain $\bigcup\left\{U_{i}: i \in \omega\right\}$. Let $X \triangleq\{z \in$
 is finite. But $\mathfrak{B} \notin \mathbf{S M g}_{\alpha}$ by Lemma 3.3 in the proof of Theorem 2 in Section 3.
(c) We do not know whether there is a universal formula distinguishing the hereditarily nondiscrete $\mathrm{Mn}_{\alpha}^{\prime} \mathrm{s}$ and $\mathrm{Mg}_{\alpha}^{\prime} \mathrm{s}$.

Remark 1.8. We know that the first-order theory $\theta \rho K$ is undecidable for every class $K \supseteq \mathrm{Rp}_{\alpha}$ of similar algebras, $\alpha \geqslant 1$, further $\theta \rho \mathrm{Mg}_{\alpha}, \theta \rho \mathrm{Bg}_{\alpha}$ and $\theta \rho \mathrm{Crs}_{\alpha}$ are undecidable for $\alpha \geqslant 1$. By Theorems 1,3 and Remark 1.4, $\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ is decidable iff $\alpha \leqslant 2$ and the same holds for $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$. We proved in [28] that $\overline{\mathrm{EqCrs}}_{\alpha}$ is decidable for all α.

Proof (of the first sentence). Let $K \supseteq \mathrm{Rp}_{\alpha}, \alpha \geqslant 1$. We show that $\theta \rho K$ is undecidable. Let φ be any formula in the language of CA_{1}. Let $\bar{\varphi}(x)$ be the formula about $x \in \mathfrak{A} \in K$, saying ($\mathfrak{R D}_{1} \mathfrak{R l}_{x} \mathfrak{H} \in \mathrm{CA}_{1} \rightarrow \mathfrak{R D}_{1} \mathfrak{R r} \mathfrak{r}_{x} \mathfrak{H} \vDash \varphi$). This $\bar{\varphi}(x)$ can be obtained as follows. Let $\gamma(x)$ say " $\mathfrak{R D}_{1} \mathfrak{R I _ { x }} \mathfrak{H} \in \mathrm{CA}_{1}$ " as follows: We translate, e.g., $c_{0}\left(c_{0} y \cdot z\right)=c_{0} y \cdot c_{0} z$ (this is C3) as follows. ($\forall y, z \leqslant x$) $x \cdot c_{0}\left(x \cdot c_{0} y \cdot z\right)=x \cdot c_{0} y \cdot x \cdot c_{0} z$. Let us call this $x \upharpoonleft$ C3. Then $\gamma(x)$ is $(x \mid \mathrm{C} 0 \wedge$ $\cdots \wedge x \upharpoonleft \mathrm{C} 7$). We may assume that x does not occur in φ and that φ is a sentence. Then $x \upharpoonleft \varphi$ is the relativization of φ to x, that is we replace $c_{0} y$ by $x \cdot c_{0} y$ and $\exists y$ by $(\exists y \leqslant x)$ and $\forall y$ by $(\forall y \leqslant x)$. Now $\bar{\varphi}(x)$ is the formula $\gamma(x) \rightarrow x \upharpoonleft \varphi$. Now we

Claim $\mathrm{CA}_{1} \vDash \varphi$ iff $K \vDash \bar{\varphi}(x)$.
Proof. (\Leftrightarrow) : Assume $\mathfrak{B} \in \mathrm{CA}_{1}$ and $\mathfrak{B} \notin \varphi$. Then $\mathfrak{B} \subseteq \mathrm{P}_{i \in \mathfrak{C}} \mathfrak{E}_{i}$ with $\mathfrak{C}_{i} \in \mathrm{Cs}_{1}$. Let $U_{i} \triangleq \operatorname{base}\left(\mathscr{C}_{i}\right) \dot{\cup}\left\{a_{i}\right\}$ be a disjoint union. Let $f_{i}=\left\langle\left\{\left(a_{i}: j \in \alpha\right)_{b}^{0}: b \in x\right\}: x \in C_{i}\right\rangle$ for $i \in I$. Then $f_{i}: C_{i} \rightarrow \mathrm{Sb}^{\alpha} U_{i}$. Let $h x=\left\langle f_{i} x_{i}: i \in I\right\rangle: B \rightarrow \mathrm{P}_{i \in l}\left(\mathrm{Sb}^{\alpha} U_{i}\right)$. Let $\mathfrak{A}=$
 Hence $K \notin \bar{\varphi}(x)$ by $\mathfrak{A} \in K$.
(\Rightarrow) : Assume $\mathfrak{U} \in K$ and $\mathfrak{M} \notin \bar{\varphi}[X], \quad X \in A$. Then $\mathfrak{R D}_{1} \mathfrak{M i}_{x} \mathfrak{A} \in C A_{1}$ and $\mathfrak{R D}_{1} \mathfrak{R l}_{x} \mathfrak{H} \notin \varphi$. \square (Claim)

Since $\theta \rho \mathrm{CA}_{1}$ is undecidable, the above shows that $\theta \rho K$ is undecidable, too. For $\alpha \geqslant 1, \theta \rho \mathrm{Mg}_{\alpha}$ is undecidable, this is obvious for $\alpha \neq 2$ by the rest of this paper (and [11, 4.2.23] for $\alpha=1$, since $\mathrm{Mg}_{1}=\mathrm{CA}_{1}$), while the case $\alpha=2$ follows from the fact that, in the language of Mg_{2}, we can speak about $\mathrm{Nr}_{1} \mathrm{Mg}_{2}=\mathrm{CA}_{1}$. For $\alpha \leqslant 2$ we have $\mathrm{Bg}_{\alpha}=\mathrm{CA}_{\alpha}$ and $\theta \rho \mathrm{CA}_{\alpha}$ is undecidable by [11, 4.2.23, 4.2.25]. For $\alpha>2, \theta \rho \mathrm{Bg}_{\alpha}$ is undecidable since $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$ is such by Theorem 3(i) and Remark 1.4.

Related results are e.g. in Maddux [17] and in Schönfeld [33].
The results and techniques used in this paper give some information on the lattice of varieties of CA's. We turn briefly to this subject.

1.1. Lattice of varieties of $C A_{\alpha}$'s, $\alpha \geqslant \omega$

Let $\alpha \geqslant \omega$ and let Var denote the lattice ${ }^{3}$ of varieties of CA_{α} 's. The following notation will be useful. Let $n \in \omega$ and $K \subseteq \mathrm{CA}_{\alpha}$. Then ${ }_{{ }_{n}} K \triangleq K \cap \operatorname{Mod}(\bar{d}(n \times$

[^2]

Fig. 1.
$n)=0$), ${ }_{n} K \triangleq{ }_{<n+1} K \sim_{<n} K,{ }_{\omega} K \triangleq{ }_{\infty} K$ (cf. the notation preceding Theorem 5), ${ }_{<\omega} K \triangleq \bigcup\left\{{ }_{n} K: n \in \omega\right\}$ and more generally, if $L \subseteq \omega+1$, then ${ }_{(L)} K \triangleq \bigcup\left\{_{n} K: n \in\right.$ $L\}$. Thus $K \subseteq \mathrm{CA}_{\alpha}$ is bounded iff $(\exists n \in \omega) K \subseteq{ }_{<n} \mathrm{CA}_{\alpha}$. Further $\mathrm{BbGs}_{\alpha}={ }_{<\omega} \mathrm{Gs}_{\alpha}$, $\mathrm{BbCA}_{\alpha}={ }_{<\omega} \mathrm{CA}_{\alpha}$ and $\mathrm{FbCs}_{\alpha}={ }_{<\omega} \mathrm{Cs}_{\alpha}$. For $n \in \omega, n \neq 0,{ }_{n} K$ is the class of members of K of characteristic n and ${ }_{n} \mathrm{Cs}_{\alpha}$ is the class of all cylindric set algebras with bases of cardinality n.

Var is a distributive lattice since CA_{α} is a congruence-distributive variety.
About some important elements of Var: The most important subvariety of CA_{α} is Rp_{α}. It is known that $\mathrm{Rp}_{\alpha}=\mathrm{IGs}_{\alpha}=\mathrm{EqLf}_{\alpha}$. Another characteristic subvariety is $\mathbf{I}_{\infty} \mathrm{Cs}_{\alpha}=\mathbf{I}_{\infty} \mathrm{Gs}_{\alpha}={ }_{\omega} \mathrm{Rp}_{\alpha}$. Let $n \in \omega$ and $L \subseteq_{\omega} \omega$ be finite. Then ${ }_{<n} \mathrm{CA}_{\alpha},{ }_{n} \mathrm{CA}_{\alpha}$ and ${ }_{(L)} \mathrm{CA}_{\alpha}$ are subvarieties of Rp_{α} (by [11, 3.2.53]).
(1) The atoms of Var. The lattice Var is atomic ${ }^{4}$ and has exactly ω many atoms. The atoms of Var are $\mathrm{Eq}\left({ }_{n} \mathrm{Mn}_{\alpha}\right)$ for $n \leqslant \omega$. This can be seen as follows: Let $V \in \operatorname{Var}$ be an atom. Let $\mathfrak{A} \in V$ be arbitrary and let \mathfrak{M} be the minimal subalgebra of \mathfrak{A}. Then $\mathfrak{M} \in V$, hence $E q\{\mathfrak{M}\}=V$, since V is an atom, and $\mathbb{I}\{\mathfrak{M}\}={ }_{n} \mathrm{Mn}_{\alpha}$ for some $n \leqslant \omega$.

For $n<\omega$ we have 'good' characterizations ${ }^{5}$ of the atoms $\mathrm{Eq}_{n} \mathrm{Mn}_{\alpha}: \mathrm{Eq}\left({ }_{n} \mathrm{Mn}_{\alpha}\right)=\mathrm{I}_{n} \mathrm{Gs}_{\alpha}={ }_{n} \mathrm{CA}_{\alpha}$ (see Corollary 3.15).

For $n=\omega$ we do not know of a 'good' characterization; but we know the following.

Theorem 7. Let $\alpha \geqslant \omega$. Then (i)-(ii) below hold.
(i) $\mathrm{Eq}\left({ }_{\infty} \mathrm{Mn}_{\alpha}\right)=\mathrm{Eq}\left({ }_{\infty} \mathrm{Mg}_{\alpha}\right)$.
(ii) $\mathrm{Eq}\left({ }_{\infty} \mathrm{Mn}_{\alpha}\right) \subset \mathrm{EqMn}_{\alpha} \cap \mathrm{I}{ }_{\infty} \mathrm{Cs}_{\alpha}$.

Cf. also Theorem 5. Theorem 7(ii) implies that the characterization of the n-th atom does not generalize to the ω-th atom.

[^3](2) Suprema of atoms in Var. The supremum of all the atoms is EqMn_{α}. We have an 'almost good' characterization for EqMn_{α} :
$$
\mathrm{EqMn}_{\alpha}=\mathrm{EqMg}_{\alpha}=\mathrm{EqFbGs}_{\alpha}=\mathrm{Eq}_{<\omega} \mathrm{CA}_{\alpha} .
$$

The supremum of infinitely many atoms in Var always contains ${ }_{\alpha} \mathrm{Mn}_{\alpha}$, and is never simply a union (for proof see the proof of Theorem 7(ii)): Let $L \subseteq \omega+1$ be infinite. Then

$$
\left.\operatorname{Sup}_{\mathrm{Var}}\left\{\mathrm{Eq}_{{ }_{n}} \mathrm{Mn}_{\alpha}\right): n \in L\right\}=\operatorname{Eq}\left((L \cup\{\omega\}) \mathrm{Mn}_{\alpha}\right)
$$

This shows that $\mathrm{Eq}\left({ }_{\infty} \mathrm{Mn}_{\alpha}\right)$ is not a compact atom in Var.
The supremum of finitely many of the other atoms, $\mathrm{Eq}\left({ }_{n} \mathrm{Mn}_{\alpha}\right)$ for $n \in \omega$, is just their union: Let $L \subseteq \omega$ be finite. Then

$$
\begin{aligned}
\left.\operatorname{Sup}_{\text {Var }}\left\{\mathrm{Eq}_{{ }_{n}} \mathrm{Mn}_{\alpha}\right): n \in L\right\} & \left.=\bigcup\left\{\mathrm{Eq}_{n} \mathrm{Mn}_{\alpha}\right): n \in L\right\} \\
& =\mathrm{Eq}_{(L)} \mathrm{Mn}_{\alpha}={ }_{(L)} \mathrm{CA}_{\alpha} .
\end{aligned}
$$

This follows from Lemma 3.17. Therefore $E q\left({ }_{n} \mathrm{Mn}_{\alpha}\right)$ for $n \in \omega$ is a compact atom. Also, ${ }_{<n} \mathrm{CA}_{\alpha}$, or more generally ${ }_{(L)} \mathrm{CA}_{\alpha}$ for $L \subseteq_{\omega} \omega$, contains only finitely many varieties, namely $\left\{K \in \operatorname{Var}: K \subseteq{ }_{<n} \mathrm{CA}_{\alpha}\right\}=\left\{{ }_{(L)} \mathrm{CA}_{\alpha}: L \subseteq n\right\}$ (or more generally $\left\{K \in \operatorname{Var}: K \subseteq{ }_{(L)} \mathrm{CA}_{\alpha}\right\}=\left\{{ }_{(G)} \mathrm{CA}_{\alpha}: G \subseteq L\right\}$ for $\left.L \subseteq{ }_{\omega} \omega\right)$.
(3) Decidable varieties. The set of all decidable varieties of CA_{α} 's is exactly the sublattice generated by the compact atoms in Var, i.e., the decidable subvarieties of CA_{α} are exactly the finite unions of $\mathbf{I}_{n} \mathrm{Gs}_{\alpha}$'s, $n \in \omega$. This is proved in [29]. Thus $\left\{K \in \operatorname{Var}: K \subseteq \mathrm{CA}_{\alpha}\right.$ and K is decidable $\}=\left\{{ }_{(L)} \mathrm{CA}_{\alpha}: L \subseteq \omega \omega\right\}$.
(4) On the subvarieties of $\mathrm{Eq}_{<\omega} \mathrm{CA}_{\alpha} .\left\{\mathrm{Eq} K: K \subseteq<\omega \mathrm{CA}_{\alpha}\right\}=\left\{\mathrm{Eq}_{(L)} \mathrm{Mn}_{\alpha}: L \subseteq\right.$ $\omega\} \subset\left\{\mathrm{Eq} K: K \subseteq \mathrm{EqMn}_{\alpha}\right\}$. I.e., there is $K \in \operatorname{Var}$ such that $K \subseteq \mathrm{EqMn}_{\alpha}$ but $\mathrm{Eq}\left(K \cap \mathrm{Mn}_{\alpha}\right) \subset K$. An example of such a K is $\mathrm{EqMn}_{\alpha} \cap \mathbf{I}_{\alpha} \mathrm{Cs}_{\alpha}$, see Theorem 7(ii). For the first equality see Lemma 3.17. Thus $\left|\left\{\mathrm{Eq} K: K \subseteq{ }_{<\omega} \mathrm{CA}_{\alpha}\right\}\right|=2^{\omega}$. We do not know whether $\left|\left\{K \in \operatorname{Var}: K \subseteq \mathrm{EqMn}_{\alpha}\right\}\right|=2^{\alpha}$ or not.
(5) On the number of subvarieties. It is proved in [11, 4.1.24-28], a result of J . Johnson, that there are $\geqslant 2^{\omega}$ varieties below Rp_{α}, for ${ }^{6}$ every $\alpha \geqslant 2$. This gave rise to the problem stated as Problem 4.2 in [11], whether there are 2^{α} varieties below Rp_{α} or not. In [30] we show that there are 2^{α} varieties of CA_{α} containing Rp_{α}. About the logical meaning we note the following: the number of subvarieties of CA_{α} corresponds, roughly, to the number of (syntactical) scheme-theories. Concerning 'normal' first-order theories, we do not have more than 2^{ω} theories (in a countable similarity type) even if we allow more than ω many individual

[^4]variables. But if $|\alpha|>\omega$, then there are strictly more than 2^{ω} scheme-theories, by the above mentioned result in [30].

Remark 1.9. In [30], the lattice of subvarieties of CA_{α} is investigated (for both finite and infinite α). The following are proved, among others, in [30]: For any ordinal α, let $\operatorname{Var}_{\alpha}$ denote the lattice of subvarieties of CA_{α}.
(a) Let $\alpha \geqslant 3$. If $n \in \omega \cap(\alpha+1)$, then ${ }_{n} \mathrm{CA}_{\alpha}$ has a complement variety $-_{n} \mathrm{CA}_{\alpha}$ in $\operatorname{Var}_{\alpha}$. The center $Z\left(\operatorname{Var}_{\alpha}\right)$ of the lattice $\operatorname{Var}_{\alpha}$ is the sublattice generated by $\left\{_{n} \mathrm{CA}_{\alpha},-{ }_{n} \mathrm{CA}_{\alpha}: n \in \omega \cap(\alpha+1)\right\}$.
(b) Let $\alpha>1$. There are infinitely many co-atoms in $\operatorname{Var}_{\alpha}$. Actually, let $\mathbb{S} \mathfrak{b}\left({ }^{\alpha} n\right)$ denote the Cs_{α} with unit ${ }^{\alpha} n$ and universe the powerset of ${ }^{\alpha} n$. Then $\mathbb{S} \mathfrak{b}\left({ }^{\alpha} n\right)$ is a splitting algebra and the conjugate variety of $\mathfrak{S b}\left({ }^{\alpha} n\right)$ is a co-atom of $\operatorname{Var}_{\alpha}$, for every $n \in \omega$. (For these notions see, e.g., Jonsson [14].)
(c) Let $\alpha<\omega$. Define $\operatorname{div} \triangleq \bar{d}_{\alpha}+\sum\left\{\bar{d}_{n}-c_{(\alpha)} \bar{d}_{n+1}: n<\alpha\right\}$ where $\bar{d}_{n} \triangleq \bar{d}(n \times n)$. Then $c_{(\alpha)}(\operatorname{div} \cdot x) \cdot c_{(\alpha)}(\operatorname{div}-x)=0$ is an equational basis for Mn_{α}. Further, $\left\{c_{(\alpha)} \bar{d}_{\alpha}=1, c_{(\alpha)}\left(\bar{d}_{\alpha} \cdot x\right) \cdot c_{(\alpha)}\left(\bar{d}_{\alpha}-x\right)=0\right\}$ is an equational basis for ${ }_{\infty} \mathrm{Mn}_{\alpha}$.

Related results on lattices of varieties are in Blok [3], [4] and in Jónsson [14].

2. Formulating the results in their logical form

In the introduction we introduced all the machinery needed for stating the theorems of this paper in a purely logical form (and for investigating things further from a logical point of view, too).

Let \mathfrak{M} be an arbitrary model (of an arbitrary first-order language) and let σ be an arbitrary scheme. Then we say that $\mathfrak{M} \vDash \sigma$ iff $\mathfrak{M} \vDash \sigma^{\prime}$ for every instance σ^{\prime} of σ which is in the language of \mathfrak{M}. Let K be any class of models (perhaps of different languages). Then the scheme-theory $S \theta \rho K$ of K is defined to be $\{\sigma: \sigma$ is a scheme and $(\forall \mathfrak{M} \in K) \mathfrak{M} \vDash \sigma\}$. The 'normal' first-order theory $\theta \rho K$ of K, if K is a class of similar models, is defined to be $\{\varphi: \varphi$ is a formula of the language of K and $K \vDash \varphi\}$. Now we define some classes of models. (If \mathfrak{M} is a model, then M denotes its universe or carrier set.)

$$
\begin{aligned}
& \text { Equmd } \triangleq\{\langle M,=\rangle: M \text { is a set }\}, \\
& \text { Monmd } \triangleq\{\mathfrak{M}: \mathfrak{M} \text { is a model with unary relations only }\} \\
& \text { 1-Binmd } \triangleq\left\{\langle M, R\rangle: R \subseteq^{2} M\right\}, \\
& \text { Mod } \triangleq\{\mathfrak{M}: \mathfrak{M} \text { is a model }\}, \\
& \text { FMod } \triangleq\{\mathfrak{M} \in \operatorname{Mod}:|M|<\omega\} .
\end{aligned}
$$

Theorem 2.1. Statements (i)-(v) below hold.
(i) $S \theta \rho($ Equmd $)=S \theta \rho($ Monmd $)=S \theta \rho($ FMod $)$ is not r.e. ${ }^{7}$

[^5](ii) $S \theta \rho(1-\mathrm{Binmd})=S \theta \rho(\mathrm{Mod})$ is r.e.
(iii) There is a scheme σ such that for every $\mathfrak{M} \in$ Monmd, $\mathfrak{M} \vDash \sigma$ iff $|M| \geqslant \omega$.
(iv) Let $K \subseteq$ Monmd. Then (a)-(b) below hold.
(a) $S \theta \rho(K)$ is either decidable or not r.e.
(b) $S \theta \rho(K)$ is r.e. iff $(\exists n \in \omega)(\forall \mathfrak{M} \in K)|M| \leqslant n$.

Remark 2.2. (a) In Theorem 2.1: (i) follows from Theorem 1(i) + Theorem 6(i), (ii) follows from Theorem 3, (iii) follows from Theorem 5, (iv) follows from Theorem 2(ii). We give a direct, logical proof for Theorem 2.1(i) in Remark 2.6. We note that by using the theorem proved in [29], the following generalization of Theorem 2.1(iv)(b) is also true:
(*) Let $K \subseteq$ Mod. Then $S \theta \rho K$ is decidable iff $(\exists n \in \omega)(\forall \mathfrak{M} \in K)|M| \leqslant n$.
(b) One would think that the fact that $S \theta \rho$ (FMod) is not r.e. might be a trivial corollary of the fact that $\theta \rho(\mathrm{FMod})$ is not r.e. This is not so. Shortly we turn to investigating the connection between $S \theta \rho(K)$ and $\theta \rho K$, where we prove $S \theta \rho K$ is r.e. $\Rightarrow \theta \rho K$ is r.e., for $K \subseteq$ Mod. The assumption $\mathfrak{M} \in$ Monmd is necessary in Theorem 2.1(iii), cf. the remark following the definition of ${ }_{\infty} K$ in Section 1. Concerning Theorem 2.1(iv)(a), there is $K \subseteq$ Equmd such that $N(K) \triangleq\{\sigma: \sigma$ is a scheme and $K \sharp \sigma\}$ is not r.e.: Let $N \subseteq \omega$ be such that N is not r.e. Define $K \triangleq\{\langle n,=\rangle: n \in N\}$. For every $n \in \omega$ let $\sigma_{n} \triangleq$ "there exist n elements" \rightarrow "there exist $n+1$ elements". Then $(\forall n \in \omega)\left(K \notin \sigma_{n}\right.$ iff $\left.n \in N\right)$, showing that $N(K)$ is not r.e.

Now, we turn to investigating a bit the connection between the scheme-theory $S \theta \rho K$ and the 'normal' first-order theory $\theta \rho K$ of a class K of similar models. As we have already seen, $\theta \rho K$ decidable $\Rightarrow S \theta \rho K$ r.e., a counterexample is $K=$ Equmd. In the other direction, first we note that the obvious way of turning a hypothetical enumeration of $S \theta \rho K$ into an enumeration of $\theta \rho K$ does not work; namely there is a valid monadic formula φ such that φ is an instance of no monadic valid formula scheme $\bar{\varphi}$. E.g., $\exists v_{1} R\left(v_{0}\right) \leftrightarrow R\left(v_{0}\right)$ is such a monadic formula. (But here being monadic is not necessary, e.g., $\exists v_{2} R\left(v_{0} v_{1}\right) \leftrightarrow R\left(v_{0} v_{1}\right)$ is such a formula, too.) And indeed, next we will show that " $S \theta \rho K$ r.e. $\Rightarrow \theta \rho K$ r.e.". We do not know whether " $S \theta \rho K$ decidable $\Rightarrow \theta \rho K$ r.e." holds or not.

Proposition 2.3. (i) There is a class K of similar models such that $\theta \rho K$ is not r.e. while $S \theta \rho K$ is r.e. Moreover, K has only one binary relation symbol.
(ii) There is a model \mathfrak{M}, with $\theta \rho \mathfrak{M}$ not r.e. but $\overline{\mathrm{Eq}} \mathfrak{\Xi}^{\mathfrak{M}}$ r.e. where $\mathbb{S}_{\mathfrak{z}^{\mathfrak{M}}}$ is the Cs_{ω} associated to \mathfrak{M} in [11, §4.3] and \mathfrak{M} has only one binary relation symbol.

Proof. Let U be the set of all hereditarily finite sets and let $\mathfrak{A} \triangleq\langle U, \epsilon\rangle$. Then $\theta \rho \mathfrak{A}$ is well known to be not r.e. Let $\mathfrak{M} \triangleq\left\langle U ; \in, R: R \subseteq \subseteq^{2} U\right\rangle$. Then the two projection functions $U \times U \rightarrow U$ are in \mathfrak{M}, hence $(\forall n \in \omega)\left(\forall T \subseteq^{n} U\right) T$ is definable without parameters in \mathfrak{M}. Therefore the same schemes are valid in \mathfrak{M} as
in ${ }_{\infty}$ Mod, where ${ }_{\infty} \operatorname{Mod}=\{\mathfrak{M} \in \operatorname{Mod}:|M| \geqslant \omega\}$. Namely, if $\mathfrak{N} \epsilon_{\infty} \operatorname{Mod}$ and $\mathfrak{R} \neq \sigma$ (for some scheme σ), then there is a finite reduct $\left\langle N, R_{1}, \ldots, R_{n}\right\rangle \not \forall \sigma$ of \mathfrak{N} with the same property. We may assume $N=U$ by the Löwenheim-Skolem theorems. By definability of R_{1}, \ldots, R_{n} in \mathfrak{M} we have $\mathfrak{M} \notin \sigma$. Since there are only countably many schemes, we need only countably many of the relations in \mathfrak{M}. By using techniques similar to the ones in the proof of Theorem 3(ii), we can code up all these relations of \mathfrak{M} together with epsilon into a single binary $B \subseteq M \times M$. Hence $\langle M, B\rangle$ has the desired properties. We have proved $\mathfrak{M} \vDash \sigma \Rightarrow_{\infty} \operatorname{Mod} \vDash \sigma$. The other direction is trivial. Since $\theta \rho\left({ }_{\infty} \mathrm{Mod}\right)$ is r.e., by Corollary 2.5 below the schemes valid in ${ }_{\infty} \mathrm{Mod}$ and therefore those valid in \mathfrak{M} are r.e. Obviously, $\theta \rho \mathfrak{M}$ is not r.e. since $\theta \rho \mathfrak{A}$ is not such.

However, in some special cases, when K is defined in a 'simple' way, recursive enumerability (and also decidability) of $S \theta \rho K$ does imply recursive enumerability of $\theta \rho K$, cf. Corollary 2.5 below. We begin with some simple facts.

Lemma 2.4. Let φ be a formula. Then there is a scheme $\bar{\varphi}$ such that for every cardinal κ we have $\{\mathfrak{M}:|M|=\kappa, \mathfrak{M}$ is a model of the language of $\varphi\} \vDash \varphi$ iff $\{\mathfrak{M} \in \operatorname{Mod}:|M|=\kappa\} \vDash \bar{\varphi}$.

Moreover, $\bar{\varphi}$ can be computed recursively from φ.
The proof of Lemma 2.4 can be recovered from the proof of [11, 4.3.62] together with Remark 1.7(a).
Let $L \subseteq$ Cardinals and let Λ be any first-order language. Then ${ }_{L} \operatorname{Mod} \triangleq\{\mathfrak{M} \in$ $\operatorname{Mod}:|M| \in L\}$ and ${ }_{L} \operatorname{Mod}_{\Lambda} \triangleq\left\{\mathfrak{M} \in_{L} \operatorname{Mod}: \mathfrak{M}\right.$ is a model of the language $\left.\Lambda\right\}$.

Corollary 2.5. Let $L \subseteq$ Cardinals and let Λ be any first-order language. Consider statements (i)-(iii) below. Then (i) \Rightarrow (ii) and (i) \Leftrightarrow (iii) hold. Further, if there are relation symbols of arbitrarily large finite arities in Λ, then (i) \Leftrightarrow (ii) holds, too.
(i) The set of schemes valid in ${ }_{L} \mathrm{Mod}$ is r.e. (decidable).
(ii) The set of formulas valid in ${ }_{L} \operatorname{Mod}_{\Lambda}$ is r.e. (decidable).
(iii) $\overline{\mathrm{Eq}}\left\{\mathfrak{H} \in \mathrm{Cs}_{\omega}: \mid\right.$ base $\left.(\mathfrak{H}) \mid \in L\right\}$ is r.e. (decidable).

We conjecture that (i) \Leftrightarrow (ii) in Corollary 2.5 holds for arbitrary non-monadic language Λ.

Proof of Corollary 2.5. (i) \Rightarrow (ii) follows from Lemma 2.4.
(i) \Leftrightarrow (iii). Let ${ }_{L} \mathrm{Cs}_{\omega} \triangleq\left\{\mathfrak{Y} \in \mathrm{Cs}_{\omega}:|\operatorname{base}(\mathfrak{X})| \in L\right\}$. Let σ be a scheme. We will show that ${ }_{L} \operatorname{Mod} \vDash \sigma$ iff ${ }_{L} \mathrm{Cs}_{\omega} \vDash \mathrm{eq}(\sigma)$. If ${ }_{L} \operatorname{Mod} \neq \sigma$, then ${ }_{L} \mathrm{Cs}_{\omega} \neq \mathrm{eq}(\sigma)$ is easy to see by using the definitions. Assume that ${ }_{L} \mathrm{Cs}_{\omega} \sharp \mathrm{eq}(\sigma)$, say $\mathfrak{A} \sharp e q(\sigma)$ for $\mathfrak{A} \in \mathrm{Cs}_{\omega}$ with $U \triangleq$ base (\mathfrak{A}) and $|U| \in L$. Then there are $\bar{a}: X \rightarrow A$ and $z \in 1^{\text {gr }}$ such that $z \notin \operatorname{tr}(\sigma)^{\mathfrak{a}(}(\bar{a})$. Let $N \subseteq \omega$ be such that all the indices occurring in $\operatorname{tr}(\sigma)$ are among N. Recall that $t: \mathrm{FmV} \longrightarrow X$. For every $\varphi \in \mathrm{FmV}$ let $r_{\varphi} \triangleq\left\{s \in{ }^{N} U: s \cup(\omega \sim\right.$
$N)\{z \in \bar{a}(t \varphi)\}$. Let σ^{\prime} be the instance of σ where we replace each formulavariable $\varphi \in \mathrm{FmV}$ with $R_{\varphi}\left(v_{0}, \ldots, v_{N-1}\right)$ where R_{φ} is an N-ary relation symbol and let $\mathfrak{M} \triangleq\left\langle U, r_{\varphi}\right\rangle_{\varphi \in \mathrm{FmV}}$. Then $\mathfrak{M} \notin \sigma^{\prime}[z]$ can be shown by an easy induction, using the fact that $z \notin \operatorname{tr}(\sigma)^{\mathfrak{M}}(\bar{a})$. Since $|U| \in L$ we have $\mathfrak{M} \in \epsilon_{L} \operatorname{Mod}$, thus ${ }_{L} \operatorname{Mod} \sharp \sigma$. (i) \Leftrightarrow (iii) has been proved.

If Λ has relation symbols of arbitrarily large finite arities, then the above chain of thought can be modified to show (i) \Leftrightarrow (ii), as follows. Let σ be a scheme, let N be the set of (normal) variables occurring in σ and let σ^{\prime} be an instance of σ where each formula-variable $\varphi \in \mathrm{FmV}$ is replaced with $R_{\varphi}\left(v_{0}, \ldots, v_{m}\right)$ where R_{φ} is a relation symbol of arity $1+m \geqslant N$ and different formula-variables are replaced with different formulas. Then one can show that ${ }_{L} \operatorname{Mod} \vDash \sigma$ iff ${ }_{L} \operatorname{Mod}_{\Lambda} F$ σ^{\prime}.

Remark 2.6. Now, using the above Corollary 2.5, we give here a simple proof for Theorem 2.1(i). The proof we give here is an 'optimization' of the proof given for Theorem 6(i) in Section 3, adjusted specifically for the goal of proving Theorem 2.1(i) directly.

First we prove $S \theta \rho($ Equmd $)=S \theta \rho($ Monmd $)=S \theta \rho(\mathrm{FMod})$. Let σ be a scheme and assume FMod $\forall \sigma$. We will show Equmd $\psi \sigma$. Assume that the formula variables occurring in σ are among $\varphi_{1}, \ldots, \varphi_{n} \in \mathrm{FmV}$. Let $\sigma^{\prime}=\sigma\left(\varphi_{i} / \Phi_{i}\right)$ be an instance of σ and $\mathcal{M} \in \mathrm{FMod}$ be such that $\mathcal{M} \nLeftarrow \sigma^{\prime}$. We may assume $M \in \omega$. Assume that the variables (bound and free) occurring in σ^{\prime} are among $v_{0}, \ldots, v_{N-1} \in V$. For every $a \in{ }^{N} M$ define $m(a) \triangleq \bigwedge\left\{v_{i}=v_{N+a_{i}}: i \in N\right\}$ and define $\eta_{i} \triangleq \bigvee\left\{m(a): a \in{ }^{N} M\right.$ and $\left.\mathcal{M} \vDash \Phi_{i}[a]\right\}$. Then η_{i} is an equality formula for every $1 \leqslant i \leqslant n$. We will show that $\langle M,=\rangle \sharp \sigma\left(\varphi_{i} / \eta_{i}\right)$. Let $k:\left\{v_{N}, \ldots, v_{N+M-1}\right\} \rightarrow M$ be such that $k\left(v_{N+i}\right)=i$ for every $i \in M$. Now the following can be shown by induction on the structure of the scheme ξ : "Let ξ be any scheme with formula variables among $\varphi_{1}, \ldots, \varphi_{n}$ and with (normal) variables among v_{0}, \ldots, v_{N-1}. Then for every $a \in{ }^{N} M$ we have

$$
\mathcal{M} \vDash \xi\left(\varphi_{i} / \Phi_{i}\right)[a] \quad \text { iff }\langle M,=\rangle \vDash \xi\left(\varphi_{i} / \eta_{i}\right)[a \cup k] . "
$$

Then by $\mathcal{M} \not \forall \sigma\left(\varphi_{i} / \Phi_{i}\right)$ we will have $\langle M,=\rangle \nLeftarrow \sigma\left(\varphi_{i} / \eta_{i}\right)$. Thus FMod $\forall \sigma$ implies Equmd $\forall \sigma$. Clearly, Equmd $\forall \sigma$ implies Monmd $\forall \sigma$. Assume Monmd $\forall \sigma$. Then Monmd $\ddagger \sigma^{\prime}$ for some monadic instance σ^{\prime} of σ. It is known that then $\mathcal{M} \neq \sigma^{\prime}$ for a finite $\mathcal{M} \in$ Monmd, too. (For completeness, we note that this can be proved, e.g., by the techniques of Monk [22].) Thus FMod $\forall \sigma$. By the above we have seen $S \theta \rho($ Equmd $)=S \theta \rho($ Monmd $)=S \theta \rho($ FMod $)$. Let Λ be the first-order language having only one binary relation symbol. It is known that the first-order formulas valid in the finite models with one binary relation is not r.e., i.e. that $\theta \rho\left({ }_{\omega} \operatorname{Mod}_{\Lambda}\right)$ is not r.e. Then $S \theta \rho\left({ }_{\omega} \mathrm{Mod}\right)$ is not r.e. by part (i) \Rightarrow (ii) of Corollary 2.5 (which part is a direct corollary of Lemma 2.4), hence $S \theta \rho$ (FMod) is not r.e., since ${ }_{\omega}$ Mod $=$ FMod by definition.

So far we dealt with 'usual' first-order logics, i.e., first-order logics having infinitely many variables. Now we turn to first-order logics having only finitely many variables. Let $\alpha<\omega$. Then $S \theta \rho_{\alpha} K$ is the set of α-schemes α-valid in K, i.e., if $\mathcal{M} \in \operatorname{Mod}$ and σ is an α-scheme, then $\mathcal{M} \vDash_{\alpha} \sigma$ iff $\mathcal{M} \vDash \sigma^{\prime}$ for every instance σ^{\prime} of σ which is a formula of the logic L_{α} using only α variables, and then $S \theta \rho_{\alpha} K$ is defined the usual way. (For L_{α} and its literature see the second part of the introduction.)

Theorem 2.7. Let $2<\alpha<\omega$. Then (i)-(iv) below hold.
(i) $S \theta \rho_{\alpha}$ (Equmd) is decidable.
(ii) $S \theta \rho_{\alpha}$ (Monmd) $=S \theta \rho_{\alpha}$ (FMod) is not r.e.
(iii) $S \theta \rho_{\alpha}$ (Monmd) $\supset S \theta \rho_{\alpha}$ (Mod)
(iv) Let $K \subseteq$ Monmd. Then (a)-(b) below hold.
(a) $S \theta \rho_{\alpha}(K)$ is either decidable or not r.e.
(b) $S \theta \rho_{\alpha}(K)$ is decidable iff there is a finite monadic language Λ such that every $\mu \in K$ is definitionally equivalent to some model of Λ.

Remark 2.8. In Theorem 2.7: (i) follows from [11, 4.2.1]; (ii) follows from Theorem 6(iii) + Theorem 1(ii); (iii) follows from Theorem 1(iv), and (iv) follows from Theorem 2(i), (iii). Most parts of Theorem 2.7 generalize to $\alpha \leqslant 2$.

Problem 2.9. Find a 'nice' axiomatization of $S \theta \rho$ Mod! This would be relevant to solving an old central problem of algebraic logic which is restated as Problem 4.1 in [11].

3. Proofs

We shall prove the theorems in the following order: $2,4,6,1,3,5,7$. The following notation will be frequently used in the proofs:
$X \sim Y \triangleq\{a \in X: a \notin Y\}$ is the difference of the sets X and Y.
$X \complement_{\omega} Y$ means that X is a finite subset of Y.
$\mathrm{Sb} U$ denotes the powerset of $U, \mathrm{Sb} U \triangleq\{X: X \subseteq U\}$.
$\mathfrak{S b V}$ denotes the full cylindric-relativised set algebra with unit V, i.e., $\mathfrak{S b} V=\left\langle\mathrm{Sb} V, \cup, \cap, \sim, 0, V, C_{l}^{[V]}, D_{i j}^{[V]}\right\rangle_{i, j \in \alpha}$ if $V \subseteq{ }^{\alpha} U$ for some U. For $C_{i}^{[V]}$, $D_{i j}^{[V]}$ see the end of the introduction.
$1^{\text {q/ }}$ denotes the unit of the CA_{α} 解.
$s_{j}^{i} x \triangleq c_{i}\left(d_{i j} \cdot x\right)$ in any $\mathrm{CA}_{\alpha} \mathfrak{A}$, for $i, j \in \alpha$ and $x \in A$.
Dof, $\operatorname{Rg} f$ denote the domain and range of the function f.
$f^{*} X^{\triangleq}\{f(x): x \in X\}$ is the f-image of X, for any function f.
f_{i} denotes $f(i)$ if f is a function.
(a, b) denotes the same as $\langle a, b\rangle$ (the pair of a and b).
$f: A \mapsto B$ denotes that f is one-one.
$f: A \leadsto B$ denotes that f is bijective.
${ }^{{ }^{A}} B$ denotes the set of all functions mapping A into B.
$A \upharpoonleft f=\{(u, v) \in f: u \in A\}$ is the function f restricted to A.
Thus if $s \in{ }^{n} U$ and $f \in{ }^{\alpha} U$, then $s \cup(\alpha \sim n) 1 f$ denotes the function that agrees with s on n and with f on $\alpha \sim n$.

Let $k \in{ }^{\alpha} U$, i.e., let $k: \alpha \rightarrow U$ and $i \in \alpha$. Then $k(i / u)$ or k_{u}^{i} denote the function we get by changing the i-th value to u, i.e., $k(i / u)=\{(i, u)\} \cup(k \sim\{(i, k(i))\})$.

Undefined terminology or notation is taken from [11].
Proof of Theorem 2. The difficult part is to show when $\overline{\mathrm{Eq}} K$ is not r.e. We begin with these parts.
(A) Let $\alpha \geqslant \omega$ and assume $K \subseteq \mathrm{Mg}_{\alpha}$ is unbounded. We will show that $\overline{\mathrm{Eq}} K$ is not r.e. We shall prove the following theorem. Let $\omega \triangleq\{\omega,+, \cdot, 0,1\rangle$ be the standard model of arithmetic.

Theorem 3.1. There is a recursive function ε mapping the set of number-theoretic equations into the set of equations of $C A_{\omega}$ such that for all number-theoretic equations $e(\bar{x})$ we have

$$
\omega \vDash \neg e(\bar{x}) \text { iff } K \vDash \varepsilon(e(\bar{x})) \text {, }
$$

where $K \subseteq \mathrm{Mg}_{\alpha}$ is unbounded, $\alpha \geqslant \omega$.
Since the set of insatisfiable Diophantine equations is not r.e., Theorem 3.1 will imply that $\overline{\mathrm{Eq}} K$ is not r.e. Now we turn to proving Theorem 3.1.

The idea of the translation ε : Let x, y, z be variables in the language of $\mathrm{CA}_{\alpha}^{\prime} s$. (They can be thought of as formula variables.) We can express, by a cylindrical algebraic equation $\tau_{1}(x)=1$, about x that " x is a one-one unary function with no fix-point" (cf. τ_{1} in Definition 3.2 below). Lemma 3.3 says that in Mg_{α}, the domain of such an x is always finite. (It is not so in CA_{α} or in Bg_{α}.) Hence x is the successor function restricted to a finite initial segment N of ω. Then we can express that y, z are addition and multiplication restricted to this N. (See τ_{2} and τ_{3} in Definition 3.2 and Lemma 3.4.) Having 0 , suc,,$+ \cdot$ we can then translate number-theoretic equations to cylindric algebraic equations.

The formulas we use to express that x, y, z are successor, addition and multiplication are as follows. (These formulas will be coded as CA_{ω}-terms in Definition 3.2(i) below.)

$$
\begin{array}{ll}
x\left(v_{0} v_{1}\right) \wedge x\left(v_{0} v_{2}\right) \rightarrow v_{1}=v_{2} & \text { (i.e., } x \text { is a function) }, \\
x\left(v_{0} v_{1}\right) \wedge x\left(v_{2} v_{1}\right) \rightarrow v_{0}=v_{2} & (x \text { is one-one }), \\
x\left(v_{0} v_{1}\right) \rightarrow v_{0} \neq v_{1} & (x \text { has no fix-point }) .
\end{array}
$$

Define

$$
\begin{aligned}
d\left(v_{6}\right) \Leftrightarrow \exists v_{0}\left(v_{0}=v_{6} \wedge \exists v_{1} x\left(v_{0} v_{1}\right)\right) & & \left(v_{6} \in \operatorname{Dox}\right) \\
r\left(v_{6}\right) \Leftrightarrow \exists v_{1}\left(v_{1}=v_{6} \wedge \exists v_{0} x\left(v_{0} v_{1}\right)\right) & & \left(v_{6} \in \operatorname{Rg} x\right) \\
n\left(v_{6}\right) \Leftrightarrow d\left(v_{6}\right) \wedge \neg r\left(v_{6}\right) & & \left(v_{6} \text { is a starting point of } x\right) .
\end{aligned}
$$

$\exists v_{6} n\left(v_{6}\right) \wedge \forall v_{0} v_{6}\left(n\left(v_{6}\right) \wedge n\left(v_{0}\right) \rightarrow v_{6}=v_{0}\right) \quad$ (There is exactly one starting point in x).

$$
\begin{array}{ll}
y\left(v_{0} v_{1} v_{2}\right) \wedge y\left(v_{0} v_{1} v_{3}\right) \rightarrow v_{2}=v_{3} & (y \text { is a function }) \\
y\left(v_{0} v_{1} v_{2}\right) \rightarrow\left(d\left(v_{0}\right) \wedge d\left(v_{1}\right) \wedge d\left(v_{2}\right)\right) & (y \text { is on the domain of } x)
\end{array}
$$

We shall write $u+v=w$ and $u+1=v$ instead of $y(u v w)$ and $x(u v)$ resp.

$$
\begin{aligned}
& n\left(v_{0}\right) \wedge d\left(v_{1}\right) \rightarrow y\left(v_{0} v_{1} v_{1}\right) \quad(0+u=u \text { for } u \in \operatorname{Dox}) \\
& \exists v_{3}\left[y\left(v_{3} v_{1} v_{4}\right) \wedge x\left(v_{0} v_{3}\right)\right] \leftrightarrow \exists v_{2}\left[x\left(v_{2} v_{4}\right) \wedge y\left(v_{0} v_{1} v_{2}\right)\right] \\
& \\
& \quad((v+1)+u=w \leftrightarrow w=(v+u)+1) .
\end{aligned}
$$

Similarly we can express that z is multiplication:

$$
\begin{array}{ll}
z\left(v_{0} v_{1} v_{2}\right) \wedge z\left(v_{0} v_{1} v_{3}\right) \rightarrow v_{2}=v_{3} & (z \text { is a (partial) function), } \\
z\left(v_{0} v_{1} v_{2}\right) \rightarrow\left(d\left(v_{0}\right) \wedge d\left(v_{1}\right) \wedge d\left(v_{2}\right)\right) & (z \text { is on the domain of } x), \\
n\left(v_{0}\right) \wedge d\left(v_{1}\right) \rightarrow z\left(v_{0} v_{1} v_{0}\right) & (0 \cdot u=0), \\
\exists v_{3}\left[z\left(v_{3} v_{1} v_{4}\right) \wedge x\left(v_{0} v_{3}\right)\right] \leftrightarrow \exists v_{2}\left[y\left(v_{2} v_{1} v_{4}\right) \wedge z\left(v_{0} v_{1} v_{2}\right)\right] \\
& ((v+1) \cdot u=w \leftrightarrow w=(v \cdot u)+u) .
\end{array}
$$

In Definition 3.2(i) below, the above formulas are coded as cylindric terms.
Definition 3.2. (i) τ_{1} is defined to be the CA_{7}-term

$$
-c_{(3)}\left(x \cdot s_{2}^{1} x-d_{12}\right)-c_{(3)}\left(x \cdot s_{2}^{0} x-d_{02}\right)-c_{(2)}\left(x \cdot d_{01}\right) \cdot-c_{(7)}\left(c_{(7-2)} x-x\right)
$$

Let $d(x) \triangleq s_{6}^{0} c_{1} x$, and $n(x) \triangleq d(x)-s_{6}^{1} c_{0} x$.
$\sigma(x)$ is defined to be the term

$$
c_{6} n(x)-c_{0} c_{6}\left(n(x) \cdot s_{0}^{6} n(x)-d_{06}\right)
$$

τ_{2} is defined to be the CA_{7}-term

$$
\begin{aligned}
& -c_{(4)}\left(y \cdot s_{3}^{2} y-d_{23}\right) \cdot \\
& -c_{(3)}\left(y-\left[s_{0}^{6} d(x) \cdot s_{1}^{6} d(x) \cdot s_{2}^{6} d(x)\right]\right) \cdot \\
& -c_{(3)}\left(s_{0}^{6} n(x) \cdot s_{1}^{6} d(x) \cdot d_{12}-y\right) \cdot \\
& -c_{(5)}\left(c_{3}\left[s_{3}^{0} s_{4}^{2} y \cdot s_{3}^{1} x\right] \oplus c_{2}\left[s_{2}^{0} s_{4}^{1} x \cdot y\right]\right) \cdot \\
& -c_{(7)}\left(c_{(7 \sim 3)} y-y\right)
\end{aligned}
$$

τ_{3} is defined to be the CA_{7}-term

$$
\begin{aligned}
& -c_{(4)}\left(z \cdot s_{3}^{2} z-d_{23}\right) \cdot \\
& -c_{(3)}\left(z-\left[s_{0}^{6} d(x) \cdot s_{1}^{6} d(x) \cdot s_{2}^{6} d(x)\right]\right) \cdot \\
& -c_{(3)}\left(s_{0}^{6} n(x) \cdot s_{1}^{6} d(x) \cdot d_{02}-z\right) \cdot \\
& -c_{(5)}\left(c_{3}\left[s_{3}^{0} s_{4}^{2} z \cdot s_{3}^{1} x\right] \oplus c_{2}\left[s_{2}^{0} s_{4}^{2} y \cdot z\right]\right) \cdot \\
& -c_{(7)}\left(c_{(7 \sim 3)} z-z\right) .
\end{aligned}
$$

$\varphi(x, y, z)$ is defined to be the term $\tau_{1} \cdot \tau_{2} \cdot \tau_{3} \cdot \sigma(x)$.
(ii) Let $V \triangleq\left\{v_{i}: i \in \omega, i>6\right\}$ be our set of variables when speaking about ω. Let $e(\bar{x})$ be a number-theoretic equation with free variables $x_{0}, \ldots, x_{n} \in V$. There is an algorithm which to each number-theoretic equation with free variables $x_{0}, \ldots, x_{n} \in V$ associates a formula $\exists y_{0} \cdots y_{k}\left(b_{0} \wedge \cdots \wedge b_{m}\right)$ equivalent to $e(\bar{x})$ in ω and such that $y_{0}, \ldots, y_{k} \in V$ and each b_{i} has the form $u+1=v$, $u+v=w, u \cdot v=w$ or $u=0$ for some $u, v, w \in\left\{x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{k}\right\}$. (Cf. Malcev [21, Section 7.1, Theorem 4].) Denote $\bar{x}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \bar{y}=$ $\left\langle y_{0}, \ldots, y_{k}\right\rangle$. Let $\exists \bar{y}\left(b_{0} \wedge \cdots \wedge b_{m}\right)$ be associated to $e(\bar{x})$ by the above algorithm. For each $l \leqslant m$ define the cylindric term β_{l} as follows: β_{l} is defined to be $s_{i}^{0} s_{j}^{1} x, s_{i}^{0} s_{j}^{1} s_{k}^{2} y, s_{i}^{0} s_{j}^{1} s_{k}^{2} z$ or $s_{i}^{6} n(x)$ respectively if b_{l} is $v_{i}+1=v_{j}, v_{i}+v_{j}=v_{k}$, $v_{i} \cdot v_{j}=v_{k}$, or $v_{i}=0($ for $i, j, k>6)$ respectively.

Now we define $\varepsilon(e(\bar{x}))$ to be $\varphi(x, y, z) \cdot \Pi\left\{\beta_{l}: l \leqslant m\right\}=0$.
We are going to show $\omega \vDash \exists \bar{x} e(\bar{x})$ iff $K \nLeftarrow \varepsilon(e(\bar{x}))$. But first we need some lemmas.

Notation. Let $\mathfrak{H} \in \mathrm{Gs}_{\alpha}$ with base $U, R \in A, k \in 1^{\mathfrak{N}}$ and $n \in \alpha$. Then $R \llbracket k, n \rrbracket \triangleq\{s \in$ $\left.{ }^{n} U: s \cup[(\alpha \sim n) \upharpoonleft k] \in R\right\}$. E.g., $R \llbracket k, 2 \rrbracket$ is the following binary relation on $U: R \llbracket k, 2 \rrbracket=\left\{(u, v) \epsilon^{2} U: k_{u v}^{01} \in R\right\}$.

Let $R \subseteq{ }^{n} U$ and let \equiv be an equivalence relation on U. Then $R / \equiv \triangleq\left\{\left(u_{1} / \equiv, \ldots, u_{n} / \equiv\right):\left(u_{1}, \ldots, u_{n}\right) \in R\right\}$.

Let $\mathfrak{A} \in \mathrm{Gs}_{\alpha}$ and $x \in A$. We recall from [11, 3.1.1] that x is regular in \mathfrak{Y} iff $\left(\forall q, k \in 1^{\mathfrak{2}}\right)\left[\left(1 \cup \Delta^{\mathfrak{X}}(x)\right) \upharpoonleft q \subseteq k \Rightarrow(q \in x\right.$ iff $\left.k \in x)\right]$ and \mathfrak{A} is regular if all of its elements are regular. $\mathrm{Gs}_{\alpha}^{\text {reg }}$ denotes the class of all regular Gs_{α} 's.

The following lemma says, roughly, that in any $\mathfrak{A} \in \mathrm{Mg}_{\alpha} \cap \mathrm{Gs}_{\alpha}^{\text {reg }}$ if $r \triangleq R \llbracket k$, 2】 (with $R \in A, k \in 1^{2}$) is a "function between its blocks without fixpoints", then $\mathrm{Rg} r$ contains only finitely many blocks. We shall use the following lemma in most cases when the equivalence relation \equiv in it is the identity.

Lemma 3.3. Let $\alpha \geqslant 2, \mathfrak{H} \in \operatorname{Mg}_{\alpha} \cap \mathrm{Gs}_{\alpha}^{\mathrm{reg}}$ and $R \in A$. Then there is $n \in \omega$ with the following property: If $k \in 1^{\mathfrak{Q}}$ and \equiv is an equivalence relation on base($\left.\mathfrak{H}\right)$ such that $R \llbracket k, 2 \rrbracket / \equiv$ is a function with no fixpoint, then $|\operatorname{Rg} R \llbracket k, 2 \rrbracket / \equiv|<n$.

Proof. Let $\Gamma \triangleq 1 \cup \Delta R$. By $\operatorname{Mg}_{\alpha} \subseteq \operatorname{Lf}_{\alpha}, m \triangleq|\Gamma|+3$ is finite. Since $\mathfrak{A} \in \mathrm{Mg}_{\alpha}$, there
 finite. Now let $k \in 1^{\mathfrak{Q}}$ and let \equiv be an equivalence relation on base (\mathfrak{H}). Assume that $R \llbracket k, 2 \rrbracket / \equiv$ is a function with no fixpoint. Let $L \triangleq \mathrm{Rg} R \llbracket k, 2 \rrbracket$.
(*) Assume $|L / \equiv| \geqslant n$.
There is $U \in \operatorname{Subb}(\mathfrak{A})$ with $k \in{ }^{\alpha} U$. By regularity, G induces a partition of U, namely $G_{0}=\left\{\left\{f_{0}: f \in X\right\} \cap U: X \in G\right\}$ is one. By $|L / \equiv| \geqslant n$ and $L \subseteq U$, there is $Y \in G_{0}$ with $|(L \cap Y)| \equiv \mid \geqslant m$. Let $Y^{+} \triangleq(L \cap Y) \sim k^{*} \Gamma$. By $|(L \cap Y) / \equiv| \geqslant m=$ $|\Gamma|+3$ we have $\left|Y^{+}\right| \equiv \mid \geqslant 3$. Let $t \in Y^{+}$. By $Y^{+} \subseteq L$, there is $a \in U$ with $(a, t) \in R \llbracket k, 2 \rrbracket$. Then $a \neq t$ because $R \llbracket k, 2 \rrbracket / \equiv$ has no fixpoint. Let $e \in Y^{+} \sim$ $\{a, t\} / \equiv$. Such an e exists by $\left|Y^{+}\right| \equiv \mid>2$. Let $T \triangleq \operatorname{base}(\mathfrak{H})$ and $f: T \leadsto T$ be a permutation of T interchanging e and t and leaving the rest fixed. I.e., $f(e)=t$ and $(\forall x \in T \sim\{e, t\}) f(x)=x$. Now $f(a)=a$ by $a \notin\{e, t\}$. Then f induces a base-automorphism $\tilde{f} \in \operatorname{Is}\left(\mathfrak{S b 1} 1^{\mathfrak{A}}, \mathfrak{S b 1} 1^{\mathfrak{2}}\right)$ by [11]. Since $\{e, t\} \subseteq Y \in G_{0}$ and G consists of mutually disjoint regular elements, we have $G 1 \tilde{f} \subseteq \mathrm{Id}$. Thus $\tilde{f} R=R$. Now $(a, t) \in R \llbracket k, 2 \rrbracket \Rightarrow k_{a t}^{01} \in R \Rightarrow f \circ k_{a t}^{01} \in \tilde{f} R=R$, which by $\left[e, t \notin k^{*} \Gamma \Rightarrow \Gamma \upharpoonleft(f \circ\right.$ $\left.\left.k_{a t}^{01}\right)=\Gamma \upharpoonleft k_{a e}^{01}\right]$ and by regularity of R implies $k_{a e}^{01} \in R$, thus $(a, e) \in R \llbracket k$, 2】. Since $e \neq t$, this means that $R \llbracket k, 2 \rrbracket / \equiv$ is not a function. A contradiction, disproving our assumption (*).

Lemma 3.4. Let $\mathfrak{A} \in \operatorname{Mg}_{\alpha} \cap \mathrm{Gs}_{\alpha}^{\text {reg }}, \alpha \geqslant 7, k \in 1^{\mathfrak{q}}$ and $X, Y, Z \in A$. Set $s \triangleq X \llbracket k, 2 \rrbracket$, $a \triangleq Y \llbracket k, 3 \rrbracket, m \triangleq Z \llbracket k$, 3】. Assume $k \notin c_{(7)}\left(c_{(7 \sim 2)} X-X\right)$. Then' (i)-(ii) below hold.
(i) $k \in \tau_{1}(X)^{\mathfrak{M}}$ iff (s is a finite one-one function with no fixpoints), and $k \in \sigma(X)^{\mathfrak{M}}$ iff $|\operatorname{Dos} \sim \operatorname{Rgs}|=1$.
(ii) Assume further that $k \notin \sum\left\{c_{(7)}\left(c_{(7 \sim 3)} W-W\right): W \in\{Y, Z\}\right\}$. Then (a) and (b) below are equivalent:
(a) $k \in \varphi(X, Y, Z)^{2]}$.
(b) There are $N \in \omega$ and $n: N+1 \longmapsto \operatorname{base}(\mathfrak{A})$ such that

$$
\begin{aligned}
& s=\{\langle n i, n(i+1)\rangle: i<N\}, \\
& a=\{\langle n i, n j, n(i+j)\rangle: i, j, i+j<N\}, \\
& m=\{\langle n i, n j, n(i \cdot j)\rangle: i, j, i \cdot j<N\} .
\end{aligned}
$$

Proof. Let everything be as in the statement of Lemma 3.4. Assume $k \notin$ $c_{(7)}\left(c_{(7 \sim 2)} X-X\right)$. This means that
(*) $\quad\left(k_{u v}^{\prime 01} \in X\right.$ iff $\left.k_{u v}^{01} \in X\right)$ holds for every u, v and $k^{\prime} \in c_{(7)}\{k\}$.
(1) $k \notin c_{(3)}\left(X \cdot s_{2}^{1} X-d_{12}\right) \quad$ iff $\quad s$ is a function.

For, assume $k \in c_{(3)}\left(X \cdot s_{2}^{1} X-d_{12}\right)$. Then there are u, v, w such that $k_{u v w}^{012} \in$ $X \cdot c_{1}\left(d_{12} \cdot X\right)-d_{12}$. Thus $v \neq w$ and $k_{u w w}^{012} \in X$. Then $k_{u v}^{01}, k_{u w}^{01} \in X$ by (*). Hence $(u, v),(u, w) \in X \llbracket k, 2 \rrbracket=s$ and $v \neq w$ show that s is not a function. On the other
hand, assume that s is not a function. Then there are u, v, w such that $(u, v),(u, w) \in s$ and $v \neq w$. Thus $k_{u v}^{01}, k_{u w}^{01} \in X$, therefore by (*) we have $k_{u v w}^{012}, k_{u w w}^{012} \in X$, showing $k_{u v w}^{012} \in X \cdot s_{2}^{1} X-d_{12}$. One can prove similarly the statements (2), (3) and (4).
(2) $k \notin c_{(3)}\left(X \cdot s_{2}^{0} X-d_{02}\right)$ iff s is one-one (i.e., $\left.(u, v),(w, v) \in s \Rightarrow u=w\right)$.
(3) $k \notin c_{(2)}\left(X \cdot d_{01}\right)$ iff s has no fixpoint (i.e., $\left.(\forall u)(u, u) \notin s\right)$.
(4) $k \in \sigma(X)$ iff $|\operatorname{Dos} \sim \operatorname{Rg} s|=1$.

Assume $k \in \tau_{1}(X)^{\mathfrak{2}}$. Then s is a one-one function with no fixpoints, by (1)-(3) above. By Lemma 3.3 then $\mathrm{Rg} s$ is finite, hence s is finite, too. Conversely, if s is a finite one-one function with no fixpoints, then $k \in \tau_{1}(X)^{\mathfrak{q}}$, by (1)-(3) above. (i) has been proved. Assume now
(**) $\quad k \notin c_{(7)}\left(\left[\left(c_{(7 \sim 2)} X-X\right)+\left(c_{(7 \sim 3)} Y-Y\right)+\left(c_{(7 \sim 3)} Z-Z\right)\right]\right.$.
Let s be a finite one-one function with no fixpoints and with $|\operatorname{Dos} \sim \operatorname{Rgs}|=1$. Let $F \triangleq \operatorname{Dos} \cup$ Rgs. Let $N \triangleq|F|-1$. Then, by the properties of s, there exists a $n: N+1 \nrightarrow F$ such that $n 0 \in \operatorname{Dos} \sim \operatorname{Rgs}$ and $n(i+1)=s(n i)$ for every $i<N$. Then $s=\{\langle n i, n(i+1)\rangle: i<N\}$ holds. The converse clearly holds, hence by (i) we proved
(5) $k \in \tau_{1} \cdot \sigma(X)^{\mathfrak{Y}} \quad$ iff $\quad(\exists N \in \omega)(\exists n: N+1 \mapsto \operatorname{base}(\mathfrak{A}))$

$$
s=\{\langle n i, n(i+1)\rangle: i<N\}
$$

Assume from now on that $k \in \tau_{1} \cdot \sigma(X)^{\mathfrak{Q}}$ and s, N and n are as in (5) above. Le1 $D \triangleq \operatorname{Dos}$ and let 0 denote the unique element of $D \sim \operatorname{Rgs}$. Then $n 0=0$ and $u \in D$ iff $(\exists i<N) u=n i$.
(6) Let $k^{\prime} \in c_{(7)}\{k\}$. Then

$$
k^{\prime} \in d(X) \text { iff } k^{\prime}(6) \in D \quad \text { and } \quad k^{\prime} \in n(X) \text { iff } k^{\prime}(6)=0
$$

For, $k^{\prime} \in d(X)=c_{0}\left(d_{06} \cdot c_{1} X\right)$ iff $k_{u}^{\prime 0} \in c_{1} X$ where $u=k^{\prime}(6)$, and $k_{u}^{\prime 0} \in c_{1} X$ if ($\exists v) k_{u v}^{\prime 01} \in X$ iff (by $\left.(* *)\right)(\exists v) k_{u v}^{01} \in X$ iff $u \in \operatorname{Dos}=D . k^{\prime} \in s_{0}^{1} c_{0}(X)$ iff $k^{\prime}(6) \in \operatorname{Rg}$ can be proved similarly, hence $k^{\prime} \in n(X)$ iff $k^{\prime}(6) \in D \sim \operatorname{Rgs}$ iff $k^{\prime}(6)=0$.
(7) $k \notin c_{(4)}\left(Y \cdot s_{3}^{2} Y-d_{23}\right)$ iff a is a function, i.e.,

$$
(u, v, w),(u, v, z) \in a \Rightarrow w=z
$$

can be proved analogously to (1).
(8) $k \notin c_{(3)}\left(Y-\left[s_{0}^{6} d(X) \cdot s_{1}^{6} d(X) \cdot s_{2}^{6} d(X)\right]\right) \quad$ iff $\quad[(u, v, w) \in a \Rightarrow u, v, w \in D]$.

For, assume $k \in c_{(3)}\left(Y-s_{0}^{6} d(X)\right)$. Then there are u, v, w such that $k_{u v w}^{012} \in Y-$ $c_{6}\left(d_{06} \cdot d(X)\right)$. Then $(u, v, w) \in a$ and $k_{u v w u}^{0126} \notin d(X)$, therefore $u \notin D$ by (6) Similarly $(u, v, w) \in a$ and $u \notin D$ implies $k_{u v w}^{012} \in Y-s_{0}^{6} d(X)$. The remaining part i completely analogous.

From now on, assume that a is a (partial) binary function on D, i.e., that $a: P \rightarrow D$ for some $P \subseteq^{2} D$. We shall write $u+v=w$ instead of $(u, v, w) \in a$.
(9) $k \notin c_{(3)}\left(s_{0}^{6} n(X) \cdot s_{1}^{6} d(X) \cdot d_{12}-Y\right)$ iff $0+u=u$ for every $u \in D$.

For, assume $k \in c_{(3)}\left(s_{0}^{6} n(X) \cdot s_{1}^{6} d(X) \cdot d_{12}-Y\right)$. Then there are u, v, w such that $k_{u v w}^{012} \in s_{0}^{6} n(X) \cdot s_{1}^{6} d(X) \cdot d_{12}-Y$. Then $v=w$ and $(u, v, w) \notin a$. By $k_{u v w}^{012} \in$ $c_{6}\left(d_{06} \cdot n(X)\right)$ we have $k_{u v w u}^{0126} \in n(X)$, thus $u=0$ by (6). Similarly, $k_{u v w}^{012} \in s_{1}^{6} d(X)$ implies $v \in D$. We have seen $v \in D$ and $0+v \neq v$. The other direction, $0+v \neq v$ for some $v \in D \Rightarrow k \in c_{(3)}\left(s_{0}^{6} n(X) \cdots\right)$ is analogous.
(10) $k \notin c_{(5)}\left(c_{3}\left[s_{3}^{0} s_{4}^{2} Y \cdot s_{3}^{1} X\right] \oplus c_{2}\left[s_{2}^{0} s_{4}^{1} X \cdot Y\right]\right) \quad$ iff

$$
(s v+u=w \leftrightarrow w=s(v+u)) \text { for every } u, v, w \in D
$$

For, assume $k \in c_{(5)}(\cdots \oplus \cdots)$. Then $k^{\prime} \in s_{3}^{0} s_{4}^{2} Y \cdot s_{3}^{1} X$ but $k^{\prime} \notin c_{2}\left[s_{2}^{0} s_{4}^{1} X \cdot Y\right]$, or the other way round, for some $k^{\prime} \in c_{(5)}\{k\}$. Assume the first case. Let $(v, u, q, p, w)=51 k^{\prime}$. Then $k_{p}^{\prime 0} \in s_{4}^{2} Y$, hence $k_{p w}^{\prime 02} \in Y$, therefore $p+u=w$. Also, by $k^{\prime} \in s_{3}^{1} X$ we have $k_{p}^{\prime 1} \in X$, thus $s(v)=p$. Thus $s(v)+u=w$. By $k^{\prime} \notin$ $c_{2}\left[s_{2}^{0} s_{4}^{1} X \cdot Y\right]$ we have that for every q, either $s(q) \neq w$ or $v+u \neq q$. This means $s(v+u) \neq w$ (either not defined or unequal). The other parts are similar, we omit them.

Now by (7)-(10) we have $k \in \tau_{2}(X, Y)^{\text {en }}$ iff $a=\{\langle n i, n j, n(i+j)\rangle: i, j, i+j<N\}$ as follows. Assume $k \in \tau_{2}(X, Y)^{22}$. Let $i, j, i+j<N$. Then $\langle n 0, n j, n j\rangle \in a$ by (9). By \Leftarrow of (10) then, by induction, $\langle n i, n j, n(i+j)\rangle \in a$ since $s^{n(i)} n j=n(i+j)$ by $s=\{\langle n i, n(i+1)\rangle: i<N\}$. This proves the inclusion $a \supseteq\{\cdots\}$. To see the other inclusion, assume $\langle n i, n j, n k\rangle \in a$ for some $i, j, k<N$. By \Rightarrow of (10) then $\langle n 0, n j, n(k-i)\rangle \in a$, hence $n j=n(k-i)$ by (9) and (7), thus $j=k-i$, i.e., $k=i+j$. Conversely, assume $a=\{\langle n i, n j, n(i+j)\rangle: i, j, i+j<N\}$. Then $k \in$ $\tau_{2}(X, Y)^{\text {el }}$ by (7)-(10) and by our assumption (**).

Assume $k \in \tau_{1} \cdot \tau_{2} \cdot \sigma(X, Y)^{\text {en }}$. Then the proof of

$$
\begin{equation*}
k \in \tau_{3}(X, Y, Z)^{2 \mathfrak{2}} \quad \text { iff } \quad m=\{\langle n i, n j, n(i \cdot j)\rangle: i, j, i \cdot j<N\} \tag{11}
\end{equation*}
$$

is similar to the above, therefore we omit it.
Let $e(\bar{x})$ be a number-theoretic equation. Let $\exists \bar{y} \wedge B$, where $B=$ $\left\{b_{0}, \ldots, b_{m}\right\}, W \triangleq\left\{x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{k}\right\} \subseteq V$ and $\left\{\beta_{l}: l \leqslant m\right\}$ be associated to $e(\bar{x})$ as in Definition 3.2(ii).

Lemma 3.5. $\omega \vDash \exists \bar{x} e(\bar{x})$ implies $K \sharp \varepsilon(e(\bar{x}))$ for every unbounded $K \subseteq \mathrm{Mg}_{\alpha}$, $\alpha \geqslant \omega$.

Proof. Assume $\omega \vDash \exists \bar{x} e(\bar{x})$. Then $\omega \vDash \exists \bar{x} \exists \bar{y} \wedge B$. Let $h \in{ }^{W} \omega$ be such that $\omega \vDash \wedge B[h]$. Let $N \in \omega$ be such that $h^{*} W \subseteq N$ and let $Q \in \omega$ be such that $W \subseteq\left\{v_{i}: i<Q\right\}$. Let $N^{\prime} \triangleq N+1$. Since K is unbounded, there is $\mathfrak{M} \in K$ with $\mathfrak{M} \notin \bar{d}\left(N^{\prime} \times N^{\prime}\right)=0$. By $K \subseteq \mathbf{M g}_{\alpha} \subseteq \mathbf{I G s}_{\alpha}=\mathbf{S P C}{\underset{\alpha}{\alpha}}_{\text {reg }}$, we may assume $\mathfrak{M} \in \mathbf{S P C s} \boldsymbol{S}_{\alpha}^{\text {reg }}$.

Then by $\mathfrak{M} \not \ddagger \bar{d}\left(N^{\prime} \times N^{\prime}\right)=0, \mathfrak{M}$ has a subdirect factor $\mathfrak{C} \in \mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Mg}_{\alpha}$ with base U such that $|U| \geqslant N^{\prime}$. We may assume $N^{\prime} \subseteq U$. It is enough to show $\mathbb{C} \sharp \varepsilon(e(\bar{x}))$, since this implies $K \ni \mathfrak{M} \not \sharp \varepsilon(e(\bar{x}))$. Let $k \in{ }^{\alpha} \omega$ be such that $h \subseteq k$ and ($\forall i \epsilon$ $\left.N^{\prime}\right) k(Q+i)=i$. Define

$$
\begin{aligned}
& X \triangleq \sum\left\{d_{0, Q+i}^{\llbracket} \cdot d_{1, Q+i+1}^{๔}: 0 \leqslant i \leqslant N\right\}, \\
& Y \triangleq \sum\left\{d_{0, Q+i}^{\S} \cdot d_{1, Q+j}^{\boxed{๒}} \cdot d_{2, Q+i+j}: i, j \in \omega, i+j<N\right\}, \\
& Z \triangleq \sum\left\{d_{0, Q+i}^{\llbracket} \cdot d_{1, Q+j}^{\llbracket} \cdot d_{2, Q+i \cdot j}^{\llbracket}: i, j \in \omega, i \cdot j<N\right\} .
\end{aligned}
$$

Then $\quad X \llbracket k, 2 \rrbracket=\{\langle i, i+1\rangle: i<N\}, \quad Y \llbracket k, 3 \rrbracket=\{\langle i, j, i+j\rangle: i, j, i+j<N\}, \quad$ and $Z \llbracket k, 3 \rrbracket=\{\langle i, j, i \cdot j\rangle: i, j, i \cdot j<N\}$ therefore $k \in \varphi(X, Y, Z)^{\mathbb{E}}$ by Lemma 3.4. Also, by $h \subseteq k$ and $\omega \vDash \wedge B[h]$, by the definition of β_{l} 's, we have $k \in \Pi\left\{\beta_{l}: l \leqslant\right.$ $m\}$ (with x, y, z substituted by X, Y, Z in (E). Thus $k \in \varphi(X, Y, Z)^{区} \cap \Pi\left\{\beta_{l}: l \leqslant\right.$ $m\}$ showing $\mathfrak{C} \sharp \varepsilon(e(\bar{x}))$. Therefore $K \notin \varepsilon(e(\bar{x}))$.

Lemma 3.6. $\mathrm{Mg}_{\alpha} \not \forall \varepsilon(e(\bar{x}))$ implies $\omega \vDash \exists \bar{x} e(\bar{x})$, for $\alpha \geqslant \omega$.
Proof. Let $\mathfrak{M} \in \mathrm{Mg}_{\alpha}$ be such that $\mathfrak{M} \notin \varepsilon(e(\bar{x}))$. We may assume $\mathfrak{M} \in \mathrm{Gs}_{\alpha}^{\mathrm{reg}} \cap \mathrm{Mg}_{\alpha}$. By $\mathfrak{M} \notin \varepsilon(e(\bar{x}))$, there are $X, Y, Z \in M$ and $k \in 1^{\mathfrak{M}}$ such that $k \in \varphi(X, Y, Z)^{\mathfrak{M}} \cap$ $\Pi\left\{\beta_{j}: j \leqslant m\right\}$. Let $s \triangleq X \llbracket k, 2 \rrbracket, a \triangleq Y \llbracket k$, 3】 and $m \triangleq Z \llbracket k, 3 \rrbracket$. Let $N \in \omega$ and $n: N+1 \mapsto \operatorname{base}(\mathfrak{M})$ be such that $s=\{\langle n i, n(i+1)\rangle: i<N\}, a=\{\langle n i, n j, n(i+$ $j)\rangle: i, j, i+j<N\}, m=\{\langle n i, n j, n(i \cdot j)\rangle: i, j, i \cdot j<N\}$. Such N and n exist by Lemma 3.4(ii) and by $k \in \varphi(X, Y, Z)^{\Omega P}$. Let $h: W \rightarrow \omega$ be defined by $\left(\forall v_{j} \in W\right)$

$$
h\left(v_{j}\right) \triangleq \begin{cases}n^{-1}\left(k_{j}\right) & \text { if } k j \in \operatorname{Rg} n \\ 0 & \text { otherwise } .\end{cases}
$$

We will show $\omega \vDash \wedge B[h]$. Let $b_{l} \in B$. Assume b_{l} is $v_{i}+1=v_{j}$. Then β_{l} is $s_{i}^{0} s_{j}^{1} x$, hence $k \in s_{i}^{0} s_{j}^{1} X$ by $k \in \Pi\left\{\beta_{l}: l \leqslant m\right\}$. Then $\langle k(i), k(j)\rangle \in s$ by $i, j \notin 2$. Hence $k i, k j \in \operatorname{Rg} n$ and $h\left(v_{j}\right)=h\left(v_{i}\right)+1$. Thus $\omega \vDash b_{l}[h]$. The other cases are completely analogous, hence we omit their proofs. We have seen $\omega \vDash \wedge B[h]$. Therefore $\boldsymbol{\omega} \vDash \exists \bar{x} e(\bar{x})$.

Now Lemmas 3.5, 3.6 imply $\omega \vDash \neg e(\bar{x})$ iff $K \vDash \varepsilon(e(\bar{x}))$ for all unbounded $K \subseteq \mathrm{Mg}_{\alpha}$. Thus Theorem 3.1 has been proved and $\overline{\mathrm{Eq}} K$ is not r.e.
(B) Again, we will use that the set of unsatisfiable Diophantine equations is not r.e.

Theorem 3.7. There is a recursive function η mapping the set NTE of all number-theoretic equations into the set of equations of CA_{ω} such that for all
$e(\bar{x}) \in$ NTE we have

$$
\omega \vDash \neg \exists \bar{x} e(\bar{x}) \quad \text { iff } \quad K \vDash \eta(e(\bar{x})),
$$

where $3 \leqslant \alpha<\omega$ and $K \subseteq \mathrm{Mg}_{\alpha}$ is unboundedly generated.
To prove Theorem 3.7, assume $3 \leqslant \alpha<\omega$. First we show that $\overline{\mathrm{Eg}} \mathrm{Mg}_{\alpha}$ is not r.e. and then we will modify the proof to show that $\overline{\mathrm{Eq}} K$ is not r.e. whenever $K \subseteq \mathrm{Mg}_{\alpha}$ is unboundedly generated.
(B1) The proof will be similar to the one in (A) - only the associated CA-equation $\varepsilon(e(\bar{x}))$ will be different.

The idea of the modification: The main idea is that we will simulate variables v_{i} in $e(\bar{x})$ by 'constant' elements (monadic generators) instead of treating them as variables ('indices', i.e., members of α). This will immediately settle the case $\alpha \geqslant 7$. To be able to express $\varphi(X, Y, Z)$ for all $\alpha \geqslant 3$ (and not only for $\alpha \geqslant 7$), we will use the 'projection functions (or pairing function)' technique, see TarskiGivant [35] or Maddux [18]. Cf. also Remark 3.19. Now the formulas we use to express that p_{0}, p_{1} are projection functions and x, y, z are successor, addition and multiplication, using only 3 variables, are as follows (these formulas will be coded as cylindric terms in Definition 3.8 below):

Express that x is a one-one function with no fix-point, as before. Express also that $|\operatorname{Dox} \sim \operatorname{Rg} x|=1$.

Expressing that p_{0}, p_{1} are 'projection functions':

$$
\begin{aligned}
& p_{i}\left(v_{0} v_{1}\right) \wedge p_{i}\left(v_{0} v_{2}\right) \rightarrow v_{1}=v_{2} \quad \text { for } i \in 2, \\
& v_{0} \in \operatorname{Dox} \wedge v_{1} \in \operatorname{Dox} \rightarrow \exists v_{2}\left[p_{0}\left(v_{2} v_{0}\right) \wedge p_{1}\left(v_{2} v_{1}\right)\right]
\end{aligned}
$$

Using p_{0}, p_{1} we can code 'addition' as follows:

$$
\begin{aligned}
& y\left(v_{0} v_{1}\right) \wedge y\left(v_{0} v_{2}\right) \rightarrow v_{1}=v_{2}, \\
& y\left(v_{0} v_{1}\right) \rightarrow\left[p_{0} v_{0} \in \operatorname{Dox} \wedge p_{1} v_{0} \in \operatorname{Dox} \wedge v_{1} \in \operatorname{Dox}\right], \\
& p_{0} v_{0}=0 \wedge p_{1} v_{0}=v_{1} \wedge v_{1} \in \operatorname{Dox} \rightarrow y\left(v_{0} v_{1}\right) \quad(0+u=u) \text {, } \\
& \exists v_{1}\left[x\left(p_{0} v_{0}, p_{0} v_{1}\right) \wedge p_{1} v_{0}=p_{1} v_{1} \wedge y\left(v_{1} v_{2}\right)\right] \\
& \leftrightarrow \exists v_{1}\left[y\left(v_{0} v_{1}\right) \wedge x\left(v_{1} v_{2}\right)\right] \quad((v+1)+u=w \leftrightarrow w=(v+u)+1), \\
& p_{0} v_{0}=p_{0} v_{1} \wedge p_{1} v_{0}=p_{1} v_{1} \rightarrow\left(y\left(v_{0} v_{2}\right) \leftrightarrow y\left(v_{1} v_{2}\right)\right) . \\
& \begin{array}{c}
v_{0} \\
(v, u) \\
v i n i
\end{array} \begin{array}{c}
v_{1} \\
(v+1, u)
\end{array}+\begin{array}{c}
v_{2} \\
(v+1)+u \\
(v+u)+1
\end{array} \\
& \text { Illustration for the definition of } y
\end{aligned}
$$

Here we can express $x\left(p_{0} v_{0}, p_{0} v_{1}\right)$ by

$$
\exists v_{2}\left(p_{0}\left(v_{1} v_{2}\right) \wedge \exists v_{1}\left[p_{0}\left(v_{0} v_{1}\right) \wedge x\left(v_{1} v_{2}\right)\right]\right)
$$

and $p_{1} v_{0}=p_{1} v_{1}$ can be expressed by

$$
\exists v_{2}\left(p_{1}\left(v_{0} v_{2}\right) \wedge p_{1}\left(v_{1} v_{2}\right)\right)
$$

Expressing that z is 'multiplication' goes as follows:

$$
\begin{aligned}
& z\left(v_{0} v_{1}\right) \wedge z\left(v_{0} v_{2}\right) \rightarrow v_{1}=v_{2} \\
& z\left(v_{0} v_{1}\right) \rightarrow\left[p_{0} v_{0} \in \operatorname{Dox} \wedge p_{1} v_{0} \in \operatorname{Do} x \wedge v_{1} \in \operatorname{Dox}\right] \\
& v_{1}=0 \wedge p_{0} v_{0}=v_{1} \wedge p_{1} v_{0} \in \operatorname{Dox} \rightarrow z\left(v_{0} v_{1}\right) \quad(0 \cdot u=0) \\
& \exists v_{1}\left[x\left(p_{0} v_{0}, p_{0} v_{1}\right) \wedge p_{1} v_{0}=p_{1} v_{1} \wedge z\left(v_{1} v_{2}\right)\right] \\
& \quad \leftrightarrow \exists v_{1}\left(p_{1} v_{1}=p_{1} v_{0} \wedge \exists v_{2}\left[z\left(v_{0} v_{2}\right) \wedge p_{0}\left(v_{1} v_{2}\right)\right] \wedge y\left(v_{1} v_{2}\right)\right) \\
& \quad((v+1) \cdot u=w \leftrightarrow w=(v \cdot u)+u) \\
& p_{0} v_{0}=p_{0} v_{1} \wedge p_{1} v_{0}=p_{1} v_{1} \rightarrow\left(z\left(v_{0} v_{2}\right) \leftrightarrow z\left(v_{1} v_{2}\right)\right)
\end{aligned}
$$

Illustration for the definition of z

Now to every variable w let us associate a constant q_{w}. That q_{w} is a constant can be expressed as follows:

$$
\begin{aligned}
& q_{w}\left(v_{0}\right) \wedge q_{w}\left(v_{1}\right) \rightarrow v_{0}=v_{1} \\
& \exists v_{0} q_{w}\left(v_{0}\right)
\end{aligned}
$$

Let u, v, w be variables. Then $u+1=v, u+v=w$ and $u=0$ can be expressed as follows

$$
\begin{aligned}
& v_{0}=q_{u} \wedge v_{1}=q_{v} \rightarrow x\left(v_{0} v_{1}\right) \\
& p_{0} v_{0}=q_{u} \wedge p_{1} v_{0}=q_{v} \wedge v_{1}=q_{w} \rightarrow y\left(v_{0} v_{1}\right) \\
& q_{u} \in \operatorname{Dox} \wedge q_{u} \notin \operatorname{Rg} x .
\end{aligned}
$$

Definition 3.8. (i) τ_{1} is defined to be the CA_{3}-term

$$
-c_{(3)}\left(x \cdot s_{2}^{1} x-d_{12}\right)-c_{(3)}\left(x \cdot s_{2}^{0} x-d_{02}\right)-c_{(2)}\left(x \cdot d_{01}\right)-c_{(3)}\left(c_{2} x-x\right)
$$

π is defined to be the CA_{3}-term

$$
\begin{aligned}
& -c_{(3)}\left(p_{0} \cdot s_{2}^{1} p_{0}-d_{12}\right)-c_{(3)}\left(p_{1} \cdot s_{2}^{1} p_{1}-d_{12}\right) \\
& -c_{(3)}\left(c_{1} x \cdot s_{1}^{0} c_{1} x-c_{2}\left[s_{0}^{1} s_{2}^{0} p_{0} \cdot s_{2}^{0} p_{1}\right]\right) \\
& -c_{(3)}\left(c_{2} p_{0}-p_{0}\right)-c_{(3)}\left(c_{2} p_{1}-p_{1}\right)
\end{aligned}
$$

Let $n(x) \triangleq c_{1} x-s_{0}^{1} c_{0} x$ and $\sigma \triangleq c_{0} n(x)-c_{0} c_{1}\left(n(x) \cdot s_{1}^{0} n(x)-d_{01}\right)$.
τ_{2} is defined to be the CA_{3}-term

$$
\begin{aligned}
& -c_{(3)}\left(y \cdot s_{2}^{1} y-d_{12}\right) \cdot \\
& -c_{(3)}\left(y-\left[c_{1}\left(p_{0} \cdot s_{1}^{0} c_{1} x\right) \cdot c_{1}\left(p_{1} \cdot s_{1}^{0} c_{1} x\right) \cdot s_{1}^{0} c_{1} x\right]\right) \cdot \\
& -c_{(3)}\left(c_{1}\left[p_{0} \cdot s_{1}^{0} n(x)\right] \cdot p_{1} \cdot s_{1}^{0} c_{1} x-y\right) \cdot \\
& -c_{(3)}\left(c_{1}\left[c_{2}\left(s_{1}^{0} s_{2}^{1} p_{0} \cdot c_{1}\left[p_{0} \cdot s_{1}^{0} s_{2}^{1} x\right]\right) \cdot c_{2}\left(s_{2}^{1} p_{1} \cdot s_{1}^{0} s_{2}^{1} p_{1}\right) \cdot s_{1}^{0} s_{2}^{1} y\right]\right. \\
& \left.\quad \oplus c_{1}\left[y \cdot s_{1}^{0} s_{2}^{1} x\right]\right) \cdot \\
& -c_{(3)}\left[c_{2}\left(s_{2}^{1} p_{0} \cdot s_{1}^{0} s_{2}^{1} p_{0}\right) \cdot c_{2}\left(s_{2}^{1} p_{1} \cdot s_{1}^{0} s_{2}^{1} p_{1}\right) \cdot\left(s_{2}^{1} y \oplus s_{1}^{0} s_{2}^{1} y\right)\right] \cdot \\
& -c_{(3)}\left(c_{2} y-y\right) .
\end{aligned}
$$

τ_{3} is defined to be the CA_{3}-term

$$
\begin{aligned}
& -c_{(3)}\left(z \cdot s_{2}^{1} z-d_{12}\right) \cdot \\
& -c_{(3)}\left(z-\left[c_{1}\left(p_{0} \cdot s_{1}^{0} c_{1} x\right) \cdot c_{1}\left(p_{1} \cdot s_{1}^{0} c_{1} x\right) \cdot s_{1}^{0} c_{1} x\right]\right) \cdot \\
& -c_{(3)}\left(s_{1}^{0} n(x) \cdot p_{0} \cdot c_{1}\left(p_{1} \cdot s_{1}^{0} c_{1} x\right)-z\right) \cdot \\
& -c_{(3)}\left(c_{1}\left[c_{2}\left(s_{1}^{0} s_{2}^{1} p_{0} \cdot c_{1}\left[p_{0} \cdot s_{1}^{0} s_{2}^{1} x\right]\right) \cdot c_{2}\left(s_{2}^{1} p_{1} \cdot s_{1}^{0} s_{2}^{1} p_{1}\right) \cdot s_{1}^{0} s_{2}^{1} z\right]\right. \\
& \left.\quad \oplus c_{1}\left[c_{2}\left(s_{2}^{1} p_{1} \cdot s_{1}^{0} s_{2}^{1} p_{1}\right) \cdot c_{2}\left(s_{2}^{1} z \cdot s_{1}^{0} s_{2}^{1} p_{0}\right) \cdot s_{1}^{0} s_{2}^{1} y\right]\right) \cdot \\
& -c_{(3)}\left[c_{2}\left(s_{2}^{1} p_{0} \cdot s_{1}^{0} s_{2}^{1} p_{0}\right) \cdot c_{2}\left(s_{2}^{1} p_{1} \cdot s_{1}^{0} s_{2}^{1} p_{1}\right) \cdot\left(s_{2}^{1} z \oplus s_{1}^{0} s_{2}^{1} z\right)\right] \cdot \\
& -c_{(3)}\left(c_{2} z-z\right) .
\end{aligned}
$$

Let $\psi\left(x, y, z, p_{0}, p_{1}\right) \triangleq \tau_{1} \cdot \pi \cdot \tau_{2} \cdot \tau_{3} \cdot \sigma$.
(ii) Let $e(\bar{x})$ be a number-theoretic equation. Let $V, W=$ $\left\{x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{k}\right\} \subseteq V$, and b_{0}, \ldots, b_{m} be associated to $e(\bar{x})$ as in Definition 3.2(ii). To every $w \in W$ we associate a variable q_{w} in the language of CA_{3}. Define

$$
\kappa(W) \triangleq \prod\left\{-c_{(3)}\left(c_{1} c_{2} q_{w}-q_{w}\right)-c_{(3)}\left(q_{w} \cdot s_{1}^{0} q_{w}-d_{01}\right) \cdot c_{0} q_{w}: w \in W\right\}
$$

For each $l \leqslant m$ define the cylindric term ξ_{l} as follows: ξ_{l} is defined to be

$$
\begin{aligned}
& -c_{(2)}\left(q_{u} \cdot s_{1}^{0} q_{v}-x\right), \\
& -c_{(2)}\left(c_{1}\left[p_{0} \cdot s_{1}^{0} q_{u}\right] \cdot c_{1}\left[p_{1} \cdot s_{1}^{0} q_{v}\right] \cdot s_{1}^{0} q_{w}-y\right), \\
& -c_{(2)}\left(c_{1}\left[p_{0} \cdot s_{1}^{0} q_{u}\right] \cdot c_{1}\left[p_{1} \cdot s_{1}^{0} q_{v}\right] \cdot s_{1}^{0} q_{w}-z\right), \quad \text { or } \\
& -c_{(2)}\left(q_{u}-n(x)\right)
\end{aligned}
$$

according to whether b_{l} is $u+1=v, u+v=w, u \cdot v=w$ or $u=0$.
Now we define $\eta(e(\bar{x}))$ to be

$$
\psi\left(x, y, z, p_{0}, p_{1}\right) \cdot \kappa(W) \cdot \prod\left\{\xi_{l}: l \leqslant m\right\}=0
$$

Lemma 3.9. Let $\alpha \geqslant 3, \mathfrak{A} \in \operatorname{Mg}_{\alpha} \cap \mathrm{Gs}_{\alpha}^{\text {reg }}, k \in 1^{\mathfrak{q}}$ and $X, Y, Z, P_{0}, P_{1} \in A$. Set $s \triangleq X \llbracket k, 2 \rrbracket, a \triangleq Y \llbracket k, 2 \rrbracket, m \triangleq Z \llbracket k, 2 \rrbracket, \quad p_{0} \triangleq P_{0} \llbracket k, 2 \rrbracket, \quad p_{1} \triangleq P_{1} \llbracket k, 2 \rrbracket, \quad D \triangleq \operatorname{Dos}$ and
$P \triangleq\left\{u \in \operatorname{Dop}_{0} \cap \operatorname{Dop}_{1}: p_{0} u \in D \wedge p_{1} u \in D\right\}$. Assume $k \notin \sum\left\{c_{(3)}\left(c_{2} q-q\right): q \in\right.$ $\left.\left\{X, Y, Z, P_{0}, P_{1}\right\}\right\}$.
(i) Then (a) and (b) below are equivalent.
(a) $k \in \psi\left(X, Y, Z, P_{0}, P_{1}\right)^{2}$.
(b) p_{0}, p_{1} are unary functions, $(\forall u, v \in D)(\exists w \in P)\left(p_{0} w=u \wedge p_{1} w=v\right)$, $a: S_{1} \rightarrow D, m: S_{2} \rightarrow D$ for some $S_{1}, S_{2} \subseteq P$, and there are $N \in \omega$ and $n: N+1 \mapsto$ base($\mathfrak{H})$ such that $s=\{\langle n i, n(i+1)\rangle: i<N\}$ and for every $q \in P$ and $u \in D$ we have

$$
\begin{aligned}
& (q, u) \in a \quad \text { iff } \quad(\exists i, j \in N)\left[i+j \in N \wedge n i=p_{0} q \wedge n j=p_{1} q \wedge n(i+j)=u\right], \\
& (q, u) \in m \quad \text { iff } \quad(\exists i, j \in N)\left[i \cdot j \in N \wedge n i=p_{0} q \wedge n j=p_{1} q \wedge n(i \cdot j)=u\right] .
\end{aligned}
$$

(ii) Let $g:\left\{q_{w}: w \in W\right\} \rightarrow A$. Assume $k \notin \sum\left\{c_{(3)}\left(c_{1} c_{2} g\left(q_{w}\right)-g\left(q_{w}\right)\right): w \in W\right\}$. Then (a) and (b) below hold.
(a) $k \in K(W)^{2}[g]$ iff $\left|g\left(q_{w}\right) \llbracket k, 1 \rrbracket\right|=1$ for every $w \in W$.
(b) Assume $k \in \psi\left(X, Y, Z, P_{0}, P_{1}\right)^{\text {2r }}$. Let N, n, be as in (i)(b). Assume $k \in K(W)^{\mathfrak{2}}[g]$. For every $w \in W$ let $\left\{c_{w}\right\}=g\left(q_{w}\right)[k, 1]$. Let $h: W \rightarrow N$ be defined by $h_{w}=n^{-1}\left(c_{w}\right)$ if $c_{w} \in \operatorname{Rg} n, h_{w}=0$ otherwise. Then

$$
k \in \prod\left\{\xi_{l}: l \leqslant m\right\}\left[X, Y, Z, P_{0}, P_{1}, g\right] \quad \text { iff }\left(\omega \vDash \wedge B[h] \wedge(\forall w \in W) c_{w} \in \operatorname{Rg} n\right) .
$$

The proof of Lemma 3.9 is similar to that of Lemma 3.4. The proof of the last two statements of (i)(b) goes as follows: Let $i, j \in N$ be such that $p_{0} q=n i$, $p_{1} q=n j$. Then both directions are proved by induction on i. We omit the rest of the proof.

Let $e(\bar{x})$ be a number-theoretic equation. Let $\exists \bar{y} \wedge B$ where $B=$ $\left\{b_{0}, \ldots, b_{m}\right\}, W=\left\{x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{k}\right\} \subseteq V$ and $\left\{\xi_{l}: l \leqslant m\right\}$ be associated to $e(\bar{x})$ as in Definitions 3.2, 3.8.

Lemma 3.10. Let $3 \leqslant \alpha$. Then $\omega \vDash \exists \bar{x} e(\bar{x})$ iff $\mathrm{Mg}_{\alpha} \nRightarrow \eta(e(\bar{x}))$.
Proof. The proof of Lemma 3.10 is very similar to the proofs of Lemma 3.5, 3.6, using Lemma 3.9 instead of Lemma 3.4. Because of this, we will be more sketchy here, in proving Lemma 3.10. Assume $\omega \vDash \exists \bar{x} e(\bar{x})$. Then $\omega \vDash \exists \bar{x} \exists \bar{y} \wedge B$. Let $h \in{ }^{W} \omega$ be such that $\omega \in \wedge B[h]$. Let $N \in \omega$ be such that $h^{*} W \subseteq N$. Let $U \triangleq(N+1) \cup^{2} N$. Then U is finite. For every $u \in U$ let $Q(u) \triangleq\left\{s \in{ }^{\alpha} U: s_{0}=u\right\}$. Let $\mathfrak{M} \triangleq \mathbb{S}^{\left(\mathfrak{C b}^{\alpha} U\right)}\{Q(u): u \in U\}$. Then $\mathfrak{M} \in \mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Mg}_{\alpha}$. Let

$$
\begin{aligned}
& \mathbf{P}_{i} \triangleq\left\{s \in{ }^{\alpha} U: s_{0} \in^{2} N \text { and } s_{1}=p j_{i}\left(s_{0}\right)\right\} \quad \text { for } i \in 2, \\
& X \triangleq\left\{s \in{ }^{\alpha} U: s_{0} \in N \text { and } s_{1}=s_{0}+1\right\}, \\
& Y \triangleq\left\{s \in{ }^{\alpha} U: s_{0} \in^{2} N \text { and } s_{1}=p j_{0}\left(s_{0}\right)+p j_{1}\left(s_{0}\right)<N\right\}, \\
& Z \triangleq\left\{s \in{ }^{\alpha} U: s_{0} \in^{2} N \text { and } s_{1}=p j_{0}\left(s_{0}\right) \cdot p j_{1}\left(s_{0}\right)<N\right\} .
\end{aligned}
$$

Then $X, Y, Z, P_{0}, P_{1} \in M$ since U is finite. (E.g., $P_{0}=$ $\Sigma\left\{Q(\langle m, n\rangle) \cdot s_{1}^{0} Q(m): m, n \in N\right\}$.) Let $g\left(q_{w}\right) \triangleq Q\left(h_{w}\right)$ for every $w \in W$. Let $k \in 1^{\mathfrak{M}}$. Let $g^{\prime}:\left\{x, y, z, p_{0}, p_{1}\right\} \cup\left\{q_{w}: w \in W\right\} \rightarrow M$ be defined by $g \subseteq g^{\prime}$ and $g^{\prime}(x)=X, \quad g^{\prime}(y)=Y, \quad g^{\prime}(z)=Z, \quad g^{\prime}\left(p_{i}\right)=P_{i} \quad$ for $\quad i \in 2 . \quad$ Now $\quad k \in$ $\left(\psi\left(x, y, z, p_{0}, p_{1}\right) \cdot \kappa(W)\right)^{\mathfrak{M}}\left[g^{\prime}\right]$ by Lemma 3.9 and by inspecting the above definitions. Also, $k \in \Pi\left\{\xi_{l}: l \leqslant m\right\}\left[g^{\prime}\right]$ by Lemma 3.9(ii) and since [$\omega \vDash \wedge B[h]$ and $\left.(\forall w \in W) h_{w} \in N\right]$. These statements show $\mathfrak{M} \nexists \eta(e(\bar{x}))$.

Conversely, assume $\mathrm{Mg}_{\alpha} \nexists \eta(e(\bar{x}))$. Then $\mathfrak{M} \nexists \eta(e(\bar{x}))$ for some $\mathfrak{M} \in \mathrm{Gs}_{\alpha}^{\mathrm{reg}} \cap$ Mg_{α}, since $\mathrm{Mg}_{\alpha} \subseteq \mathrm{IGs}_{\alpha}^{\text {reg }}$ by [22, 11]. Let $g:\{x, y, \ldots\} \rightarrow M$ be such that $\mathfrak{M} \nexists \eta(e(\bar{x}))[g]$. Let $k \in 1^{\mathfrak{M}}$ be such that $k \in\left(\psi \cdot \kappa(W) \cdot \Pi\left\{\xi_{l}: l \leqslant m\right\}\right)[g]$. Then $\boldsymbol{\omega} \vDash \wedge B[h]$ for some $h: W \rightarrow \omega$ by Lemma 3.9(ii)(b). Thus $\omega \neq \exists \bar{x} e(\bar{x})$ and we are done.

By the above we have seen that $\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ is not r.e. for $\alpha \geqslant 3$.
(B2) The idea of the modification of the proof in (B1): The problem is that if $K \subseteq \mathrm{Mg}_{\alpha}$ is unbounded, then we do not necessarily have 'constants' in some element of K-though these constants are needed for satisfying $\kappa(W) \neq 0$. Indeed, let $K \triangleq\left\{\mathfrak{U} \in \mathrm{Cs}_{\alpha}:(\exists\right.$ partition P of base($(\mathfrak{t}))[(\forall p \in P)|p| \geqslant 2 \wedge \mathfrak{U}=$ $\left.\left.\widetilde{S}_{\mathfrak{g}}\{\bar{p}: p \in P\}\right]\right\}$, where $\bar{p} \triangleq\left\{s \in 1^{\mathfrak{q}}: s_{0} \in p\right\}$. Then K is unbounded but $K \mathcal{F}$ $\kappa(W)=0$ for any W, hence $K \vDash \eta(e(\bar{x}))$ for any number-theoretic equation $e(\bar{x})$. But, as we shall see below, this is the only shortcoming and it can be overcome by changing the formulation of $\eta(e(\bar{x}))$ as follows.
e is an equivalence relation:

$$
e\left(v_{0} v_{0}\right), \quad e\left(v_{0} v_{1}\right) \rightarrow e\left(v_{1} v_{0}\right), \quad e\left(v_{0} v_{1}\right) \wedge e\left(v_{1} v_{2}\right) \rightarrow e\left(v_{0} v_{2}\right)
$$

x, y, z, p_{0}, p_{1} do not 'separate' e : Let $\xi \in\left\{x, y, z, p_{0}, p_{1}\right\}$ and let $w \in W$.

$$
\begin{aligned}
& \xi\left(v_{0} v_{1}\right) \wedge e\left(v_{0} v_{2}\right) \rightarrow \xi\left(v_{2} v_{1}\right), \\
& \xi\left(v_{0} v_{1}\right) \wedge e\left(v_{1} v_{2}\right) \rightarrow \xi\left(v_{0} v_{2}\right), \\
& q_{w}\left(v_{0}\right) \wedge e\left(v_{0} v_{1}\right) \rightarrow q_{w}\left(v_{1}\right) .
\end{aligned}
$$

The rest of the formulas are the same, except that we replace $v_{i}=v_{j}$ everywhere with $e\left(v_{i} v_{j}\right)$. Below we formalize the above in the language of CA_{3}.

Definition 3.11. (i) β is defined to be the CA_{3}-term

$$
-c_{(2)}\left(d_{01}-e\right)-c_{(2)}\left(e-s_{0}^{2} s_{1}^{0} s_{2}^{1} e\right)-c_{(3)}\left(e \cdot s_{1}^{0} s_{2}^{1} e-s_{2}^{1} e\right)-c_{(3)}\left(c_{2} e-e\right) .
$$

For every $\xi \in\left\{x, y, z, p_{0}, p_{1}\right\}, \sigma_{\xi}$ is the term

$$
-c_{(3)}\left(\xi \cdot s_{2}^{1} e-s_{2}^{0} \xi\right)-c_{(3)}\left(\xi \cdot s_{1}^{0} s_{2}^{1} e-s_{2}^{1} \xi\right)
$$

Let γ be the following term

$$
\beta \cdot \prod\left\{\sigma_{\xi}: \xi \in\left\{x, y, z, p_{0}, p_{1}\right\}\right\} \cdot \prod\left\{-c_{(2)}\left(q_{w} \cdot e-s_{1}^{0} q_{w}\right): w \in W\right\} .
$$

(ii) Let $\psi^{\prime}\left(e, x, y, z, p_{0}, p_{1}\right)$ and $\kappa^{\prime}(e, W)$ be the terms we obtain by replacing d_{01}, d_{02}, d_{12} respectively with $\beta, s_{2}^{1} \beta, s_{1}^{0} s_{2}^{1} \beta$ everywhere in the terms $\psi\left(x, y, z, p_{0}, p_{1}\right)$ and $\kappa(W)$ defined in Definition 3.8. We define $\delta(e(\bar{x}))$ to be

$$
\gamma \cdot \psi^{\prime}\left(e, x, y, z, p_{0}, p_{1}\right) \cdot \kappa(e, W) \cdot \prod\left\{\xi_{l}: l \leqslant m\right\}=0
$$

where the terms $\xi_{l}(l \leqslant m)$ are as defined in Definition 3.8(ii).
Now we state (without proof) the lemma analogous to Lemma 3.9.
Lemma 3.12. Let $\alpha \geqslant 3, \mathfrak{Q} \in \mathrm{Mg}_{\alpha} \cap \mathrm{Gs}_{\alpha}^{\mathrm{reg}}, k \in 1^{\mathfrak{Q}}$ and $E, X, Y, Z, P_{0}, P_{1} \in A$. Set $e \triangleq E \llbracket k, 2 \rrbracket, s \triangleq X \llbracket k, 2 \rrbracket, \ldots, p_{1} \triangleq P_{1} \llbracket k$, 2】. Let $Q_{w} \in A$ for every $w \in W$. Set $q_{w} \triangleq Q_{w} \llbracket k, 1 \rrbracket$. Assume that $k \notin \sum\left\{c_{(3)}\left(c_{2} q-q\right): q \in\left\{E, X, Y, Z, P_{0}, P_{1}\right\}\right\}+$ $\Sigma\left\{c_{(3)}\left(c_{1} c_{2} Q_{w}-Q_{w}\right): w \in W\right\}$. Then (i)-(iii) below hold.
(i) (a) and (b) below are equivalent.
(a) $k \in \gamma\left(E, X, Y, Z, P_{0}, P_{1},\left\langle Q_{w}: w \in W\right\rangle\right)^{2}$.
(b) e is an equivalence relation on base (\mathfrak{U}) and $s, a, m, p_{0}, p_{1}, q_{w}$ do not separate e.
(ii) Assume that $k \in \gamma\left(E, X, Y, Z, P_{0}, P_{1},\left\langle Q_{w}: w \in W\right\rangle\right)^{2}$. Then (a) and (b) below are equivalent. Let D and P be as in Lemma 3.9.
(a) $k \in \psi^{\prime}\left(E, X, Y, Z, P_{0}, P_{1}\right)^{\mathfrak{2}} \cdot \kappa^{\prime}\left(E,\left\langle Q_{w}: w \in W\right\rangle\right)^{2 x}$.
(b) $\bar{p}_{0} \triangleq p_{0} / e$ and $\bar{p}_{1} \triangleq p_{1} / e$ are unary functions, $(\forall u, v \in D)(\exists w \in$ $P)\left(w p_{0} u \wedge w p_{1} v\right), a / e, m / e$ are partial functions from P / e to D / e; there are $N \in \omega$ and $n: N+1 \mapsto$ base $(\mathfrak{A}) / e$ such that $s / e=\{(n i, n(i+1)): i<N\}$ and for every $q \in P$ and $u \in D$

$$
\begin{gathered}
(q, u) \in a \quad \text { iff } \quad(\exists i, j \in N)\left[i+j \in N \wedge n i=\bar{p}_{0}(q / e)\right. \\
\left.\wedge n_{j}=\bar{p}_{1}(u / e) \wedge n(i+j)=u / e\right], \\
(q, u) \in m \quad \text { iff } \quad(\exists i, j \in N)\left[i \cdot j \in N \wedge n i=\bar{p}_{0}(q / e)\right. \\
\left.\wedge n_{j}=\bar{p}_{1}(u / e) \wedge n(i \cdot j)=u / e\right],
\end{gathered}
$$

and further $\left|q_{w} / e\right|=1$ for every $w \in W$.
(iii) Assume that $k \in\left(\gamma \cdot \psi^{\prime} \cdot \kappa^{\prime}(W)\right)\left(E, X, \ldots,\left\langle Q_{w}: w \in W\right\rangle\right)^{2}$. Let $n, N b_{1}$ as in (ii)(b). Let $h: W \rightarrow N$ be defined as $h(w) \triangleq n^{-1}\left(c_{w}\right)$ if $q_{w} / e=\left\{c_{w}\right\}$ anc $c_{w} \in \operatorname{Rg} n, h(w) \triangleq 0$ otherwise. Then $k \in \Pi\left\{\xi_{l}: l \leqslant m\right\}\left[X, Y, Z, P_{0}, P_{1},\left\langle Q_{w}: w \in\right.\right.$ $W\rangle]$ iff $\left(\omega \vDash \wedge B[h] \&(\forall w \in W) c_{w} \in \operatorname{Rg} n\right)$.

Now one can prove a lemma analogous to Lemma 3.10, but using Lemma 3.1. instead of Lemma 3.9. We sketch the proof of one direction of the modifier Lemma 3.10.

Lemma 3.13. Let $3 \leqslant \alpha$ and $K \subseteq \operatorname{Mg}_{\alpha}$ be unboundedly generated. Let $e(\bar{x})$ be an. number-theoretic equation. Then $\omega \vDash \exists \bar{x} e(\bar{x})$ implies $K \sharp \delta(e(\bar{x}))$.

Proof. Assume $\omega \vDash \exists \bar{x} e(\bar{x})$. Let h, N, and U be as in the beginning of the proof of Lemma 3.10. Let $n \triangleq 2^{\mid U_{\mid}}$. Then $K \varsubsetneqq \mathbf{S P M g}_{\alpha}^{n}$, hence there is $\mathfrak{M} \in K \sim \mathbf{S P M g}_{\alpha}^{n}$. We may assume $\mathfrak{M} \in \mathrm{Cs}_{\alpha}^{\text {reg }} \sim \mathrm{Mg}_{\alpha}^{n}$. Then there is $Q: U \rightarrow\left(\mathrm{Nr}_{1} \mathfrak{M} \sim\{0\}\right)$ such that $Q_{u} \cap Q_{v}=0$ whenever $u \neq v$. Let $V \triangleq$ base (\mathfrak{M}). Let e be an equivalence relation on V such that $\left\{Q_{u}: u \in U\right\} \subseteq V / e$. Define

$$
\begin{aligned}
& E \triangleq\left\{s \in^{\alpha} V:\left(s_{0}, s_{1}\right) \in e\right\}, \\
& P_{0} \triangleq\left\{s \in^{\alpha} V:(\exists n, m \in N)\left(s_{0} \in Q(\langle n, m\rangle) \wedge s_{1} \in Q(n)\right)\right\}, \\
& P_{1} \triangleq\left\{s \in^{\alpha} V:(\exists n, m \in N)\left(s_{0} \in Q(\langle n, m\rangle) \wedge s_{1} \in Q(m)\right)\right\}, \\
& X \triangleq\left\{s \in^{\alpha} V:(\exists n \in N)\left(s_{0} \in Q(n) \wedge s_{1} \in Q(n+1)\right)\right\}, \\
& Y \triangleq\left\{s \epsilon^{\alpha} V:(\exists n, m \in N)\left(s_{0} \in Q(\langle n, m\rangle) \wedge s_{1} \in Q(n+m) \wedge n+m \in N\right)\right\}, \\
& Z \triangleq\left\{s \in^{\alpha} V:(\exists n, m \in N)\left(s_{0} \in Q(\langle n, m\rangle) \wedge s_{1} \in Q(n \cdot m) \wedge n \cdot m \in N\right)\right\} .
\end{aligned}
$$

From now on the proof goes almost exactly as the proof of Lemma 3.10.
By the above, Theorem 3.7 has been proved. Hence $\overline{\mathrm{Eq}} K$ is not r.e. if $3 \leqslant \alpha<\omega$ and $K \subseteq \mathrm{Mg}_{\alpha}$ is unboundedly generated.
(C) Now we start proving the cases when $\overline{\mathrm{Eq}} K$ is decidable.
(C1) Let $\alpha \geqslant \omega$. We shall prove more, namely we shall consider classes $K \subseteq \mathrm{CA}_{\alpha}$, too, and not only classes $K \subseteq \mathrm{Mg}_{\alpha}$. We will show that if $K \subseteq \mathrm{CA}_{\alpha}$ is bounded, then $\overline{\mathrm{Eq}} K$ is decidable. We note that the converse of this statement is also true: If $\overline{\mathrm{Eq}} K$ for $K \subseteq \mathrm{CA}_{\alpha}, \alpha \geqslant \omega$, is decidable, then K is bounded. This is proved in [29]. We shall use the following lemmas, which also give information on the lattice of varieties of CA_{α} 's. Recall the notation ${ }_{n} \mathrm{Gs}_{\alpha},{ }_{n} \mathrm{Mn}_{\alpha}$, ${ }_{(L)} \mathrm{Mn}_{\alpha}$ and ${ }_{<n} \mathrm{CA}_{\alpha}$ from the end of Section 1. Let $\mathfrak{A} \in \mathrm{CA}_{\beta}, \beta \geqslant \alpha$. Then $\mathfrak{H} \mathfrak{D}_{\alpha} \mathfrak{A}$ denotes the α-dimensional reduct of \mathfrak{A}, i.e., $\mathfrak{R d}_{\alpha} \mathfrak{U}=\left\langle A,+, \cdot,-, 0,1, c_{i}^{\mathfrak{Y}}, d_{i j}^{\mathfrak{Y}}\right\rangle_{i, j \in \alpha}$.

Lemma 3.14. Let $1<\alpha<\omega>n$ and $\beta \geqslant \alpha+n$. Let $\mathfrak{A} \epsilon_{n} \mathrm{Gs}_{\beta}$. Then $\operatorname{HSP}\left\{\mathfrak{R} \mathrm{D}_{\alpha} \mathfrak{Z}\right\}=\mathbf{I}_{n} \mathrm{Gs}_{\alpha}$.

Proof. Assume $\mathfrak{A} \epsilon_{n} \mathrm{Gs}_{\beta}$. We may assume $1^{\mathfrak{Q}}={ }^{\beta} n$ (since $\mathbf{H R d} \mathfrak{U} \supseteq \mathrm{RdH} \mathcal{C}$). Let $H \triangleq(\beta \sim \alpha)$ and $t \in{ }^{H} n$ be such that $(\forall i<n) t(\alpha+i)=i$. To every $s \in{ }^{\alpha} n$ there is $(+) x_{s} \in A$ such that $\left(\forall q \in \mathcal{A}_{n}\right)\left[t \subseteq q \Rightarrow\left(q \in x_{s} \Leftrightarrow s \subseteq q\right)\right]$.
To define this x_{s} we need only the $d_{i j}$'s with $i<\alpha$ and $\alpha \leqslant j<\alpha+n$, namely $x_{s}=\Pi\left\{d_{i, \alpha+s(i)}: i<\alpha\right\}$. Let $\quad h=\langle\{\alpha \upharpoonleft q: t \subseteq q \in Y\}: Y \in A\rangle$. Now $h \in$ $\operatorname{Hom}\left(\mathfrak{R} \mathrm{D}_{\alpha} \mathfrak{H}, \mathrm{Sb}^{\alpha} n\right)$ is easy to verify, see [12, 4.7.1.2(ii)]. Let $\mathfrak{B}=h^{*} \mathfrak{R} \mathrm{D}_{\alpha} \mathfrak{U}$. By $(+)$ above and since $h\left(x_{s}\right)=\{s\}$ for all $s \in^{\alpha} n$, we have $\left\{\{s\}: s \in 1^{\mathfrak{B}}\right\} \subseteq B$ which by $n, \alpha<\omega$ implies that \mathfrak{B} is full. Then clearly $\mathbf{S P B}=\mathbf{S P}_{n} \mathrm{Cs}_{\alpha} \supseteq{ }_{n} \mathrm{Gs}_{\alpha}$. Thus $\operatorname{SPH}\left\{\mathfrak{R} \delta_{\alpha} \mathfrak{X}\right\} \supseteq_{n} \mathrm{Gs}_{\alpha}$. It was proved in [12, 7.18(i)] that $\mathbf{I}_{n} \mathrm{Gs}_{\alpha}$ is a variety (and this is easy to prove based on results in [11]), and $\operatorname{Rd}_{\alpha n} \mathrm{Gs}_{\beta} \subseteq \mathbf{I}_{n} \mathrm{Gs}_{\alpha}$ by pp. 53-54 of [11].

Corollary 3.15. Let $n<\omega \leqslant \alpha$. Then $\mathbf{I}_{n} \mathrm{Gs}_{\alpha}$ has no nontrivial subvariety.
Proof. Let $\mathfrak{A} \in_{n} \mathrm{Gs}_{\alpha}$ be arbitrary. We will show $\operatorname{HSP}\{\mathfrak{Q}\}=\mathbf{I}_{n} \mathrm{Gs}_{\alpha}$. Let e be any equation in the language of CA_{α} and assume that ${ }_{n} \mathrm{Gs}_{\alpha} \notin e$. Then there is $\Gamma \subseteq_{\omega} \alpha$ and $\mathfrak{B} \in_{n} \mathrm{Gs}_{\alpha}$ such that $\mathfrak{R D}{ }_{\Gamma} \mathfrak{B} \forall e$. By Lemma 3.14 we have $\operatorname{HSP}\left\{\mathfrak{R} D_{\Gamma} \mathfrak{B}\right\}=$ $\mathbf{I}_{n} \mathrm{Gs}_{\Gamma}=\mathbf{H S P}\left\{\mathfrak{R} \mathrm{D}_{\Gamma} \mathfrak{A}\right\}$, hence $\mathfrak{R} D_{\Gamma} \mathfrak{A} \notin e$, i.e., $\mathfrak{A} \notin e$.

Remark 3.16. Corollary 3.15 is not true for $\alpha<\omega$, and $n>1$, because ${ }_{n} \mathrm{Mn}_{\alpha} \vDash c_{(\alpha \sim 1)} x=c_{(\alpha)} x \neq{ }_{n} \mathrm{Cs}_{\alpha}$ for $n>1$, hence $E q\left({ }_{n} \mathrm{Mn}_{\alpha}\right)$ is a proper nontrivial subvariety of $\mathbf{I}_{n} \mathrm{Gs}_{\alpha}$, which is a variety for $0<\alpha, n<\omega$ by [12, II.7.18].

Lemma 3.17. (i) Let $K \subseteq \mathrm{FbGs}_{\alpha}$. Then $\mathrm{Eq} K=\mathrm{Eq}\left({ }_{(L)} \mathrm{Mn}_{\alpha}\right)$ for some $L \subseteq \omega$.
(ii) Let $K \subseteq{ }_{<n} \mathrm{CA}_{\alpha}$. Then $\left.\mathrm{Eq} K=\mathrm{Eq}_{(\mathrm{L})} \mathrm{Mn}_{\alpha}\right)$ for some $L \subseteq n$.

Proof. Let $\mathfrak{A} \in K, n \triangleq \mid$ base $(\mathfrak{A}) \mid$ and let \mathfrak{M} be the minimal subalgebra of \mathfrak{Q}. Let $L \triangleq\left\{n \in \omega: K \cap_{n} \mathrm{Gs}_{\alpha} \neq 0\right\}$. Then $n \in L$ and $\mathbb{M}_{(L)} \mathrm{Mn}_{\alpha} \cap \mathrm{Eq} K$. Also, $\mathfrak{H} \in$ $\mathbf{I}_{n} \mathrm{Gs}_{\alpha}=\mathrm{Eq}\{\mathfrak{M}\}$ by Corollary 3.15. This shows $\mathrm{Eq} K=E q\left({ }_{(L)} \mathrm{Mn}_{\alpha}\right)$. If $K \subseteq$ ${ }_{<n} \mathrm{CA}_{\alpha}$, then $K \subseteq \mathrm{FbGs}_{\alpha}$ by [11, 4.2.53] and $L \subseteq n$.

Lemma 3.18. Let $L \subseteq \omega$ be finite and $\alpha \geqslant \omega$. Then $\overline{\mathrm{Eq}}\left({ }_{(L)} \mathrm{Mn}_{\alpha}\right)$ is decidable.
Proof. Let $\mathfrak{A} \epsilon_{n} \mathrm{Cs}_{\alpha} \cap \mathrm{Mn}_{\alpha}$ and $\mathfrak{A} \notin e$. Then $\mathfrak{M D _ { \Gamma }} \mathfrak{A} \notin e$ for some finite $\Gamma \subseteq \omega$. (*) Actually, Γ is the set of all indices occurring in e. Since $\mathfrak{R d}_{\Gamma} \mathfrak{H} \in \mathbf{I}_{n} \mathrm{Gs}_{\Gamma}$ by [12, 4.7.1.2] (or equivalently by the proof of [11, 3.1.118]) we have $\mathbf{S P}_{n} \mathrm{Cs}_{\Gamma}=$ $\mathbf{I}_{n} \mathrm{Gs}_{\Gamma} \sharp e$. We have proved (**) ${ }_{n} \mathrm{Mn}_{\alpha} \sharp e \Rightarrow_{n} \mathrm{Cs}_{\Gamma} \sharp e$. In the other direction, assume ${ }_{n} \mathrm{Cs}_{\Gamma} \sharp e$. Then ${ }_{n} \mathrm{Cs}_{\alpha} \sharp e$ by the proof of [11, 3.1.121], so by Corollary 3.15, $\mathbf{H S P}_{n} \mathrm{Mn}_{\alpha}=\mathbf{I}_{n} \mathrm{Gs}_{\alpha} \notin e$, hence ${ }_{n} \mathrm{Mn}_{\alpha} \nexists e$. Together with (**) this proves (***) ${ }_{n} \mathrm{Mn}_{\alpha} \vDash e \Leftrightarrow_{n} \mathrm{Cs}_{\Gamma} \vDash e$. Clearly, ${ }_{n} \mathrm{Cs}_{\Gamma}$ has only finitely many finite elements (note that $\left|{ }^{\Gamma} n\right|<\omega$), hence given e and Γ we can effectively decide whether ${ }_{n} \mathrm{Cs}_{\Gamma} \vDash e$ holds. By (*), Γ is effectively computable from $e .\left(*^{4}\right)$ This provides us with a decision procedure for ${ }_{n} \mathrm{Mn}_{\alpha}$. Let $L \subseteq \omega$ be finite. Then $\overline{\mathrm{Eq}}\left({ }_{(L)} \mathrm{Mn}_{\alpha}\right)=$ $\overline{\mathrm{Eq}} \cup\left\{{ }_{k} \mathrm{Mn}_{\alpha}: k \in L\right\}=\bigcap\left\{\overline{\mathrm{Eq}}_{k} \mathrm{Mn}_{\alpha}: k \in L\right\}$ provides us with a decision procedure using $\left(*^{4}\right)$ and finiteness of L.
(C2) Assume $2<\alpha<\omega$ and $K \subseteq \mathrm{Mg}_{\alpha}$ is boundedly generated. Then $K \subseteq$ $\mathbf{S P M g} g_{\alpha}^{n}$ for some $n \in \omega$. We have $\mathbf{M g}_{\alpha}^{n} \subseteq \mathbf{S P}\left(\mathrm{Mg}_{\alpha}^{n} \cap \mathrm{Cs}_{\alpha}\right)$ since $\mathbf{M g}_{\alpha} \subseteq \mathbf{I G s}_{\alpha}$. Then $K \subseteq \mathbf{S P}\left(\mathrm{Mg}_{\alpha}^{n} \cap \mathrm{Cs}_{\alpha}\right) \subseteq \mathbf{P}_{\mathbf{s}} \mathbf{S}\left(\mathrm{Mg}_{\alpha}^{n} \cap \mathrm{Cs}_{\alpha}\right)$, where $\mathbf{P}_{\mathbf{s}} L$ denotes the class of all subdirect products of members of L. Thus there is $L \subseteq \mathbf{S}\left(\mathrm{Mg}_{\alpha}^{n} \cap \mathrm{Cs}_{\alpha}\right)$ with $\mathrm{EqK}=$ EqL. By [11, 2.2.26] we have $\mathbf{S}\left(\mathrm{Mg}_{\alpha}^{n} \cap \mathrm{Cs}_{\alpha}\right)$ is a finite set of finite algebras, hence so is L and we can decide $\overline{\mathrm{Eq}} L . \quad \square$ (Theorem 2)

Proof of Theorem 4. Let \mathfrak{R} be a monadic-generated RA. Then $\mathfrak{H}=\mathfrak{R a} \mathfrak{U}$ for some $\mathfrak{A} \in \mathrm{SNr}_{3} \mathrm{CA}_{4}$ by [11, 5.3.17]. Let $R=\operatorname{Sg} G$ where $(\forall x \in G) x ; 1=x$. Then
$(\forall x \in G) \Delta^{\mathrm{x}} x \subseteq 1$ can easily be seen. We may assume that $A=\operatorname{Sg}^{\text {ed }} G$ by [11, 5.3.12]. Hence $\mathfrak{A} \in \mathrm{Mg}_{3}$, therefore \mathfrak{A} is representable by Monk [22, Theorem 21] (or by [11, 3.2.12]). Then \Re is representable, too. The second statement of Theorem 4 has been proved. By the above we also see that an analog of Lemma 3.3 holds for the class MRA of monadic-generated RA's.

Let MRA denote the class of all monadic-generated RA's. The proof of "EqMRA is not r.e." is practically the same as that of "EqMg is not r.e.". The only difference is that instead of $\eta(e(\bar{x}))$ we will now use a relation algebraic correspondent $\rho(e(\bar{x}))$ of the number-theoretic equation $e(\bar{x})$. We give here the translation. Let $e(\bar{x})$ be a number-theoretic equation with free variables $x_{0}, \ldots, x_{n} \in V=\left\{v_{i}: i \in \omega, i>6\right\}$. Let $e(\bar{x})$ be equivalent in ω to $\exists y_{0} \cdots y_{k}\left(b_{0} \wedge\right.$ $\cdots \wedge b_{m}$) such that $y_{0}, \ldots, y_{k} \in V$ and each b_{i} has the form $u+1=v, u+v=w$, $u \cdot v=w$ or $u=0$ for some $u, v, w \in W \triangleq\left\{x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{k}\right\}$. First we translate the formulas " x is a one-one function with no fix-point..." to RA-theoretic inequalities and non-equalities:
(1) $x^{\cup} ; x \leqslant 1^{\prime} \quad$ (x is a function)
(2) $x ; x^{\cup} \leqslant 1^{\prime} \quad(x$ is one-one).
(3) $x \leqslant-1^{\prime} \quad(x$ has no fix-point).
(4) $\left[(x ; 1)-(1 ; x)^{\cup}\right] \cdot\left[(x ; 1)^{\cup}-(1 ; x)\right] \leqslant 1^{\prime} \quad(|\operatorname{Do} x \sim \operatorname{Rg} x| \leqslant 1)$.
(5) $(x ; 1)-(1 ; x)^{\cup} \neq 0$. (|Dox $\sim \operatorname{Rg} x \neq 0$).
(6) $p_{i}^{\cup} ; p_{i} \leqslant 1^{\prime}$ for $i \in 2$
(7) $(x ; 1) \cdot(x ; 1)^{U} \leqslant p_{0}^{\mathrm{U}} ; p_{1} \quad\left(\forall v_{0}, v_{1} \in \operatorname{Dox}\right) \exists v_{2}\left(p_{0} v_{2}=v_{0} \wedge p_{1} v_{2}=v_{1}\right)$.
(8) $y^{u} ; y \leqslant 1^{\prime}$.
(9) $y ; 1 \leqslant p_{i} ; x ; 1$ for $i \in 2 \quad\left(v_{0} \in \operatorname{Doy} \rightarrow p_{i} v_{0} \in \operatorname{Dox}\right)$.
(10) $(1 ; y)^{\cup} \leqslant x ; 1 \quad(\operatorname{Rgy} \subseteq \mathrm{Dox})$.
(11) $\left[p_{0} ;\left(x ; 1-(1 ; x)^{\cup}\right)\right] \cdot p_{1} \cdot(x ; 1)^{\cup} \leqslant y \quad(0+u=u$, see the formula preceding Definition 3.8).
(12) $\left[\left(p_{0} ; x ; p_{0}^{\cup}\right) \cdot\left(p_{1} ; p_{1}^{\cup}\right)\right] ; y=y ; x \quad((v+1)+u=w \leftrightarrow w=(v+u)+1)$.
(12)' $\left(p_{0} ; p_{0}^{\mathrm{U}}\right) \cdot\left(p_{1} ; p_{1}^{\cup}\right) \leqslant 1^{\prime} \quad$ ('pairs' are unique).
(13) $z^{\cup} ; z \leqslant 1^{\prime}$.
(14) $z ; 1 \leqslant p_{i} ; x ; 1$ for $i \in 2$.
(15) $(1 ; z)^{\cup} \leqslant x ; 1$.
(16) $\left[x ; 1-(1 ; x)^{\cup}\right]^{\cup} \cdot p_{0} \cdot\left[p_{1} ; x ; 1\right] \leqslant z \quad(0 \cdot u=0)$.
(17) $\left[\left(p_{0} ; x ; p_{0}^{\cup}\right) \cdot\left(p_{1} ; p_{1}^{\cup}\right)\right] ; z=\left[\left(p_{1} ; p_{1}^{\cup}\right) \cdot\left(z ; p_{0}^{\cup}\right)\right] ; y$

$$
((v+1) \cdot u=w \leftrightarrow w=(v \cdot u)+u)
$$

Let $u, v, w \in W$. Then

$$
\begin{aligned}
& \xi(u+1=v) \triangleq\left(q_{u} \cdot q_{v}^{U} \leqslant x\right), \\
& \xi(u+v=w) \triangleq\left[\left(p_{0} ; q_{u}\right) \cdot\left(p_{1} ; q_{v}\right) \cdot q_{w}^{U} \leqslant y\right], \\
& \xi(u \cdot v=w) \triangleq\left[\left(p_{0} ; q_{u}\right) \cdot\left(p_{1} ; q_{v}\right) \cdot q_{w}^{U} \leqslant z\right], \\
& \xi(u=0) \triangleq\left[q_{u} \leqslant\left(x ; 1-(1 ; x)^{\cup}\right)\right] .
\end{aligned}
$$

Now to each statement (i) $(1 \leqslant i \leqslant 20)$ we associate an RA-term τ_{i} such that for every simple $\Re \in$ RA and evaluation k of the variables we have
(*) $\mathfrak{R} \vDash(i)[k]$ iff $\mathfrak{R} \vDash \tau_{i} \neq 0[k]$ iff $\mathfrak{R} \vDash \tau_{i}=1[k]$.
E.g., for τ_{1} we can take $\tau_{1} \triangleq-\left(1 ;\left(x^{\cup} ; x-1^{\prime}\right) ; 1\right)$. Indeed, in a simple RA we have $\tau_{1} \neq 0$ iff $\tau_{1}=1$ iff $1 ;\left(x^{\cup} ; x-1^{\prime}\right) ; 1=0$ iff $\left(x^{\cup} ; x-1^{\prime}\right)=0$ iff $x^{\cup} ; x \leqslant 1^{\prime}$. We can also associate such terms $\tau(u+1=v)$, etc. to $\xi(u+1=v)$, etc.

Now we define $\rho(e(\bar{x}))$ to be $\Pi\left\{\tau_{i}: 1 \leqslant i \leqslant 20\right\} \cdot \Pi\left\{\tau\left(b_{i}\right): 0 \leqslant i \leqslant m\right\}=0$. We will show

$$
\omega \vDash \exists \bar{x} e(\bar{x}) \text { iff } \quad \text { MRA } \notin \rho(e(\bar{x})) .
$$

Assume $\omega \vDash \exists \bar{x} e(\bar{x})$. Let $\omega \vDash \wedge B[h]$ and let $h^{*} W \subseteq N$ for $N \in \omega$ as in the proof of Lemma 3.10. Let $U \triangleq(N+1) \cup^{2} N$. Let \mathfrak{R} denote the full relation set algebra with base U (i.e., $R=\mathrm{Sb}(U \times U)$). Then $\Re \in$ MRA and there are X, Y, Z, P_{0}, P_{1}, $Q_{w}: w \in W$ in R for which (1)-(20) together with $\bigwedge\left\{\xi\left(b_{i}\right): 0 \leqslant i \leqslant m\right\}$ hold. Therefore $\mathfrak{R} \sharp \rho(e(\bar{x}))$ by (*). Assume $\mathfrak{R} \sharp \rho(e(\bar{x}))$ for some $\mathfrak{R} \in$ MRA. We may assume that \mathfrak{R} is simple and representable. Then by (*) there are $X, Y, Z, P_{0}, P_{1}, Q_{w}: w \in W$ in \mathfrak{R} for which (1)-(20) together with $\bigwedge\left\{\xi\left(b_{i}\right): 0 \leqslant\right.$ $i \leqslant m\}$ hold. Now Lemma 3.3 and [11, 5.3.17] imply that X is finite. Therefore $X, Y, Z, Q_{w}: w \in W$ provide a solution for $e(\bar{x})$ in ω. \square (Theorem 4).

Remark 3.19. We note that there are deeper reasons why we could translate these sentences to RA-terms: (1) If projection functions are available, then every first-order formula with free variables v_{0}, v_{1} can be translated to a formula with free variables v_{0}, v_{1} but using only the (bound or free) variables v_{0}, v_{1}, v_{2}; and (2) every formula of the latter shape can be translated to an RA-term (with the same meaning of course). See Tarski-Givant [35, Theorem (ix) in Chapter 6], or stated and proved precisely in the above form in [27, Lemmas 1, 2].

Proof of Theorem 6. First we prove Theorem 6(iv). Proof of $\mathrm{BbLf}_{\alpha} \subseteq \mathrm{SMg}_{\alpha}$: Let $\mathfrak{C} \in \mathrm{BbLf}_{\alpha}$. This means $\mathfrak{C} \cong \mathfrak{B} \in \mathrm{Bb}^{\prime} \mathrm{Gs}_{\alpha} \cap \mathrm{Lf}_{\alpha}$ for some \mathfrak{B}. If $\alpha<\omega$, then \mathfrak{B} is regular. If $\alpha \geqslant \omega$, then $\mathrm{Gs}_{\alpha} \subseteq \mathbf{I G s}{ }_{\alpha}^{\text {reg }}$ and by $\mathfrak{B} \in \mathrm{BbGs}_{\alpha}$ we have $c_{(n)} \bar{d}(n \times n)=0$
in \mathfrak{B}, hence $c_{(n)} \bar{d}(n \times n)=0$ in every \mathfrak{B}^{\prime} isomorphic to \mathfrak{B} (for some n). Thus we may assume $\mathfrak{B} \in \mathrm{Gs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha}$. We will show $\mathfrak{B} \in \mathbf{S M g}_{\alpha}$. Let V be the unit of \mathfrak{B} and $U \triangleq \operatorname{base}(\mathfrak{B})$. For every $S \subseteq U$ define $\bar{S} \triangleq\left\{s \in V: s_{0} \in S\right\}$. Let $\mathfrak{M} \triangleq \varsigma^{\left({ }^{\text {(®bV) }}\{\bar{S}: S \subseteq\right.}$ $U\}$. Then $\mathfrak{U} \in \mathrm{Mg}_{\alpha}$. Let $b \in B$ be arbitrary. Let $\Delta \triangleq \Delta b$ and $b_{\Delta} \triangleq\{\Delta \upharpoonleft s: s \in b\}$. Then $|\Delta|<\omega$ and $b=\left\{s \in V: \Delta \mid s \in b_{\Delta}\right\}$ by $\mathfrak{B} \in \mathrm{Gs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha}$. Let $N \in \omega$ be an upper bound of the sizes of \mathfrak{B}^{\prime} s subbases. (Exists by $\mathfrak{B} \in \mathrm{Bb}^{\prime} \mathrm{Gs}_{\alpha}$.) Let $n=\left.\right|^{\Delta} N \mid$. Then $(\forall W \in \operatorname{Subb}(\mathfrak{B}))\left|b_{\Delta} \cap{ }^{\Delta} W\right| \leqslant n$, hence there are e_{0}, \ldots, e_{n} such that $b_{\Delta}=e_{0} \cup \cdots \cup e_{n}$ and
(*) $\quad(\forall i \leqslant n)(\forall W \in \operatorname{Subb}(\mathfrak{B}))\left|e_{i} \cap{ }^{\Delta} W\right| \leqslant 1$.
For every $i \leqslant n$ let $b_{i} \triangleq\left\{s \in V: \Delta \upharpoonleft s \in e_{i}\right\}$. Then $b=b_{0} \cup \cdots \cup b_{n}$. Let $i \leqslant n$ be fixed. We will show that $b_{i} \in A$. For every $j \in \Delta$ define $S_{j} \triangleq\left\{s_{j}: s \in b_{i}\right\}$. Then $b_{i}=\Pi\left\{s_{j}^{0} \bar{S}_{j}: j \in \Delta\right\}$ holds by (*), showing $b_{i} \in A$. Hence $b \in A$, too, by $b=b_{0} \cup$ $\cdots \cup b_{n}$. Therefore $B \subseteq A$, hence $\mathfrak{B} \subseteq \mathfrak{A}$. \square (Theorem 6(iv))

For proving the rest of Theorem 6, we formulate some lemmas. Lemma 3.20 below is taken, with some reformulation, from Monk [22].

Lemma 3.20. Let $\alpha<\omega$. Then (i)-(ii) below hold.
(i) Every finite Mg_{α} can be represented as $a \mathrm{Gs}_{\alpha}$ with a finite base.
(ii) Every finitely generated subalgebra of $a \mathrm{Mg}_{\alpha}$ is finite.

Proof. (ii) is stated as Theorem 13 in [22] and it can easily be derived from [11, 2.2.24]. (i) is an easy consequence of Theorems 17,20 of [22], but can also be proved by using [11] as follows. The proof of [11, 2.5.61] shows that a finitely generated free monadic-generated CA_{α} (i.e., $\mathfrak{\mho} \mathrm{r}_{X}^{(\Delta)} \mathrm{CA}_{\alpha}$ with $|X|<\omega$ and $\operatorname{Rg} \Delta=\{1\})$ with α finite is a subdirect product of finitely many $\mathrm{Cs}_{\alpha}{ }^{\prime}$ s with finite bases, hence is in FbGs_{α}. It is easy to see that $\mathrm{HFbGs}_{\alpha} \subseteq \mathrm{FbGs}_{\alpha}$ if $\alpha<\omega$ (since if $\mathfrak{U} \in \mathrm{Gs}_{\alpha}$ and $\alpha<\omega$, \mid base $(\mathfrak{A}) \mid<\omega$, then every ideal of \mathfrak{A} is generated by a single zero-dimensional element z in \mathfrak{A}, and this z is a union of some subunits of \mathfrak{U}). Hence every finite Mg_{α} is in FbGs_{α}, if $\alpha<\omega$.

Remark 3.21. (i) Lemma 3.20(i) is not true for $\mathrm{Cs}_{\alpha} \cap \mathrm{Lf}_{\alpha}$ for $\alpha \geqslant 3$ in general, not even for a Cs_{α} generated by a single 2 -dimensional element. For counterexample see [11, 3.1.38]. But one can show that every finite $\mathrm{Mg}_{\alpha} \cap \mathrm{Gs}_{\alpha}$ ($\alpha<\omega$) is actually ext-isomorphic to one with finite base.
(ii) As a corollary of Lemmas 3.20 and Theorem 6(iv) we get that every finitely generated subalgebra of a BbLf_{α} is finite.

The next lemma is a corollary of results in [12]. If α is not an ordinal, but an arbitrary set, then by a $\mathrm{CA}_{\alpha}, \mathrm{Mg}_{\alpha}$ etc. we understand the natural thing.

Lemma 3.22. Let $0 \in \Delta \subseteq \alpha$. Then (i)-(ii) below hold.
(i) $\mathrm{FbMg}_{\Delta} \subseteq \operatorname{SIRd}_{\Delta} \mathrm{FbMg}_{\alpha}$.
(ii) $\mathrm{Rd}_{\Delta} \mathrm{BbGs}_{\alpha} \subseteq \mathrm{BbGs}_{\Delta}$.

Proof. (i) Let $\mathfrak{M} \in \mathrm{FbMg}_{\Delta}$. Then \mathfrak{M} is isomorphic to a $\mathfrak{B} \in \mathrm{Gs}_{\Delta} \cap \mathrm{Mg}_{\Delta}$ with a finite base U. Let $\left\{U_{i}: j \in J\right\}$ be the set of subbases of \mathfrak{B}. Define $V \triangleq \bigcup\left\{{ }^{\alpha} U_{j}: j \in\right.$ $J\}$. Then V is a Gs α_{α}-unit. For every $b \in B$ define $f(b) \triangleq\{s \in V: \Delta 1 s \in b\}$. Let
 $\mathfrak{C} \in \mathrm{FbGs}_{\alpha}$ since base($(\mathfrak{E})=\operatorname{base}(\mathfrak{B})$ is finite. It remains to show that $\mathfrak{C} \in \mathrm{Mg}_{\alpha}$. Let $G \subseteq B$ be a set of monadic generators for \mathfrak{B}. Then $f^{*} G$ generates $f^{*} B$ in \mathfrak{C} by
 every $g \in G$. (i) has been proved. (ii) follows from the proof of [11, 3.1.125] namely, the function $r d^{\rho}$ defined in $[11,3.1 .124]$ does not change the sizes of the subbases by [11, 3.1.125(iii)].

We are ready to prove the rest of Theorem 6. First we prove (iii). Proof of $\mathbf{M g}_{\alpha} \subseteq \mathbf{S U p F b M g} g_{\alpha}$. Let $\mathfrak{M} \in \mathrm{Mg}_{\alpha}$. Let $G \subseteq M$ be a set of monadic generators for \mathfrak{M}. For every $0 \in \Delta \subseteq \alpha, \Delta$ finite and $G_{0} \subseteq G, \quad G_{0}$ finite define
 FbMg_{α} be such that $\mathfrak{R} \subseteq \mathfrak{R D}_{\Delta}\left(\mathfrak{G}\left(\Delta, G_{0}\right)\right.$. Such an FbMg_{α} exists by Lemma 3.22 (i). Since for every finite $X \subseteq M$ there are finite $\Delta \subseteq \alpha$ and $G_{0} \subseteq G$ such that $X \subseteq R\left(\Delta, G_{0}\right)$, we have that $\mathfrak{M} \in \operatorname{SUp}\left\{\mathscr{G}\left(\Delta, G_{0}\right): 0 \in \Delta \subseteq{ }_{\omega} \alpha, G_{0} \subseteq{ }_{\omega} G\right\} \subseteq$ SUpFbMg ${ }_{\alpha}$.

Proof of $\mathrm{BbGs}_{\alpha} \subseteq \mathbf{S U p M g}_{\alpha}: \mathrm{BbGs}_{\alpha} \subseteq \mathbf{S U p B b L f}_{\alpha}$, because if $\alpha<\omega$ then $\mathrm{Gs}_{\alpha} \subseteq$ Lf_{α} and if $\alpha \geqslant \omega$ then $\mathrm{Gs}_{\alpha} \subseteq \operatorname{SUpLf}_{\alpha}$ by [11, 2.6.52, 3.2.10]; and by using $\mathrm{Gs}_{\alpha} \subseteq \operatorname{SUpLf}_{\alpha}$ it is easy to prove that if $\mathfrak{B} \in \mathrm{Gs}_{\alpha}, \mathfrak{B} \vDash c_{(n)} \bar{d}(n \times n)=0$ then $\mathfrak{B} \in \mathbf{S U p}\left\{\mathfrak{U} \in \operatorname{Lf}_{\alpha}: \mathfrak{U} \vDash c_{(n)} \bar{d}(n \times n)=0\right\} \subseteq \mathbf{S U p B b L f}_{\alpha}$. By Theorem 6(iv) $\mathrm{BbLf}_{\alpha} \subseteq$ $\mathbf{S M g}_{\alpha}$, hence $\mathrm{BbGs}_{\alpha} \subseteq \mathbf{S U p B b L f}_{\alpha} \subseteq \mathbf{S U p M g}_{\alpha}$. Clearly, $\mathrm{FbMg}_{\alpha} \subseteq \mathrm{BbGs}_{\alpha}$, hence (iii) of Theorem 6 has been proved.

Proof of Theorem 6(i): Let $\alpha \geqslant \omega$. We want to prove $\mathrm{Mg}_{\alpha} \subseteq \mathrm{EqMn}_{\alpha}$. Let e be an equation and assume $\mathrm{Mg}_{\alpha} \nLeftarrow e$. Then $\mathrm{BbGs}_{\alpha} \nLeftarrow e$ by Theorem 6(iii). Then there is a finite $\Delta \subseteq \alpha$ such that $\mathrm{BbGs}_{\Delta} \sharp e$, by Lemma 3.22(ii). Then $\mathrm{FbCs}_{\Delta} \sharp e$. Let $\mathfrak{c} \in \mathrm{Cs}_{\Delta}$ with a finite base U such that $\mathfrak{c} \sharp e$. Let \mathfrak{M} be the minimal Cs_{α} with base U. Let $w: U \mapsto \alpha \sim \Delta$. For every $s \in{ }^{\Delta} U$ define

$$
m(s) \triangleq \prod\left\{d_{i, w(s)}: i \in \Delta\right\}
$$

For every $a \in C$ define $f(a) \triangleq \Sigma\{m(s): s \in a\}$. Then $f: C \rightarrow M$ since ${ }^{\Delta} U$ is finite. The next argument is extracted from [12, II.4.7.1.2] or [11, 3.1.124, 3.1.125]. Let $k \in{ }^{(\alpha \sim \Delta)} U$ be such that $(\forall u \in U) k(w u)=u$. For any $X \in M$ let $g X=\left\{t \in{ }^{\Delta} U: t \cup\right.$ $k \in X\}$. Then it is easily verified that $g: \mathfrak{R} \mathrm{D}_{\Delta} M \rightarrow \subseteq \mathfrak{S b}\left({ }^{\Delta} U\right)$. Moreover, $g f a=a$ for all $a \in C$, so $\mathbb{C} \subseteq g^{*} \mathfrak{R} D_{\Delta} \mathfrak{M}$. Since $\mathbb{C} \sharp e$, it follows that $\mathfrak{R D} \mathrm{D}_{\Delta} \mathfrak{M} \notin e$, hence $\mathfrak{M} \notin e$. We have seen $\mathrm{Mn}_{\alpha} \sharp e$. We have seen $\mathrm{Mn}_{\alpha} \vDash e \Rightarrow \mathrm{Mg}_{\alpha} \vDash e$. $\mathrm{By} \mathrm{Mn}_{\alpha} \subseteq \mathrm{Mg}_{\alpha}$ this implies $\mathrm{EqMn}_{\alpha}=\mathrm{EqMg}_{\alpha} . \mathrm{EqMg}=\mathrm{EqFbCs}_{\alpha}$ follows from Theorem 6(iii). Theorem 6(i) has been proved.

Proof of Theorem 6(ii): Let δ denote the formula $\forall x\left(x \cdot c_{0}^{\partial} d_{01}=0 \bigvee x \geqslant\right.$ $c_{0}^{\partial} d_{01}$). Then clearly $\mathrm{Mn}_{\alpha} \vDash \delta$ (cf. [11, 2.1.20(ii)]), but $\mathrm{Mg}_{\alpha} \notin \delta$ for $\alpha \geqslant 2$. This proves Theorem 6(ii).
Proof of Theorem $6(\mathrm{v})$: Let φ denote the following Π_{2}-formula

$$
\begin{aligned}
& \forall x \exists y\left(\left[\sigma(y)-c_{0}\left(c_{1} y \oplus c_{1} x\right)\right]+\left(\sigma(y)-c_{0}\left(c_{1} y \oplus-c_{1} x\right)\right]\right. \\
& \left.\quad+\beta\left(c_{1} x\right)+\beta\left(-c_{1} x\right) \neq 0\right),
\end{aligned}
$$

where

$$
\sigma(y) \triangleq-c_{(3)}\left(y \cdot s_{2}^{1} y-d_{12}\right)-c_{(3)}\left(y \cdot s_{2}^{0} y-d_{02}\right)-c_{(2)}\left(y \cdot d_{01}\right) \cdot-c_{(7)}\left(c_{(7 \sim 2)} y-y\right),
$$

and $\beta(z) \triangleq-c_{(2)}\left(z \cdot s_{1}^{0} z-d_{01}\right)$. Roughly speaking, φ expresses that either $\operatorname{Do}\left(c_{1} x\right)$ or the complement of $\operatorname{Do}\left(c_{1} x\right)$ is finite. We will show that $\mathrm{Mn}_{\alpha} \vDash \varphi$ while $\mathfrak{M} \notin \varphi$ for some hereditarily nondiscrete $\mathrm{Mg}_{\alpha} \mathfrak{M}$. Let $\mathfrak{M} \in \mathrm{Mn}_{\alpha} \cap \mathrm{Gs}_{\alpha}$ and $X \in M, s \in 1^{\mathfrak{M}}$ be arbitrary. Let $x \triangleq c_{1} X$. Define $D_{0} \triangleq\{u: s(0 / u) \in x\}$ and $D_{1} \triangleq\{u: s(0 / u) \in-x\}$. We will show that
(*) either $\left|D_{0}\right|<\omega$ or $\left|D_{1}\right|<\omega$.
Assume both D_{0} and D_{1} are infinite. Let $\Delta \triangleq \Delta x$ and $S \triangleq\left\{s_{i}: i \in \Delta\right\}$. Then $|S|<\omega$. Let $u \in D_{0} \sim S, v \in D_{1} \sim S$ and let $f:$ base $(\mathfrak{M}) \rightarrow$ base (\mathfrak{M}) be the function interchanging u and v and leaving all the other elements fixed. Then $\tilde{f} x=x$ for the induced base-isomorphism \tilde{f} since $\mathfrak{M} \in \mathrm{Mn}_{\alpha}$. Let $s^{\prime} \triangleq f \circ s$. Then $\Delta 1 s^{\prime}=\Delta 1 s$ since f is identity on S, hence $s(0 / w) \in x$ iff $s^{\prime}(0 / w) \in x$ for every w by the regularity of x (every $\mathrm{Mn}_{\alpha} \cap \mathrm{Gs}_{\alpha}$ is regular (see [11, 3.1.63]). Now $s(0 / u) \in x$, hence $s^{\prime}(0 / u) \in x$, therefore $f \circ\left(s^{\prime}(0 / u)\right) \in \tilde{f}(x)=x$, but $f \circ\left(s^{\prime}(0 / u)\right)=s(0 / v)$, contradicting $s(0 / v) \in-x$. (*) has been proved.

Assume $\left|D_{0}\right| \leqslant 1$. Then $s \in \beta(x)$ and we are done. Assume now $1<\left|D_{0}\right|<\omega$. Let $w: D_{0} \hookrightarrow \alpha \sim \Delta$. Let $k \in 1^{\mathfrak{M}}$ be such that $\Delta \upharpoonleft s \subseteq k$ and $\left(\forall u \in D_{0}\right) k(w u)=u$. Let g be any one-one function without fixpoints and with domain and range D_{0}. Define $y \triangleq \sum\left\{d_{0, w u} \cdot d_{1, w(g u)}: u \in D_{0}\right\}$. Then $y \llbracket k, 2 \rrbracket=g$, hence $k \in \sigma(y)$ by Lemma 3.4. By $\Delta 1 s \subseteq k$ we have $D_{0}=\{u: s(0 / u) \in x\}=\{u: k(0 / u) \in x\}$, hence $k \notin c_{0}\left(c_{1} y-c_{1} x\right)$. The other case, $\left|D_{1}\right|<\omega$, is completely analogous. We have seen $\mathrm{Mn}_{\alpha} \vDash \varphi$. Let V, W be disjoint infinite sets and $U \triangleq V \cup W, X \triangleq\left\{s \in{ }^{\alpha} U: s_{0} \in\right.$ $V\}$. Let $\mathfrak{M} \triangleq \mathbb{S}^{\left(\mathfrak{C b}^{\alpha} U\right)}\{X\}$. Then $\mathfrak{M} \in \mathrm{Mg}_{\alpha}$. Assume $Y \in M$ and $k \in{ }^{\alpha} U$ is such that

$$
k \in\left[\sigma(Y)-c_{0}\left(c_{1} Y \oplus c_{1} X\right)\right]+\left[\sigma(Y)-c_{0}\left(c_{1} Y \oplus-c_{1} X\right)\right]
$$

say $k \in \sigma(Y)-c_{0}\left(c_{1} Y \oplus c_{1} X\right)$. (Note that $\beta\left(c_{1} X\right)+\beta\left(-c_{1} X\right)=0$.) Let $R \triangleq Y \llbracket k$, 2】. Then R is finite by $k \in \sigma(Y)$, see Lemma 3.4. By $k \notin c_{0}\left(c_{1} Y-c_{1} X\right)$ we have $\operatorname{Do} R=V$, hence R is infinite since V is infinite. Contradiction. (Theorem 6)

Proof of Theorem 1. Proof of Theorem 1(iii): $\mathrm{EqMn}_{0}=\mathrm{EqMg}_{0}$ since Mn_{0} consists of the one- and two-element BA's and $\mathrm{Mg}_{0}=\mathrm{BA} . \mathrm{EqMn}_{1} \neq \mathrm{EqMg}_{1}$ since $\mathrm{Mn}_{1} \neq c_{0} x=x$ while $\mathrm{Mg}_{1} \notin c_{0} x=x$. For $2 \leqslant \alpha<\omega, \mathrm{EqMn}_{\alpha} \neq \mathrm{EqMg}_{\alpha}$ since EqMn_{α}
is r.e. while $\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ is not. A concrete equation distinguishing them is, e.g., $c_{(\alpha \sim 1)} x=c_{(\alpha)} x$. For $\alpha \geqslant \omega, \mathrm{EqMn}_{\alpha}=\mathrm{EqMg}_{\alpha}$ is proved in Theorem 6(i).

Proof of Theorem 1 (iv): $\mathrm{Mg}_{1}=\mathrm{CA}_{1}$ by definition and $\mathrm{Rp}_{1}=\mathrm{CA}_{1}$ by [11, 3.2.55].

Proof of $\mathrm{Rp}_{2} \subseteq \mathbf{S U p M g} \mathbf{S}_{2}: \mathrm{Rp}_{2} \subseteq \mathbf{S U p F R p} p_{2}$ by 8 [11, 4.2.8], $\mathrm{FRp}_{2} \subseteq \mathrm{FbRp}_{2}$ by Henkin's result [11, 3.2.66], and $\mathrm{FbRp}_{2} \subseteq \mathrm{SMg}_{2}$ by Theorem 6(iv). $\mathrm{Mg}_{2} \subseteq$ $\mathbf{S U p R p} 2$ by Monk [22, Theorem 21] or by [11, 3.2.12], and $\mathbf{S U p R p}_{2}=\mathrm{Rp}_{2}$ by [11, 3.1.97]. $\mathrm{UnMg}_{2}=\mathrm{Rp}_{2}$ has been proved. To see $E l \mathrm{Mg}_{2} \subset \mathrm{Rp}_{2}$, let

$$
\varphi \triangleq \exists x\left(c_{0} x=1 \wedge c_{1} x=1 \wedge x<-d_{01}\right) \rightarrow \exists y\left(c_{0} y>y=c_{1} y\right)
$$

Now $\mathrm{Mg}_{2} \vDash \varphi$ but ${ }_{\kappa} \mathrm{Cs}_{2} \nLeftarrow \varphi$ if $\kappa>1$. Let $\alpha>2$. Then $\overline{\mathrm{Eq}} \mathrm{Mg}_{\alpha}$ is not r.e. by Theorem 2(ii) while $\overline{\mathrm{EqRp}_{\alpha}}$ is r.e. (by, e.g., [11, 4.1.15-16]), hence $\mathrm{EqMg}_{\alpha} \neq$ $\mathrm{EqRp}_{\alpha}=\mathrm{Rp}_{\alpha}$. A concrete equation showing $\mathrm{EqMn}_{\alpha} \subset \mathrm{Rp}_{\alpha}$ for $\alpha>2$ is given in [11, 4.1.32]; that equation works for showing $\mathrm{EqMg}_{\alpha} \subset \mathrm{Rp}_{\alpha}$, too. An alternative equation, using the techniques of the present paper (see the proof of Theorem 2), is the CA-equational formulation of " x is a one-one function without fix-points and Dox $\sim \operatorname{Rg} x \neq 0$ implies that $\operatorname{Rg} x \sim \operatorname{Dox} \neq 0 "$. Theorem 1(iv) has been proved.

Proof of Theorem 1(i)-(ii): For $\alpha>2$, Theorem 1(i)-(ii) follow from Theorem 2 since $\mathrm{Mn}_{\alpha}, \operatorname{Mg}_{\alpha} \alpha \geqslant \omega$ are not bounded and for $\alpha<\omega, \mathrm{Mn}_{\alpha}$ is boundedly generated while Mg_{α} is not. Let $\alpha \leqslant 2$. Then $\overline{\mathrm{Eq}} \mathrm{Mn}_{\alpha}$ is decidable by $[11,4.2 .1], \overline{\mathrm{Eq}} \mathrm{Mg}_{2}=\overline{\mathrm{Eq}} \mathrm{Rp}_{2}$ is decidable by^{9} [11, 4.2.9]. Let $\alpha=1$. Then $\mathrm{Mg}_{1}=\mathrm{CA}_{1}$. By Comer [6, p. 176], the elementary theory of FCA_{1} is decidable (see also [11, 4.2.24]). Since $\mathrm{CA}_{1}=\mathrm{EqFCA}_{1}$ by [11, 2.5.6], the equational theory of CA_{1}, hence $\overline{\mathrm{Eq}} \mathrm{Mg}_{1}$ also, is decidable. The equational theory of $\mathrm{Mg}_{0}=\mathrm{BA}$ is obviously decidable. \square (Theorem 1)

Proof of Theorem 3. Proof of Theorem 3(ii): Let $\alpha \geqslant \omega$. We want to show $\mathrm{EqBg}_{\alpha}^{1}=\mathrm{Rp}_{\alpha}$. Now $\mathrm{Bg}_{\alpha}^{1} \subseteq \mathrm{Bg}_{\alpha} \subseteq \mathrm{Lf}_{\alpha} \subseteq \mathrm{Rp}_{\alpha}$ by [11, 3.2.8], thus $\mathrm{EqBg}_{\alpha}^{1} \subseteq$ $\mathrm{EqBg}_{\alpha} \subseteq \mathrm{Rp}_{\alpha}$. $\mathrm{By}[11,3.1 .123]$ we have $\mathrm{Rp}_{\alpha}=\mathrm{Eq}\left(\mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha}\right)$. Thus it is enough to show $\mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha} \subseteq \mathbf{H S P B g}_{\alpha}^{1}$. Let $\mathfrak{H} \in \mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha}$. Let $U \triangleq$ base($\left.\mathfrak{H}\right)$. Let \mathfrak{R} denote the greatest regular Lf-subalgebra of $\subseteq \mathfrak{b}^{\alpha} U$. Then $\mathfrak{A} \subseteq \mathfrak{R} \in \mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha}$. Assume $|U|<\omega$. We will show that $\mathfrak{R} \in \mathrm{Bg}_{\alpha}^{1}$. We may assume $U \in \omega$. Define $X \triangleq\left\{s \in{ }^{\alpha} U: s_{1}=s_{0}+1\right\}$. For $i \in U$ define $Y_{i} \triangleq\left\{s \in{ }^{\alpha} U: s_{0}=i\right\}$. Now $Y_{0}=c_{1}\left(d_{01}-\right.$ $\left.c_{0} X\right)$ and $Y_{i+1}=c_{1}\left(d_{01} \cdot c_{0}\left(Y_{i} \cdot X\right)\right)$ if $i, i+1 \in U$. Using the $Y_{i}^{\prime} s$, it is not difficult to see that $\Re=\subseteq \mathfrak{g}\{X\}$, hence $\mathfrak{R} \in \mathrm{Bg}_{\alpha}^{1}$. Assume now $|U| \geqslant \omega$. We will show that $\mathfrak{R} \in \mathrm{EqBg}_{\alpha}^{1}$. To this end it is enough to show that $\mathbb{S} \mathfrak{g} X \in \mathbf{S B g}_{\alpha}^{1}$ for every finite $X \subseteq R$. Let $X \subseteq{ }_{\omega} R$. We may assume that the elements of X are disjoint. First we note that we may assume that $|X|=1$. For we may assume that $\Delta x \cap \Delta y=0$ for

[^6]distinct $x, y \in X$ (hint: use the substitution functions s_{j}^{i}. Then if we set $Z \triangleq \cup X$ and $\theta \triangleq \bigcup\{\Delta x: x \in X\}$, we have $x=c_{(\theta \sim \Delta x)} Z$ for all $x \in X$, as desired. So, suppose that $X=\{Z\}$. We may assume without loss of generality that $\Delta Z=$ $m+1 \in \omega$ and $m \geqslant 2$. Now we use the well-known method of interpreting an m-ary relation in a binary one; see, e.g. [26, proof of 16.51]. Let $S=\{a \in$ ${ }^{m} U: a \subseteq x \in Z$ for some $\left.x\right\}$. By [11, 3.1.112], \Re is subisomorphic to some $\mathfrak{C} \in \mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha}$ with base W such that $|W|=|U|^{+}$. Let \mathbb{C}^{\prime} be the greatest regular locally finite subalgebra of $\mathbb{S b}\left({ }^{a} W\right)$. Note that the isomorphism f of \Re into \mathbb{C}^{\prime} is given by $f t=\left\{a \in{ }^{a} W: \Delta t \upharpoonleft a \subseteq x \in t\right.$ for some $\left.x\right\}$. We now define a symmetric binary relation (graph) T on W. For each $a \in S$, choose distinct elements $e_{0}^{a}, e_{1}^{a}, \ldots e_{m}^{a}$ in $W \sim U$ and put the following diagram in T :

(Distinct a 's get distinct e_{i}^{a} s.) Then there is a formula $\varphi\left(v_{0}, \ldots, v_{m}\right)$ in the language of $\langle W, T\rangle$ which defines S, that is, such that $S=\left\{s \in{ }^{m} W:\langle W, T\rangle\right.$ ह $\varphi[a]\}$. E.g.,
$$
\varphi\left(v_{0}, \ldots, v_{m}\right) \triangleq \exists v_{m+1} \cdots v_{2 m+2}\left(\bigwedge_{i \leqslant m} T v_{i} v_{i+m+1} \wedge_{i<m} T v_{i+m+1} v_{i+m+2}\right)
$$
will do. We may assume that φ is restricted. With each formula ψ in the language of $\langle W, T\rangle$ we associate a cylindric term ψ^{\prime} as follows:
\[

$$
\begin{array}{ll}
\left(R v_{0} v_{1}\right)^{\prime} \triangleq v_{0}, & \left(v_{i}=v_{j}\right)^{\prime} \triangleq d_{i j}, \\
(\neg \psi)^{\prime} \triangleq-\psi^{\prime}, & (\psi \vee \chi)^{\prime} \triangleq \psi^{\prime}+\chi^{\prime},
\end{array}
$$\left(\exists v_{i} \psi\right)^{\prime} \triangleq c_{i} \psi^{\prime} .
\]

Let $T^{\prime} \triangleq\left\{a \in{ }^{\alpha} W: 2 \upharpoonleft a \in T\right\}$. Then $\varphi^{\prime[(5)} T^{\prime}=f Z$. Thus $f^{*} \subseteq g\{Z\} \subseteq \subseteq g\left\{T^{\prime}\right\}$, as desired. $\mathrm{EqBg}_{\alpha}^{1}=\mathrm{Rp}_{\alpha}$ has been proved.

Proof of Theorem 3(i): That $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$ is r.e. for $\alpha \geqslant \omega$ follows from Theorem 3(ii). Next we prove that $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$ is not decidable for $\alpha>3$. Let $\alpha>3$. Recall from [11, §5.3] that $\mathrm{Ra}^{*} \mathrm{CA}_{\alpha}=\mathrm{Ra}^{*} \mathrm{Nr}_{3} \mathrm{CA}_{\alpha} \subseteq \mathrm{RA}$. By Theorem 5.3.16 of [11, p. 220], we have $R R A \subseteq \mathrm{RA}^{*} \mathbf{S N r}_{3} \mathrm{CA}_{\alpha}=\mathbf{S R a}^{*} \mathrm{CA}_{\alpha}$. Since $\mathrm{Ra}^{*} \mathrm{CA}_{\alpha}=\mathrm{Ra}^{*} \mathrm{Bg}_{\alpha}$, we have $\mathrm{RRA} \subseteq \mathrm{SRa}^{*} \mathrm{Bg}_{\alpha} \subseteq \mathrm{RA}$. Theorem 1 of Chapter 12 of Maddux [16, p. 220] says $\forall K\left(\operatorname{RRA} \subseteq K \subseteq \mathrm{RA} \Rightarrow \overline{\mathrm{Eq}} \mathrm{K}\right.$ is undecidable). Therefore $\overline{\mathrm{Eq}} \mathrm{SRa}^{*} \mathrm{Bg}_{\alpha}=$ EqRa* Bg_{α} is undecidable. Since $\mathfrak{R a} \mathfrak{Q}$ is a (generalized) reduct of \mathfrak{A}, this means that $\overline{\mathrm{Eq}} \mathrm{Bg}_{\alpha}$ is undecidable, too. \square (Theorem 3)

Proof of Theorem 5. Let $\tau(x)$ denote the following cylindric term

$$
-c_{(3)}\left(x \cdot s_{2}^{1} x-d_{12}\right)-c_{(3)}\left(x \cdot s_{2}^{0} x-d_{02}\right)-c_{(2)}\left(x \cdot d_{01}\right)-c_{(3)}\left(c_{2} x-x\right) \cdot c_{0}^{a} c_{1} x .
$$

Let e be the equation $c_{0}^{\partial} d_{01}+\tau(x)=0$. Let $\alpha \geqslant \omega$ and $\mathfrak{U} \in \mathrm{Mg}_{\alpha}$. We may assume $\mathfrak{A} \in \mathrm{Gs}_{\alpha}^{\text {reg }}$. Assume $\mathfrak{A} \sharp e$. If $\mathfrak{A} \notin c_{0}^{\partial} d_{01}=0$, then clearly $\mathfrak{H} \not{ }_{\alpha} \mathrm{Mg}_{\alpha}$. Assume $\mathfrak{A} \vDash$ $c_{0}^{\partial} d_{01}=0$. By $\mathfrak{A} \sharp e$ then there are $X \in A$ and $k \in 1^{\mathfrak{Y u}}$ such that $k \in \tau(X)$. Let
$R \triangleq X \llbracket k, 2 \rrbracket$. Then by Lemma $3.4, R$ is a one-one function with no fix-point, hence DoR is finite by Lemma 3.3. Let U be the subbase of \mathfrak{A} for which $k \in{ }^{\alpha} U$. Assume $u \in U$. Then $k_{u}^{0} \in c_{1} X$ by $k \in c_{0}^{\partial} c_{1} X$. Thus $u \in \operatorname{DoR}$, showing $U=\mathrm{Do} R$. Since Do R is finite, this shows $\mathfrak{A} \notin{ }_{\infty} \mathbf{M g}_{\alpha}$. Assume now $\mathfrak{A} \notin{ }_{\infty} \mathbf{M g}_{\alpha}$. Then there is a homomorphic image \mathfrak{B} of \mathfrak{A} such that $\mathfrak{B} \in \mathrm{Cs}_{\alpha}$ with a finite base U. It is enough to show $\mathfrak{B} \nexists e$, since then $\mathfrak{A} \nexists e$, too. We may assume $U \in \omega$. If $U=1$, then $\mathfrak{U} \notin c_{0}^{\partial} d_{01}=0$ and we are done. Assume $U \geqslant 2$. Let $X \triangleq \Sigma\left\{d_{0,3+i} \cdot d_{1,3+(i \oplus 1)}: i \in\right.$ $U\}$ where \oplus means addition modulo U, and let $k \in{ }^{\alpha} U$ be such that ($\forall i \in$ $U) k(3+i)=i$. Let $R \triangleq X \llbracket k, 2 \rrbracket$. Then $R=\{(i, i \oplus 1): i \in U\}$, hence R is a one-one function with no fix-point and $\operatorname{Do} R=U$, showing $k \in \tau(X)$. (Theorem 5)

Proof of Theorem 7. Proof of Theorem 7(i): It is enough to show ${ }_{\infty} M g_{\alpha} \cap \mathrm{Cs}_{\alpha} \subseteq$ $\mathrm{Eq}_{\infty} \mathrm{Mn}_{\alpha}$. Let $\mathfrak{A} \in_{\infty} \mathrm{Mg}_{\alpha} \cap \mathrm{Cs}_{\alpha}$ and let e be a CA_{α}-equation such that $\mathfrak{A} \nexists e\left(a_{0}, \ldots, a_{n}\right)$ for some $a_{0}, \ldots, a_{n} \in A$. We will show that ${ }_{\infty} \mathrm{Mn}_{\alpha} \not \forall e$. Let $\Gamma \subseteq{ }_{\omega} \alpha$ and $G \subseteq{ }_{\omega} \mathrm{Nr}_{1} \mathfrak{A}$ be such that all the indices occurring in e are contained in Γ and $\left\{a_{0}, \ldots, a_{n}\right\} \subseteq R$ where $\mathfrak{R} \triangleq \subseteq g^{\left(\Re D_{r} \mathfrak{R}\right)} G$. Then $\mathfrak{R} \notin e\left(a_{0}, \ldots, a_{n}\right)$ and $\mathfrak{R} \in_{\infty} \mathrm{Mg}_{\Gamma}$. If $G=0$, then we are done. Assume $G \neq 0$. For every $g \in G$ let $\bar{g} \triangleq\left\{s_{0}: s \in g\right\}$. We may assume that $\{\bar{g}: g \in G\}$ is a partition of base((\mathfrak{R}). Fix an element $\gamma \in G$ with $|\bar{\gamma}| \geqslant \omega$. For every $g \in G$ define \bar{g}^{\prime} as \bar{g} if $|\bar{g}|<|\Gamma|$ or if g is γ, otherwise let $\bar{g}^{\prime} \subseteq \bar{g}$ be such that $|\bar{g}|=|\Gamma|$. Let $U \triangleq \bigcup\left\{\bar{g}^{\prime}: g \in G\right\}$. Define $\mathfrak{R}^{\prime} \triangleq \mathfrak{R l}\left({ }^{\alpha} U\right) \mathfrak{F}$. Exactly as in the proof of Lemma 3.20, one can show that $\mathfrak{R} \cong \mathfrak{R}^{\prime}$. Let $\bar{G} \triangleq\left\{\bar{g}^{\prime}: g \in G\right\}$ and $W \triangleq \bigcup\left\{\bar{g}^{\prime}: g \in G, g \neq \gamma\right\}$. Then $W \subseteq_{\omega} U$. For every $z \in{ }^{\Gamma} \bar{G}$ define $\hat{z} \triangleq\left\{s \in{ }^{\Gamma} U:(\forall i \in \Gamma) s_{i} \in z_{i}\right\}$. Then it is not difficult to show that $(\forall a \in R)\left(\exists Z \subseteq{ }^{\Gamma} \bar{G}\right) a=\bigcup\{\hat{z}: z \in Z\}$. Let $w: W \succ \alpha \sim \Gamma$ be arbitrary. Fol every $z \in{ }^{\Gamma} \bar{G}$ define

$$
\begin{gathered}
m(z) \triangleq \prod\left\{\sum\left\{d_{i, w u}: u \in z_{i}\right\}: i \in \Gamma, z_{i} \neq \gamma\right\} \\
\prod\left\{-d_{i, w u}: i \in \Gamma, z_{i}=\gamma, u \in W\right\}
\end{gathered}
$$

For every $a \in R$ define $f(a) \triangleq \Sigma\{m(z): z \in Z\}$, where $a=\bigcup\{\hat{z}: z \in Z\}$. From now on the proof is basically the same as that of $\left(\mathrm{FbCs}_{\Delta} \not \forall e \Rightarrow \mathrm{Mn}_{\alpha} \not \forall e\right)$ in the proof of Theorem 6(i). Therefore we omit it.

Proof of Theorem 7(ii): Let e be the equation we defined in the proof o Theorem 5. Then $\mathrm{Eq}\left({ }_{\infty} \mathrm{Mn}_{\alpha}\right) \vDash e$ by Theorem 5 . We will show that $\mathrm{EqMn}_{\alpha} \Gamma$ $\mathbf{I}_{\infty} \mathrm{Cs}_{\alpha} \sharp e$. Let $I \triangleq \omega \sim 2$ and let U be any non-principal ultrafilter on I. For ever. $n \in I$ let $\mathfrak{C}_{n} \triangleq \mathfrak{S b}^{\alpha} n$ and define $\mathfrak{C}^{\triangleq} \triangleq P\left\langle\mathfrak{C}_{n}: n \in I\right\rangle / U$. Then $\mathfrak{C} \in \mathbf{U p F b C s}_{\alpha} \subseteq$ $E q \mathrm{Mn}_{\alpha}$ by Theorem 6(i). For every $n \in \omega$, $\mathbb{C} \vDash c_{(n)} \bar{d}(n \times n)=1$ since ($\forall m \equiv$ $n) \bigodot_{m} \vDash c_{(n)} \bar{d}(n \times n)=1$. Thus \mathbb{C} is of characteristic 0 by Theorem 2.4.63(i) o [11]. Hence $\mathbb{C} \in \mathbf{I}_{\infty} \mathrm{Cs}_{\alpha}$ by [11, 3.1.108-109]. For every $n \in I$ let $f_{n}: n \leadsto n$ be ; permutation of n with no fix-point and define $b_{n} \triangleq\left\{s \in{ }^{\alpha} n: s_{1}=f_{n}\left(s_{0}\right)\right\}$ $b \triangleq\left\langle b_{n}: n \in I\right\rangle / U$. Then $b_{n} \in C_{n}$ and $\tau\left(b_{n}\right)=1$ for every $n \in I$, hence $\tau(b)=1$ is
\mathfrak{C}, too, where τ is the term in the definition of e. This shows $\mathfrak{C} \sharp e . \quad \square$ (Theorem 7)

List of notation

FmV set of formulavariables
$S \theta \rho K$ set of formula-schemes valid in K
Equmd class of models with equality only
Monmd class of models with only unary relations
1-Binmd class of models with one binary relation
Mod class of all models
FMod class of all finite models
$\operatorname{tr}(\sigma)$ translation of the formula-scheme σ to a CA-term
eq (σ) CA-equation corresponding to the scheme σ
$\operatorname{Mod} \Sigma$ class of models of Σ
$\omega=\langle\omega,+, \cdot, 0,1\rangle \quad$ the standard model of arithmetic
$\mathrm{Eq} K, \mathrm{Un} K, \mathrm{El} K$ least class containing K and axiomatizable by equations, universal formulas, first-order formulas resp.
$\overline{\mathrm{Eq}} K, \theta \rho K$ set of all equations, first-order formulas resp. valid in K
$\mathbf{I} K, \mathbf{H} K, \mathbf{S} K, \mathbf{P} K, \mathbf{U p} K$, Uf K class of all isomorphic copies, homomorphic images, subalgebras, direct products, ultraproducts, ultrafactors resp. of members of K
ω least infinite ordinal
$|X| \quad$ cardinality of X
$X \sim Y=\{a \in X: a \notin Y\}$
$X \subseteq_{\omega} Y \quad X$ is a finite subset of Y
$\mathrm{Sb} U$ set of all subsets of U
Dof, $\operatorname{Rg} f$ domain and range resp. of f
$f^{*} X \quad f$-image of X
$f_{i}, f(i)$ the value of f at place i
$f(i / u)$ function f changed at place i to u
$f: A \mapsto B, f: A \nrightarrow B \quad f$ is one-one, bijection resp.
${ }^{A} B$ set of all functions mapping A into B
$A 1 f f$ domain-restricted to A
$R / \equiv=\left\{\left(u_{1} / \equiv, \ldots, u_{n} / \equiv\right):\left(u_{1}, \ldots, u_{n}\right) \in R\right\}$
$R \llbracket k, n \rrbracket \quad n$-ary relation defined by $R \in \mathfrak{A} \in \mathrm{Gs}_{\alpha}, k \in 1^{\mathfrak{q}}$ (see above Lemma 3.3)
$\Delta^{2 x} x=\left\{i: c_{i}^{2 x} x \neq x\right\}$, dimension set of x
$\mathrm{Nr}_{\beta} \mathfrak{A 1}=\left\{x \in A: \Delta^{\mathfrak{2} x} x \subseteq \beta\right\}$
$C_{i}^{[V]} X=\{s \in V:(\exists u) s(i / u) \in X\}$
$D_{i j}^{[V]}=\left\{s \in V: s_{i}=s_{j}\right\}$
$\mathbb{S b} V=\left\langle\mathrm{Sb} V, \cup, \cap, \sim, 0, V, C_{i}^{[V]}, D_{i j}^{[V]}\right\rangle_{i, j<\alpha}$, full cylindric set algebra with unit V
$1^{\mathfrak{Q}}$ unit of \mathfrak{A}
$s_{j}^{i} x=c_{i}\left(d_{i j} \cdot x\right)$
$\operatorname{Subb}(\mathfrak{A})$ set of all subbases of \mathfrak{A}
base $(\mathfrak{R})=\bigcup \operatorname{Subb}(\mathfrak{A})$, base of \mathfrak{A}
$\bar{d}(n \times n)=\Pi\left\{-d_{i j}: i<j<n\right\}$
$c_{\left(\left\{i_{1}, \ldots, i_{n}\right\}\right)} x=c_{i_{1}} \cdots c_{i_{n}} x$
$\mathfrak{R b _ { \alpha } \mathfrak { U } \quad \alpha \text { -dimensional reduct of } \mathfrak { U } \in \mathrm { CA } _ { \beta } , \beta \geqslant \alpha , 1 0 2}$
$\mathrm{Rd}_{\alpha} K=\left\{\mathfrak{R} \mathrm{D}_{\alpha} \mathfrak{Y}: \mathfrak{H} \in K\right\}$
$\mathrm{Sg}^{\mathfrak{g} X} X$ subset of \mathfrak{A} generated by X
$\mathfrak{S}^{20} X$ subalgebra of \mathscr{A} generated by X
CA_{α} class of α-dimensional cylindric algebras
$\mathrm{Mn}_{\alpha}=\left\{\mathrm{Sg}^{\mathfrak{2}} 0: \mathfrak{A} \in \mathrm{CA}_{\alpha}\right\}$, class of minimal CA's
$\mathrm{Mg}_{\alpha}=\left\{\mathfrak{S g}^{\mathfrak{2} \mathfrak{d}} \boldsymbol{X}: X \subseteq \mathrm{Nr}_{1} \mathfrak{A}, \mathfrak{H} \in \mathrm{CA}_{\alpha}\right\}$, class of monadic-generated CA_{α} 's
$\mathrm{Mg}_{\alpha}^{n}=\left\{\mathrm{Sg}^{\mathfrak{Q}} X: \mathfrak{Q} \in \mathrm{CA}_{\alpha}, X \subseteq \mathrm{Nr}_{1} \mathfrak{U},|X| \leqslant n\right\}$
$\mathrm{Bg}_{\alpha}=\left\{\mathrm{Sq}^{\mathfrak{g}} X: \mathfrak{H} \in \mathrm{CA}_{\alpha}, X \subseteq \mathrm{Nr}_{2} \mathfrak{X}\right\}$, class of binary-generated CA_{α} 's
$\mathrm{Bg}_{\alpha}^{1}=\left\{\mathrm{Sg}^{\mathfrak{2}}\{x\}: \mathfrak{X} \in \mathrm{CA}_{\alpha}, x \in \mathrm{Nr}_{2} \mathfrak{X}\right\}$
Rp_{α} class of representable $\mathrm{CA}_{\alpha}{ }^{\prime} \mathrm{s}$
$\mathrm{Gs}_{\alpha} \quad$ class of generalized cylindric set algebras
$\mathrm{Gs}_{\alpha}^{\text {reg }}$ class of all regular Gs_{α} 's
$\mathrm{Cs}_{\alpha} \quad$ class of cylindric set algebras
$\mathrm{Lf}_{\alpha}=\left\{\mathfrak{A} \in \mathrm{CA}_{\alpha}:(\forall x \in A)\left|\Delta^{\mathfrak{N}} x\right|<\omega\right\}$, class of locally finite CA_{α} 's
$\mathrm{Fb}^{\prime} \mathrm{Gs}_{\alpha}$ class of all Gs_{α} 's with finite base
$\mathrm{Bb}^{\prime} \mathrm{Gs}_{\alpha}$ class of all Gs_{α} 's with bounded subbases
FK class of finite members of K
$\mathrm{Fb} K=K \cap \mathbf{I F b}^{\prime} \mathrm{Gs}_{\alpha}$
$\mathrm{Bb} K=K \cap \mathrm{IBb}^{\prime} \mathrm{Gs}_{\alpha}$
${ }_{<n} K=K \cap \operatorname{Mod}(\bar{d}(n \times n)=0)$
${ }_{n} K={ }_{<n+1} K \sim{ }_{<n} K, \quad{ }_{\omega} K={ }_{\infty} K$
${ }_{<\omega} K=\bigcup\left\{{ }_{n} K: n \in \omega\right\}, \quad{ }_{(L)} K=\bigcup\left\{{ }_{n} K: n \in L\right\}$

Acknowledgements

The author is grateful to Balázs Bíró, Stan Burris, László Csirmaz, Roger Maddux, Don Monk, Matti Rubin for helpful discussions. Very special thanks are due to Don Monk and Matti Rubin whose invaluable help and patience were crucial in this work. In particular, the connections with logic (formula schemes) and their importance were demonstrated to the author by Matti Rubin. I am indebted to the referee for his precious help.

References

[1] H. Andréka and I. Németi, Simple proofs for CA_{2} 's, Manuscript, 1984-85.
[2] H. Andréka, I. Németi and I. Sain, Abstract model theoretic approach to algebraic logic (an overview), Preprint, 1984.
[3] W.J. Blok, The lattice of varieties of modal algebras is not strongly atomic, Algebra Universalis 11 (1980) 285-294.
[4] W.J. Blok, The lattice of modal logics: an algebraic investigation, J. Symbolic Logic 45(2) (1980) 221-236.
[5] W.J. Blok and D. Pigozzi, The deduction theorem in algebraic logic, Preprint 1984.
[6] S.D. Comer, Finite inseparability of some theories of cylindrification algebras, J. Symbolic Logic 34 (1969) 171-176.
[7] W. Goldfarb, The Gödel class with identity is unsolvable, Bull. Amer. Math. Soc. 10(1) (1984) 113-115.
[8] L. Henkin, Logical Systems containing only a Finite Number of Symbols, Séminaire de mathématiques supérieures, no. 21, Les Presses de l'Université de Montréal; Montréal 1967, 48 pp.
[9] L. Henkin, Internal Semantics and Algebraic Logic. Truth, Syntax, and Modality (NorthHolland, Amsterdam, 1973) 111-127.
[10] L. Henkin, Proofs in first-order logics with only finitely many variables, Abstr. Amer. Math. Soc. 4 (1983) 8.
[11] L. Henkin, J.D. Monk and A. Tarski, Cylindric Algebras, Parts I-II (North-Holland, Amsterdam, 1971, 1985).
[12] L. Henkin, J.D. Monk, A. Tarski, H. Andréka and I. Németi, Cylindric Set Algebras. Lecture Notes in Math. 883 (Springer, Berlin, 1981).
[13] J.S. Johnson, Axiom systems for logic with finitely many variables, J. Symbolic Logic 38 (1973) 576-578.
[14] B. Jónsson, Varieties of relation algebras, Algebra Universalis 15 (1982) 273-298.
[15] B. Jónsson, The theory of binary relations, First draft, Preprint 1984, 65pp.
[16] R. Maddux, Topics in relation algebras, Doctoral dissertation, University of California, Berkeley, 1978, iii + 241pp.
[17] R. Maddux, The equational theory of CA_{3} is undecidable, J. Symbolic Logic 45 (1980) 311-316.
[18] R. Maddux, Some sufficient conditions for the representability of relation algebras, Algebra Universalis 8 (1978) 162-172.
[19] R. Maddux, A sequent calculus for relation algebras, Ann. Pure Appl. Logic 25 (1983) 73-101.
[20] R. Maddux, Non-finite-axiomatizability results for cylindric and relation algebras, Submitted.
[21] A.I. Mal'cev, Algebraic Systems (Springer, Berlin, 1973).
[22] J.D. Monk, Singulary cylindric and polyadic equality algebras, Trans. Amer. Math. Soc. 112 (1964) 185-205.
[23] J.D. Monk, Nonfinitizability of classes of representable cylindric algebras, J. Symbolic Logic 34 (1969) 331-343.
[24] J.D. Monk, Completions of Boolean algebras with operators, Math. Nachr. 46 (1970) 47-55.
[25] J.D. Monk, Provability with finitely many variables, Proc. Amer. Math. Soc. 27 (1971) 353-358.
[26] J.D. Monk, Mathematical Logic, Graduate Texts in Math. 37 (Springer, Berlin, 1976).
[27] I. Németi, The logic with three variables has Gödel's incompleteness property - i.e. free cylindric algebras are not atomic, Manuscript, January 1985.
[28] I. Németi, The equational theory of cylindric-relativised set algebras is decidable, Preprint, Math. Inst. Budapest, 1985.
[29] I. Németi, Decidable varieties of cylindric algebras, Submitted.
[30] I. Németi, Lattice of varieties of cylindric algebras, Preprint, Mathematical Institute, Budapest, Hungary, 1985.
[31] B. Poizat, Deux ou trois choses que je sais de L_{n}, J. Symbolic Logic 47 (1982) 641-658.
[32] M. Rubin, The theory of Boolean algebras with a distinguished subalgebra is undecidable, Ann. Sci. Univ. Clermont 60, Math. No. 13 (1976) 129-134.
[33] W. Schönfeld, An undecidability result for relation algebras, J. Symbolic Logic 44 (1979) 111-115.
[34] D.S. Scott, A decision method for validity of sentences in two variables. J. Symbolic Logic 27 (1962) 477.
[35] A. Tarski and S. Givant, A formalization of set theory without variables, Proc. Sympos. Pure Math. (Amer. Math. Soc., Providence, RI, to appear).

[^0]: * Research supported by Hungarian National Foundation for Scientific Research grant No. 1810.
 ${ }^{1}$ After having completed this paper we learned that, independently of us, M. Rubin also proved that $\overline{\mathrm{Eq}} \mathrm{Mn}_{\omega}$ is not r.e.

[^1]: ${ }^{2}$ Well, " φ is equality" is a shortened version of the usual " φ is of the language of equality".

[^2]: ${ }^{3}$ There are set-theoretical inconveniences when we say that the elements of Var are classes or when we use a notation like $\left\{K: K \subseteq \mathrm{CA}_{\alpha}\right\}$. However, these problems are only of a notational character. Various ways of avoiding them are rather well known by now (e.g., one can use a conservative extension of Bernays-Gödel set theory in which classes of classes form a third sort). Therefore we simply ignore these problems here.

[^3]: ${ }^{4}$ Note that every lattice of subvarieties of a variety is atomic, see e.g. [3].
 ${ }^{5} \mathrm{By}$ a 'good' characterization we mean one not involving ' Eq '.

[^4]: ${ }^{6}$ We note that M. Rubin proved in 1985 that there are $\geqslant 2{ }^{\omega}$ varieties below ${ }_{\infty} R p_{\alpha}$, too.

[^5]: ${ }^{7}$ Independently of us, M. Rubin also proved that $S \theta \rho$ (Equmd) $=S \theta \rho$ (FMod) is not r.e.

[^6]: ${ }^{8}$ We note that a simple short proof, analogous to [11, 2.5.4] and not using it, can be found in [1].
 ${ }^{9}$ We note that the proof of decidability of $\overline{\mathrm{Eq}} \mathrm{Gs}_{2}$ in Scott [34] is based on a claim of Gödel which has been disproved in the meantime (see [7]), hence the proof in [34] does not work.

