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Mn,~, Mg,~, and Bgo~ denote the classes of minimal, monadic-generated, and binary- 
generated cylindric algebras of dimension tr respectively, and EqK denotes the equational 
theory of the class K of algebras. In Theorem 2, we characterize those classes K ~ Mg~, tr > 2, 
for which E----qK is recursively enumerable (r.e.). As a corollary we obtain that E'--qMn~ is not 
r . e )  iff t~ >/to, E--qMg~ is not r.e. iff a~ > 2, E--qBg~, is r.e. for a~ >1 to and E--qMno~ = E--qMgo, iff 
(tr = 0 or a~ I> to). These results solve Problems 4.11, 4.12 and the problem in item (1) on p. (ii) 
of the introduction of Part II of Henkin-Monk-Tarski [11] and continue the investigations 
started in Monk [22]. We discuss at length the logical meaning and consequences in the 
introduction and in Section 2. The proofs of the above results rely on the fact that the set of 
satisfiable Diophantine equations is not decidable. We also show that the equational theory of 
monadic-generated relation algebras is not r.e. Some further results can be found in Theorems 
5 and 6: in Theorem 5 we give a single equation that characterizes being of characteristic 0 in 
Mg,,,, in Theorem 6 we investigate how big Mg,~ is. We do some investigations concerning the 
lattice of varieties of CAr's, a~ 1> to. 

Introduction 

Boolean algebras (BA's) and cylindric algebras (CA's) are algebraizations of 
propositional and predicate (i.e., first-order) logic respectively. A CA is minimal, 
or monadic-generated resp., if it is generated by the empty set, or by a set of 
one-dimensional elements respectively. (One-dimensional elements correspond to 
formulas with at most one free variable. See the end of this introduction for 
precise definition.) The classes Mno, and Mg, o of minimal and monadic-generated 
CA's respectively correspond to first-order logic having only equality (=) ,  and to 
first-order logic having only unary predicate symbols (beside equality) called 
monadic logic respectively (for definitions of CA,o, Mno,, Mg~ see the end of this 
introduction). The set of theorems (i.e., valid formulas) of propositional logic is 
decidable while that of first-order logic is undecidable but recursively enumerable 
(r.e.). And indeed, the equational theory of BA's is decidable while that of the 
representable CA's is undecidable but r.e. It is known that monadic logic is 
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decidable. Therefore one might expect EqMg,o to be decidable, too. And indeed, 
it was announced, mistakenly, in the 1971 edition of [11, p. 258] and in [22, 
Theorem 22] that the equational theories EqMn~, and EqMg~ of Mn,o and Mg= 
are decidable. Later in [11, Problems 4.11, 4.12], these were asked as open 
problems. We prove in the present paper that EqMn,o, EqMgo~ are not r.e. in 
spite of the facts that monadic and equality logics are decidable. 

What logical meaning does this bear? To answer this, we define what a formula 
scheme is. 

Definition 0.1. FmV denotes a countable set of formula variables (i.e., variables 
ranging over formulas) and V = {vi :i e to} is our set of 'normal' variables. The 
set of f o rmu la  schemes (or just schemes) is defined to be the smallest set satisfying 

(i) tp is a scheme if q9 e FmV. 
(ii) vi = vj is a scheme if i, j e to. 

(iii) 3v~o, -Ttr, o ^ ~ are schemes if i e to and or, ~ are schemes. 

For example, tp ^ ~p---, W is a scheme if qg, ap are formula variables. Another 
scheme is q9 ~ 3vltp where q9 e FmV. (We use the derived connectives --~, v ,  Vvi 
etc. the usual way.) In the everyday mathematical life we more often use formula 
schemes than formulas themselves. See, e.g., any axiomatization of first-order 
logic. We note that the formula schemes in ordinary mathematical life frequently 
have 'side-conditions', for example in "Vvi(tp ~ ~p) ~ (¢p ~ Vvi~/,), provided that 
v~ does not occur freely in qg". 

In what follows, by a first-order formula we mean one without operation 
symbols. We say that a first-order formula tp is equality 2 (monadic) if the only 
atomic formulas occurring in q9 are v~ = v  i for i, j ~ to (all the atomic formulas 
occurring in q9 are unary or vi = vj for some i, j ~ to). 

Let tr be a formula scheme. An (equality, monadic) instance of tr is a first-order 
formula we get from a by replacing the formula variables in a with (equality, 
monadic) first-order formulas. We say that o is (equality, monadic) valid if every 
(equality, monadic) instance of tr is a valid first-order formula. 

Now we turn to the connection between formula schemes and cylindric 
equations. Recall that a CA,~ is an algebra of the type ( A ; + , . ,  
- ,  0, 1, c~, d~j)i.j~ such that (A; + , . , - ,  0, 1) is a BA and ci, d~j are unary 
operations and constants resp. 

Definition 0.2 (Scheme as a CA-equation). Our set of variables is X = {x~:i ~ to } 
when we want to speak about CA's. Let t :FmV> > X be arbitrary but one-one.  
We associate a CAo,-term tr(a)  to any scheme o as follows. 

(i) t r (~)  = t(~) if tp e FmV. 
(ii) tr(vi = v j )=  dij for i, j ~ to. 

2 Well, " ~  is equality" is a shortened version of the usual "~  is of the language of equality". 
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(iii) tr(3via) =ci tr(o), tr(-a o) = - t r ( t r ) ,  t r (o ^ ~ ) =  tr(tr)- tr(~) if i e to and 
a, ~ are schemes. 

The CA,o-equation eq(tr) associated to the scheme tr is defined to be t r (a)  = 1. 
Clearly, every CA,o-term (written up by using - , . ,  c/, d#) is of form tr(tr) for 

some scheme o, hence every CA,o-equation e is equivalent to eq(a)  for some 
scheme tr. Rp,~ denotes the class of representable CA~'s, for definition see the 
end of this introduction. 

Proposition 0.3. Let a be a scheme. Then (i)-(iii) below hold. 
(i) tr/s equality valid iff Mn,o ~eq(a) .  

(ii) tr is monadic valid iff Mg~ ~ eq(cr). 
(iii) o is valid iff Rpo, ~ eq(o).  

Proof. (i) and (ii) follow from Mn,o _~ Mgo, ~_ SPCs~ g, see [11]. 
(iii) follows from EqRpo~ = E q ( C s ~ g N L f ,  o), see [11]. The details are very 

similar to those of the proofs of 4.3.61-65 in [11, pp. 173-174]. Therefore we 
omit them. [] 

In the light of Proposition 0.3, the results that EqMno,, EqMgo are not r.e. 
announced in the abstract imply the following: Though the set of valid equality 
(monadic) formulas is decidable, the set of equality (monadic) valid formula 
schemes is not even recursively enumerable. This happens in spite of the fact that 
equality logic does have an axiomatization using schemes only! Therefore the 
schemes derivable from this axiomatization are enough to yield all the valid 
equality formulas as instances but are far less than all the valid schemes. In a 
sense, we obtain that the set of valid schemes is much bigger than that of the 
derivable ones. It is impossible to give a sound inference system for monadic logic 
(or equality logic) by which all valid schemes (of this logic) would be provable. 
One might think that this is caused by some second-order behaviour of the 
schemes. But this is not the case, namely: 

The set of valid schemes of first-order logic is recursively enumerable but not 
decidable. This follows from the theorem that EqRp~, is r.e. (Monk [23]) but 
undecidable (Tarski). For several different enumerations of the first-order valid 
schemes see section 4.1 of [11], more specifically 4.1.9, 4.1.15, 4.1.20 and 
Problem 4.1. Thus allowing only unary predicate symbols causes that we have 
much more valid schemes than when we allow binary predicates as well. Allowing 
no predicates at all does not imply more valid schemes than when unary 
predicates are allowed: the equality valid and monadic valid schemes co-incide. 
This follows from our theorem EqMn~o = EqMg,o. 

How is it possible that the equality formulas are decidable but the schemes are 
not? When we want to decide a scheme, we have to enumerate all its instances and 
decide them one-by-one. That the schemes are not decidable means that when we 
want to decide a scheme, the 'structure' of the scheme (only finitely many 
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variables occur in the scheme explicitly) does not tell us how many more variables 
(or 'structure') are involved in the possible non-validity of the scheme. In the 
first-order case the opposite is true: if we want to know whether a scheme is valid 
or not, the 'structure' of the scheme does tell us how complex instances we should 
check only. Namely: Let tr be a scheme. Assume that all the variables occurring 
in a are among v0, • • •,  vN. Replace every formula variable (p ~ FmV occurring 
in cr with the first-order formula R,~(Vo , . . . ,  vN). Then we get a first-order 
instance a '  of or. Now [11, 4.3.62] states that Rp,o ~ eq(a) if or' is valid. (For some 
detail of this proof see Remark 1.7(a) in Section 1.) Thus cr is a first-order valid 
scheme iff or' is a valid first-order formula. This gives an enumeration of all the 
valid schemes of first-order logic. As a contrast, in the cases of equality logic and 
monadic logic there is no general algorithm assigning such a formula or' to every 
scheme a. 

Let or < co be an ordinal. An or-scheme is a scheme in which only vi (i e or) 
occur as (normal) variables. A formula of the first-order logic L~ using only a 
variables is a first-order formula in which only vi (i e or) occur as variables, but we 
require further that all the atomic formulas are either vi = vj (i, j e or) or of the 
form R ( v o . . .  v,,) where R is an (n + 1)-ary relation symbol and n < or. These 
logics L~ are well investigated, see e.g. [8-10, 13, 19, 25, 31]. We call an 
or-scheme or-valid if we arrive at valid formulas whenever we substitute formulas 
of L~ for the formula variables. Thus an or-valid scheme is a valid scheme of the 
first-order logic L~ using or variables. It can be proved analogously to Propositio~ 
0.3 that an or-scheme cr is or-valid (equality, monadic or-valid) iff Rp,~ ~ eq(o) (oi 
Mn~ ~ eq(cr), Mg,~ ~ eq(a)). Let 3 ~< or < co. Then the equality or-valid schemes are 
decidable while the monadic 0r-valid schemes are still not r.e. (The reason is thai 
the unary predicates can somehow play the role of the missing variables v~, 
i I> or.) The 2-valid schemes as well as the 2-valid monadic ones are decidable. Bul 
the reason is not that 2-logic is too simple: there are 2 ̀ o many different monadic 
'scheme-theories' (schemes valid in a fixed class of monadic models) in L2. 

For precise statements of the above mentioned logical results see Section 2. 
For more general connections between logic and CA see Andr6ka-N6meti-  

Sain [2] and Blok-Pigozzi [5]. 

Now we turn to defining the main cylindric algebraic notions w e  will use in th~ 
present paper. 

Let or be any ordinal. The class CA~ is a variety defined by 7 simple schemes o 
equations in [11, p. 162] (we do not have to remember the specific forms of thes( 
herein). The symbol ~ stands for "equals by definition". Let 92 e C A ,  an( 
fl~<or. Then Nrt~92~ { x ~ A ' A ~ x ~ f l }  where A'lx ~= {i~or:c~'lx:C=x}. If X ~ /  
then Sg~X, or simply SgX, denotes the subuniverse of 92 generated by X. Now 

Mn~ ~ {92 e CA~ "A = Sg0} and Mg~ ~ {92 e CA~ :A = SgNr192}. 

Thus Mn~ ~ Mg~ ~_ CA~. By a representable CA~ (an Rp~), or/> 2, we mean 
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CA,~ isomorphic to a generalized cylindric set algebra (a Gso~): A Gs~ is a 
Boolean set algebra with greatest element (i.e., with unit) a disjoint union V of 
Cartesian spaces ~U of dimension a~. The nonboolean operations ci, dq (i, j ~tr) 
are defined in terms of the structure of these spaces, namely for any X ~_ V we 
have 

C!vlX A {s~V:(=lz~X)(Vj~ocj=/=i)sj=zj} and D~ vl& {seV:si=sj}. 

By a subbase of a Gso~ we understand the base U of one of the spaces ~U the union 
of which is the unit. A cylindric set algebra (a Cs~) is a Gs,~ with unit element a 
single Cartesian space. (For a~ <~ 1, Rp~ is defined as SPCs~.) A fundamental 
theorem of CA-theory is that Rp~ is a variety and Rp~ ~ CA~ for te >i 2. 

to denotes the smallest infinite ordinal. We will extensively use the fact that 
every ordinal is the set of smaller ordinals. Thus to is the set of all finite ordinals 
(natural numbers). For undefined notation and terminology we use in the present 
paper we refer the reader to [11]. However ,  we tried to make the paper 
understandable for that reader who, not wanting to use [11], simply ignores those 
sentences in which undefined notation occurs (but keeps on reading). At the end 
of the paper there is a list of notation. We note that the monograph [11] in itself 
contains all the material we rely on in the present paper. However, besides 
referring to [11], we usually quote the paper where the result in question 
appeared first. 

In Section 1 we formulate the main results, in Section 2 we reformulate the 
results in their logical form and in Section 3 we give all the proofs. We number 
items in a section by giving first the number of the section then the number of the 
item, e.g. Theorem 2.7 is the seventh item in Section 2. We make an exception in 
Section 1: there we number the theorems separately from the rest and we do not 
give a section number,  e.g. Theorem 3 is the third theorem in Section 1. 

1. Formulating the results 

Let tr be an ordinal. Then Mn~, Mg~ and Rp~ denote the classes of all 
minimal, monadic-generated, and representable cylindric algebras respectively 
(for definition see the end of the introduction). For any class K of algebras, EqK 
and OpK denote the equational theory and the first-order theory of K 

respectively. 
It is proved in Monk [22] that Mg~ c_ Rp~ and in [11, 4.2.1, 4.2.24, 4.2.23, 

4.1.9-10, 4.2.18, 4.2.9] that OpMn~ is decidable for o: < 02, EqCA1 is decidable 
(Comer [6]) but OpCA1 is undecidable (Rubin [32]), EqRp~ is r.e. (Monk [23]) 
but not decidable for cr > 2 (Tarski), decidable for tr = 2 (Scott [34]). All the 
above results can be found in [11]. 

For any class K of algebras, EqK, UnK and ElK denote the smallest 
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equational, universal and first-order axiomatizable classes containing K resp., cf. 
I l l ,  4.1.1]. Then E q K = H S P K ,  U n K = S U p K  and E 1 K = U f U p K  where IK, 
HK, SK, PK, UpK and UfK denote the classes of all isomorphic images, 
homomorphic images, subalgebras, algebras isomorphic to direct products, 
ultraproducts and ultrafactors of members of K respectively. K c L denotes that 
K is a proper subclass of L. The first two statements of the following theorem are 
special corollaries of Theorem 2. 

Theorem 1. (i) EqMn~ is not recursively enumerable (r. e. ) i f f  ol >i to. 

(ii) EqMg,, is not  r.e. i f f  ol > 2. 
(iii) EqMn~ = EqMg~ i f f  (ol >t to or oi = 0). 

(iv) EqMg~ c Rp~ i f f  o: > 2, moreover  E1Mg2 c UnMg2 = Rp2, Mgl = Rpl. 

Let n e to. Then d(n x n) denotes the CAn-term 1-I { - d # ' i  < j  < n}. IXI 
denotes the cardinality of the set X. 

Definition 1.1. Let ol be an ordinal. 
(i) Let K~_CA~,. Then K is said to be bounded iff (3n co9 N ( t r +  1)) 

K ~ d(n x n) = 0. K is said to be unbounded iff K is not bounded. 
(ii) Let n e to. Then 92 e M ~  iff (3X ~_ Nr~92) [A = SgX and IxI n], (Cf. [11, 

4.2.4].) Let K ~_Mg~. Then K is said to be boundedly generated iff (3n e to) 
K c_ SPMg~. K is said to be unboundedly generated iff K is not boundedly 
generated. 

Remark 1.2. It can be proved that K is bounded iff there is n e (tr + 1) N to such 
that every element of K is isomorphic to a Gs~ with all subbases smaller than n. K 
is boundedly generated iff there is n e to such that every element of K is 
isomorphic to a subdirect product of cylindric set algebras generated by fewer 
than n monadic (i.e., 1-dimensional) generators. The above are easy to prove 
using [11]. 

Theorem 2. Let  ol > 2, K ~_ Mgo,. Then (i)-(iii) below hold. 
(i) EqK is either decidable or not r.e. 

(ii) For ol >1 to, EqK is r.e. i f f  K is bounded.  
(iii) For cr < to, EqK is r.e. i f f  K is boundedly  generated. 

Remark 1.3. For te ~< 1, EqK is decidable for every K ~ Mg~. This follows from 
the proof of Monk's result [11, 4.1.22] (Monk [24]), since in the proof of [11, 
4.1.22], all the subvarieties of CA1 are described and it turns out that each proper 
subvariety of CA1 is generated (as a variety) by one finite CAa. There are 
K ~ Mg2 with EqK not r.e. This follows from the fact that there are 2 °' varieties 
of EqMg2 = IGs2 (a result of J. Johnson, see [11, 4.1.28]). We do not know 
whether there are K _~Mg2 with EqK r.e. but not decidable. One might think 
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that Theorem 2(i) is true because the set of all equations not valid in K is always 
r.e. for any K~_ Mg~, a > 2 .  This is not the case; a counterexample can be 
obtained by 'translating to CA~' the example given in Remark 2.2(b). We also 
note that Theorem 2(ii) above generalizes to subclasses of CA~ in the following 
form: Let tr >I to and K ~_ CA~. Then EqK is decidable iff K is bounded. This is 
proved in [29]. 

Bg~ denotes the class of all binary-generated CA~'s, i.e., 92 • Bg~ iff A = 
SgNr292. 

Theorem 3. (i) EqBg~ is r.e. but  no t  dec idable  f o r  a >t to. 

(ii) EqBg~ = EqBg~ = Rp~ for tr >>- to, where Bg~ & {92 • CA~" (3x • Nr292) 
A = S g { x } } .  

Remark 1,4. (a) R. Maddux showed us that: EqBg3 is undecidable because in 
[17] actually the following is proved: If 3 <~ cr < to and Bg~ f3 Rp~ ~_ EqK ~_ CA~, 
then EqK is undecidable. (To see this, one has to notice that R g f _  Nr2~ in the 
last part of the proof in [17].) Therefore the second part of Theorem 3(i) can be 
sharpened by saying "EqBg~ is undecidable iff a > 2 "  (since for tr~<2, 
Bg~ - C A ~  and EqCA~ is decidable). We do not know whether EqBg~ is r.e. or 
not for 2 < a < to. 

(b) The condition a >i to is necessary in Theorem 3(ii), since Bg~ ~ Rp~ for all 
1 < a < to. For a I> 5 this was shown by R. Maddux: Let tr I> 5. It is proved in 
[20, Theorem 7], that there is a nonrepresentable relation algebra ~t with an 
a-dimensional cylindrical basis. Hence ~R • SRa*Nr3CA~ by [20, Theorem 6]. 
Assume ffl ~_ ffia92r3~ with ~ • CA~ and let ~ ~ ~ (~)R.  Then ~ • Bg~ and 
fit_ fr iar ,  hence ~ is not representable since ~ is not representable. Clearly, 
Bg2 = CA2 ~ Rp2 (cf. [11]). Monk [22, p. 199] notes that Bg3 ~ Rp3. Also, 
Bg4 ~ Rp4 can be seen as follows: Let ~ be a nonrepresentable relation algebra. 
Then by [11, 5.3.17] there is ~ e B g 4  such that ~)~c_~}~ct~r3~. If ~ were 
representable, so would be ~ .  Hence ~ q Rpa. 

Relation algebras (RA's) form another algebraization of first-order logic, see 
e.g. Tarski-Givant [35] (and Remark 3.19 in Section 3 herein). Tarski proved 
that the equational theory of RA's as well as that of the representable RA's are 
undecidable but r.e. For RA theory see either one of J6nsson [14, 15], Maddux 
[16], Section 5.3 of [11] or Chapter 8 of [35]. Recall that in RA theory the 
semi-colon ';' denotes the operation of relation-composition. 

Definition 1.5. We call a relation algebra ,qt monadic-generated iff (3G ~_R) 
[R = SgG and (Yx e G) x ; 1 = x]. 

Theorem 4. The equational theory of monadic-generated RA's is not r.e. Every 
monadic-generated RA is representable. 
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Now we turn to subclasses of Mg~ which were touched upon in Theorem 2. 
Recall from [11, 2.4.61, 2.4.62] that a CAo~ 21 is of characteristic 0 iff 
2 1 ~ { c ( n ) d ( n ' x n ) = l : n e t o n ( o : +  1)) and I A I ~  = 1, where C(n)XA-~CoCl"''Cn_l x. 
For 9,1 e Gs~, ac/> co this means that every subbase of 21 is infinite (and IAI :/: 1). 
(This is in a sense the opposite of being bounded. Namely, 92 is of characteristic 0 
iff H21 contains no (nondiscrete) bounded subclass.) 

Notation (cf. [11, 3.1.5] for a~/> to). For any K ~_ CA~ we denote 

o~K& {21 e K:21 is of characteristic 0 or IAI = 1}. 

~Gso, or ~CAo,, tr >I to cannot be characterized inside Gs~ or CAo~ by a single 
formula because there is a system of minimal Cs~'s with finite bases such that an 
ultraproduct of this system is of characteristic 0. Below we prove the opposite for 
Mg~. Namely, we shall prove that within Mg,~ the property of being of 
characteristic 0 can be expressed by a single equation. (We note that, because of 
the above ultraproduct reason, there is no 2?°l-sentence characterizing ~Mgo~ inside 
Mg~.) 

For a set 27 of formulas, Mod 27 denotes the class of all algebras in which 27 is 
valid. 

Theorem 5. There is a single equation e such that o~Mg~ = Mgo~ N Mod{e) for 
every o: >t to, hence o~Mn,o = Mn,o n Mod{e}. 

We turn to formulating results to the effect that Mn and Mg are 'very large'. 
Their various closures contain all bounded classes of CA's  or Lf's (depending on 
the closure). For the precise formulation we need some notation. For a Gs~ 21, 
Subb(21) denotes the set of all subbases of 2[ and base(21) ~ U Subb(21). 

Definition 1.6. 

Fb'Gs,~ ~ (21 e Gs~" Ibase(21)[ < to}. 

Bb'Gs~ ~ {21 e Gs~" (3n e to)(VU e Subb(21))IUI < n } .  

Let K be any class of algebras similar to CA~s. Then 

FK ~ {21 e K:IAI < to}, 

FbK a__ K n |Fb 'Gs~,  BbK ___a K n IBb'Gso, 

(Here Fb refers to finite base and Bb to bounded sub-base.) 
Note that for tr i> to, 2l e BbCA~ iff {21} is bounded (using [11, 3.2.11(vi)]). 

Recall from [11] that Lf~ ~ {21 ~ CA~ : (Vx ~ A) Iz cl < to}. 

Theorem 6. (i) EqMg~ = EqMn~ = EqFbCs~ for te >- to. 
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(ii) HSUpMn,~ ~ HSUpMg~ for  te >>-2, i.e., there is a universal disjuntion o f  
equations that holds in Mn~ but not in Mgo~. 

(iii) UnMg~ = UnFbMg~ = UnBbGso~ for  any tr. 
(iv) BbLf~ ~_ SMg~ for  any or. 

(v) There is a H2-formula distinguishing the hereditarily nondiscrete Mn,/s  and 
Mg~'s for  o( >i to. 

Remark 1.7. (a) We prove in this paper, when proving Theorem 2(ii), directly 
that EqMno, is not r.e. (in Part (A) of that proof). By the first part 
EqMg~ = EqMn~, of Theorem 6(i) we get a second proof: namely proving that 
EqMn,o is not r.e. as a corollary of "EqMgo, is not r .e." However, using the 
second part EqMn~o = EqFbCso, of Theorem 6(i), one can give still another proof 
for "EqMno~ is not r.e." (not using anything else). We sketch here this alternative 
proof. 

We shall use the facts that the set of formulas valid in the finite models is not 
r.e., and that FbCso, corresponds somehow to the finite models. Let tp' be any 
(first-order) formula. We may assume that qg' is restricted by [11, 4.3.6]. Let the 
variables occurring in qg' be among Vo, . . . ,  VN. Replace each primitive subfor- 
mula R ( v o , . . . ,  vn) in qg' with Vvn+l.  • • V N R ( V o , . . . ,  VN). Then we get another 
formula tp such that each relation symbol occurring in q9 has rank (arity) 
M & N + 1, all variables occurring in tp are among Vo, • • . ,  VN and [tp is valid in 
the finite models (FMod) iff qg' is valid in FMod]. From now on, the proof is 
basically the same as that of [11, 4.3.62]" Recall the cylindric term r#'q9 
associated to tp from [11, 4.3.60]. We will show that FMod ~ tp iff FbCs,o ~ r#'q9 = 
1. Assume ~R ~ tp for some ~ ~ FMod. Then ~ ~ r#'q0 = 1 and ~ • FbCso, 
can easily be seen, where ~ is defined in [11, 4.3.4]. Assume ~ ~ r#' tp = 1 for 
some ~ •FbCso~. Then f f tbM~r# 'q9  = 1, where ~ b u ~  is the M-dimensional 
reduct of ~, hence ~ '  ~ r#'q9 = 1 for some ~ '  • FbCSM by Lemma 3.22(ii) in the 
proof of Theorem 6 herein. From this ~ '  then one can easily construct a model 
93~ • FMod for which ~02 ~ qg. The above shows that EqFbCs,o is not r.e. 

The present direction of producing a simple proof for the special corollary 
Theorem 1(i) can be carried even further. Namely, in the above proof we used 
Theorem 6(i) which, in turn, is proved in Section 3. In Section 2, in Remark 2.6, 
we modify the proof of Theorem 6(i) by optimizing it with the simpleminded goal 
of obtaining a streamlined proof for the particular corollary Theorem l(i) saying 
"EqMn~, is not r .e.",  and trying to make this special proof as simple as possible. 

(b) Theorem 6(iv) is not true for Lfo, in general, neither for those Gs~ tq Lf~s 
with all subbases finite. To show this, let {U~:i • co} be a set of disjoint sets such 
that (Vi •  to) [U/[ = i + 2 .  Let V = U { ° ~ U i : i • t o )  and let S ~l,_.J {2U/:i • to} be a 
one-one function with no fix-point and with domain [._J {U,-:i • to}. Let X& {z • 
V :2 1 z • s}, and ~3 & ~g<~bv}{x}. Then ~ • Gs~ g N Lf~, each subbase of which 
is finite. But ~ $ SMg~ by Lemma 3.3 in the proof of Theorem 2 in Section 3. 

(c) We do not know whether there is a universal formula distinguishing the 
hereditarily nondiscrete M n ' s  and Mg's .  
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Remark 1.8. We know that the first-order theory OpK is undecidable for every 
class K _D Rp~ of similar algebras, cr ~> 1, further OpMgo, OpBgo~ and 0pCrs ,  are 
undecidable for cr t> 1. By Theorems 1, 3 and Remark 1.4, EqMg~ is decidable iff 
c~ ~< 2 and the same holds for EqBg~. We proved in [28] that EqCrs~ is decidable 
for all ac. 

Proof (of the first sentence). Let K _~ Rp, ,  tr/> 1. We show that OpK is 
undecidable. Let  tp be any formula in the language of CA1. Let t~(x) be the 
formula about x • 92 • K, saying (9tblgt~x92 • CA1--> 9tbm~x92 P qg). This t~(x) 
can be obtained as follows. Let 7(x) say "91b~9~x92 • CA1" as follows: We 
translate, e.g., Co(Coy • z)  = coy • CoZ (this is C3) as follows. (Vy, z <~x) 
x .  Co(X. coy • z)  = x .  coy • x .  CoZ. Let us call this x 1 C3. Then 7(x) is (x 1 CO ^ 
• . - ^ x l C 7 ) .  We may assume that x does not occur in q9 and that q9 is a 
sentence. Then x 1 q9 is the relativization of tp to x, that is we replace coy by 
X'coy  and 3y by (3y~<x) and Vy by (Vy<-x).  Now t~(x) is the formula 
7(x)---> x 1 qg. Now we 

Claim CA~ P tp iff K P t~(x). 

Proof. ( ~ ) :  Assume ~ • CA1 and ~ :  tp. Then ~ ~_ P i ~ i  with ~i • CSl. Let 
Ui&base(~i)(3{ai} be a disjoint union. Let f / =  ({(ai:]  • t r)°:b e x }  :x eCi )  for 
i • L  Then fi:Ci-->Sb°~U i. Let hx=(f i ixi: i• l ):B--->Pi~z(Sb"Ui) .  Let 92= 
~ b ( U i E  I °~Ui)(h*B). Let X = h( l~) .  Then ~Rb~R[x92 -~ ~ ,  thus 92~ qg[X]. 
Hence K g= ~ (x) by 92 • K. 

(==>): Assume 9 2 • K  and 921-L~[X], X • A .  Then ~Rbl~R[~92•CAI and 
~Rblfft[~92~ qg. [] (Claim) 

Since 0pCA1 is undecidable, the above shows that OpK is undecidable, too. 
For a~ >I 1, OpMg~ is-undecidable, this is obvious for t r ¢  2 by the rest of this 
paper (and [11, 4.2.23] for tr = 1, since Mga = CA~), while the case tr = 2 follows 
from the fact that, in the language of Mg2, we can speak about NqMg2 = CA1. 
For cr ~< 2 we have Bg~ = CA~ and OpCA~ is undecidable by [11, 4.2.23, 4.2.25]. 
For a~ > 2 ,  OpBg,  is undecidable since EqBg~ is such by Theorem 3(i) and 
Remark 1.4. [] 

Related results are e.g. in Maddux [17] and in Sch6nfeld [33]. 
The results and techniques used in this paper give some information on the 

lattice of varieties of CA's. We turn briefly to this subject. 

1.1. Lattice o f  varieties o f  CAo~'s, ol >I w 

Let tr t> to and let Var denote the lattice 3 of varieties of CA, ' s .  The following 
notation will be useful. Let n • to and K ~ CA, .  Then <nK& K 17 Mod(d(n x 

3 There are set-theoretical inconveniences when we say that the elements of  Vat  are classes or when 
we use a notation like { K : K  c CAr}.  However ,  these problems are only of  a notational character. 
Various ways of  avoiding them are rather well known by now (e.g., one can use a conservative 
extension of B e m a y s - G 6 d e l  set theory in which classes of classes form a third sort). Therefore we 
simply ignore these problems here. 
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4~e 

Fig. 1. 

n) = 0), , K &  <n+ l  K ' - ~  <,K, ,oK& ooK (cf. the notat ion preceding Theorem 5), 
<ooK&t...J {,,K:n e to} and more  generally,  if L~_ to + 1, then (L)K~--t._.J {,,K:n 
L}. Thus  K =_ CA~ is bounded  iff (3n  e to) K _ <,,CA~. Fur ther  BbGs~ = <,oGso~, 
BbCA~ = <o, CA~ and FbCs~ = <o, Cs~. For  n e to, n :#0, ,,K is the class of  
members  of K of characterist ic n and ,Cso~ is the class of all cylindric set algebras 
with bases of cardinali ty n. 

Var  is a distributive lattice since CA~ is a congruence-distr ibutive variety. 
Abou t  some impor tan t  e lements  of Var: The most impor tant  subvariety of CAo~ 

is Rp~. It  is known that  Rp~ = IGs~ = EqLf~. Ano the r  characteristic subvariety is 
I ~Cs~ = I ~Gs~ = o, Rp~. Let  n ~ to and L ~_,o to be finite. Then  < ,CA~,  , C A ~  and 
(L)CA~ are subvariet ies of Rp~ (by [11, 3.2.53]). 

(1) The atoms of Var.  The lattice Var  is atomic 4 and has exactly to many atoms.  
The a toms of Var  are Eq(,Mno~) for n ~< to. This can be seen as follows: Let  
V e Var  be an a tom.  Let  92 e V be arbitrary and let ~0~ be the minimal subalgebra 
of 92. Then  ~,R ~ V, hence Eq{~J~} = V, since V is an a tom,  and I{~02} = ,Mno~ for 
some n ~< to. 

For  n < to we have 'good'  characterizations 5 of the a toms 

Eq ,  Mn~" E q ( , , M n ~ ) =  I , , G s ~ -  ,,CAo~ (see Corollary 3.15). 
For  n = to we do not  know of a 'good'  characterization; but  we know the 

following. 

Theorem 7. Let te >1 to. Then ( i ) -( i i )  below hold. 
(i) Eq(®Mn~) = Eq(~Mg~).  

(ii) Eq(®Mn~) = EqMn~ tq I ooCs~. 

Cf. also Theorem 5. Theorem 7(ii) implies that the characterization of the n-th 
atom does not generalize to the to-th atom. 

4 Note that every lattice of  subvarieties of a variety is atomic, see e.g. [3]. 

s By a 'good' characterization we mean one not involving 'Eq'. 
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(2) Suprema of atoms in Var. The supremum of all the atoms is EqMn~. We 
have an 'almost good' characterization for EqMn,,: 

EqMn~ = EqMg,~ = EqFbGs~ = Eq <`OCA,~. 

The supremum of infinitely many atoms in Var always contains =Mn~, and is 
never simply a union (for proof see the proof of Theorem 7(ii)): Let L _ to + 1 be 
infinite. Then 

Sup {Eq(.Mn,~)" n ~ L} = Eq((Lu(`o~)Mno~). 
Var 

This shows that Eq(ooMn~) is not a compact atom in Var. 
The supremum of finitely many of the other atoms, Eq(,Mn~) for n e to, is just 

their union: Let L ~_ co be finite. Then 

Sup {Eq(.Mno~) :n ~ L} =[._J {Eq(.Mn~) :n 6 L} 
Var 

= Eq (L)Mn,~ = (L)CA,r .  

This follows from Lemma 3.17. Therefore Eq(,Mno~) for n e co is a compact 
atom. Also, <nCA~, or more generally (L)CA~ for L ~`o co, contains only finitely 
many varieties, namely {K e Var: K =_ <nCA~} = {(L)CA~ "L ~_ n} (or more gen- 
erally {K e Var:  K ~_ (L)CA~} = {(a)CA~ "G _~ L} for L =_ ̀ oco). 

(3) Decidable varieties. The set of all decidable varieties of CAo/s is exactly the 
sublattice generated by the compact atoms in Var, i.e., the decidable subvarieties 
of CA~ are exactly the finite unions of I n Gs='s, n ~ to. This is proved in [29]. 
Thus {K ~ V a r : K  ~_ CA,~ and K is decidable} = {(L)CA~ "L _~ ̀ oog}. 

(4) On the subvarieties of Eq <`oCAo~. {EqK" K ~_ <`oCAo~} = {Eq (t)Mno~ :L ~ 
to} c { E q K ' K  ~ EqMno~}. I.e., there is K e Var such that K ~_ EqMn~ but 
Eq(K fq M n ~ ) c  K. An example of such a K is EqMn,, fq I =Cs~, see Theorem 
7(ii). For the first equality see Lemma 3.17. Thus [{EqK" K _~ <`OCA=}I = 2'°. We 
do not know whether I{K e Var: K ~_ EqMn~}[ = 2 ~ or not. 

(5) On the number ofsubvarieties. It is proved in [11, 4.1.24-28], a result of J. 
Johnson, that there are I>2'° varieties below Rp,~, f o r  6 every tr I> 2. This gave rise 
to the problem stated as Problem 4.2 in [11], whether there are 2 ~ varieties below 
Rp~ or not. In [30] we show that there are 2 ~ varieties of CA~ containing Rp~. 
About the logical meaning we note the following: the number of subvarieties of 
CA~ corresponds, roughly, to the number of (syntactical) scheme-theories. 
Concerning 'normal'  first-order theories, we do not have more than 2 ̀o theories 
(in a countable similarity type) even if we allow more than to many individual 

6 W e  no te  that  M.  Rub in  p r o v e d  in 1985 that  there  are  ~>2 '° variet ies  be low ®Rp~, too.  
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variables. But if [trl > to, then there are strictly more than 2 °, scheme-theories, by 
the above mentioned result in [30]. 

Remark 1.9. In [30], the lattice of subvarieties of CA~ is investigated (for both 
finite and infinite re). The following are proved, among others, in [30]: For any 
ordinal re, let Var~ denote the lattice of subvarieties of CA~. 

(a) Let te 1> 3. If n • to fq (tr + 1), then ,,CA~ has a complement variety -nCAo~ 
in Vary. The center Z(Var~) of the lattice Var~ is the sublattice generated by 
{nCA,, - n C A ~  :n • to fq (o~ + 1)}. 

(b) Let  o~ > 1. There are infinitely many co-atoms in Vary. Actually, let ~b(~n)  
denote the Cs,  with unit ~'n and universe the powerset of ~n. Then ~b(°'n) is a 
splitting algebra and the conjugate variety of ~b(~n)  is a co-atom of Vary, for 
every n • to. (For these notions see, e.g., J6nsson [14].) 

(c) Let c~< to. Define div & a~ + ~ {an-c(~)a,,+l:n<ol} where an ~-a(n x n ) .  
Then c(~)(d iv .x) ,  c ( ~ ) ( d i v - x ) = 0  is an equational basis for Mn~. Further, 
{c(~)a~ = 1, c(oo(ao~, x ) .  c(oo(ao~ - x) - 0} is an equational basis for ~oMn~. 

Related results on lattices of varieties are in Blok [3], [4] and in J6nsson [14]. 

2. Formulating the results in their logical form 

In the introduction we introduced all the machinery needed for stating the 
theorems of this paper in a purely logical form (and for investigating things 
further from a logical point of view, too). 

Let ~ be an arbitrary model (of an arbitrary first-order language) and let tr be 
an arbitrary scheme. Then we say that ~O~ P a iff ~IR P o '  for every instance tr' of o 
which is in the language of ~r3~. Let K be any class of models (perhaps of different 
languages). Then the scheme-theory SOpK of K is defined to be {tr: tr is a scheme 
and ( V ~  • K) ~R P o}. The 'normal '  first-order theory OpK of K, if K is a class of 
similar models, is defined to be {qg'q9 is a formula of the language of K and 
K P q9 }. Now we define some classes of models. (If ~ is a model, then M denotes 
its universe or carrier set.) 

Equmd __a { (M, = ) : M is a set}, 

Monmd & {~r3~. ~2 is a model with unary relations only} 

1-Binmd & {(M, R ) " R  ~ 2 M } ,  

Mod & {~02:~02 is a model}, 

FMod & {~R • Mod:  IMI < to}. 

Theorem 2.1. Statements ( i ) - (v)  below hold. 
(i) SOp(Equmd) = SOp(Monmd) = SOp(FMod) is not r.e. 7 

7 Independently of us, M. l~b in  also proved that SOp(Equmd) = SOp(FMod) is not r.e. 
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(ii) SOp(1-Binmd) = SOp(Mod) is r.e. 
(iii) There is a scheme o such that for every ~ ~ Monmd, ~lY~ o iff IMI/> to. 
(iv) Let K ~ Monmd. Then (a)-(b) below hold. 

(a) SOp(K) is either decidable or not r.e. 
(b) SOp(K) is r.e. iff (:In ~ o)) (V~e K)IMI ~<n. 

Remark 2.2. (a) In Theorem 2.1: (i) follows from Theorem 1(i) + Theorem 6(i), 
(ii) follows from Theorem 3, (iii) follows from Theorem 5, (iv) follows from 
Theorem 2(ii). We give a direct, logical proof for Theorem 2.1(i) in Remark 2.6. 
We note that by using the theorem proved in [29], the following generalization of 
Theorem 2. l(iv)(b) is also true: 

( * ) Let K ~_ Mod. Then SOpK is decidable iff (:In e to) (V93~ e K) [M[ ~< n. 

(b) One would think that the fact that SOp(FMod) is not r.e. might be a trivial 
corollary of the fact that 0p(FMod) is not r.e. This is not so. Shortly we turn to 
investigating the connection between SOp(K) and OpK, where we prove SOpK is 
r.e. ~ OpK is r.e., for K ~ Mod. The assumption ~02 e Monmd is necessary in 
Theorem 2.1(iii), cf. the remark following the definition of ~K in Section 1. 
Concerning Theorem 2.1(iv)(a), there is K _ Equmd such that N(K)  ~= { o ' o  is a 
scheme and K~ o} is not r.e." Let N ~ to be such that N is not r.e. Define 
K ~ { (n, = )" n ~ N}. For every n E to let on ~ "there exist n elements" ---> "there 
exist n + 1 elements". Then (Vn e to) (K ~ on iff n e N), showing that N(K)  is not 
r . e .  

Now, we turn to investigating a bit the connection between the scheme-theory 
SOpK and the 'normal' first-order theory OpK of a class K of similar models. As 
we have already seen, OpK decidable ~>SOpK r.e., a counterexample is 
K = Equmd. In the other direction, first we note that the obvious way of turning 
a hypothetical enumeration of SOpK into an enumeration of OpK does not work; 
namely there is a valid monadic formula q9 such that q9 is an instance of no 
monadic valid formula scheme t~. E.g., :ivaR(vo)*-->R(vo) is such a monadic 
formula. (But here being monadic is not necessary, e.g., : lv2R(VoVl)~ R(VoVl) is 
such a formula, too.) And indeed, next we will show that "SOpK r.e. ¢:> OpK 
r .e." .  We do not know whether "SOpK decidable ~ OpK r .e." holds or not. 

Proposition 2.3. (i) There is a class K of  similar models such that OpK is not r.e. 
while SOpK is r.e. Moreover, K has only one binary relation symbol. 

(ii) There is a model ~1)~, with Ophir not r.e. but E q ~  ~ r.e. where f ~  is the 
Cso, associated to ~lR in [11, § 4.3] and ~ has only one binary relation symbol. 

Proof. Let U be the set of all hereditarily finite sets and let 92 ~ (U, ~ ). Then 
0p92 is well known to be not r.e. Let ~g~& (U; E, R "R _~ 2U). Then the two 
projection functions U x U---~ U are in ~ ,  hence (Vn e to) (VT ~_ nU) T is 
definable without parameters in ~02. Therefore the same schemes are valid in ~ as 
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in ®Mod, where ®Mod = {~D~ • Mod: IMI ~ co). Namely, if 92 e ~Mod and 92 ~ cr 
(for some scheme or), then there is a finite reduct (N, R ~ , . . . ,  R~ ) ~ cr of 92 with 
the same property. We may assume N = U by the Lrwenheim-Skolem theorems. 
By definability of R1, • • •, R,, in ~ we have ~ ~ or. Since there are only countably 
many schemes, we need only countably many of the relations in ~1~. By using 
techniques similar to the ones in the proof of Theorem 3(ii), we can code up all 
these relations of ~ together with epsilon into a single binary B ___ M x M. Hence 
(M, B) has the desired properties. We have proved ~0~ ~ cr ~ ~Mod ~ a. The other 
direction is trivial. Since 0p(~Mod) is r.e., by Corollary 2.5 below the schemes 
valid in ~Mod and therefore those valid in ~O~ are r.e. Obviously, Op~/~ is not r.e. 
since 0p93 is not such. [] 

However, in some special cases, when K is defined in a 'simple' way, recursive 
enumerability (and also decidability) of SOpK does imply recursive enumerability 
of OpK, cf. Corollary 2.5 below. We begin with some simple facts. 

Lemma 2.4. Let cp be a formula. Then there is a scheme (? such that for every 
cardinal x we have { ~ :  IMI = r,  ~ is a model of  the language of  rp} ~ q9 iff 
{~J~ e Mod: IMI = K} ~ 9- 

Moreover, (? can be computed recursively from cp. 

The proof of Lemma 2.~ can be recovered from the proof of [11, 4.3.62] 
together with Remark 1.7(a). 

Let L ~_ Cardinals and let A be any first-order language. Then LMOd ~ {93~ e 
Mod" IMI e L} and LModA ~ {~0~ • LMod:~)2 is a model of the language A}. 

Coronary 2.5. Let L c_ Cardinals and let A be any first-order language. Consider 
statements (i)-(iii) below. Then ( i ) ~  (ii) and (i)<:> (iii) hold. Further, if there are 
relation symbols of  arbitrarily large finite arities in A, then (i)<:> (ii) holds, too. 

(i) The set o f  schemes valid in LMOd is r.e. (decidable). 
(ii) The set of  formulas valid in LMOdA is r.e, (decidable). 

(iii) Eq{93 • Cs,o" Ibase(93)l • L} is r.e. (decidable). 

We conjecture that (i)<=> (ii) in Corollary 2.5 holds for arbitrary non-monadic 
language A. 

Proof of Corollary 2.5. ( i ) ~  (ii) follows from Lemma 2.4. 
(i) <=> (iii). Let LCs~, =~ {93 • Cso, "lbase(93)I • L}. Let o be a scheme. We will 

show that LMod ~ o iff LCs,o ~ eq(o). If LMod ~ o, then LCs~, ~ eq(o) is easy to see 
by using the definitions. Assume that LCso~ C eq(o), say 93 ~eq(o) for 93 e Cso~ 
with U~base(93)  and IUI eL .  Then there are ~ : X - - . A  and z e 1 ~ such that 
z ¢ tr(o)~(fi). Let N _~ w be such that all the indices occurring in tr(o) are among 
N. Recall that t 'FmV>-- .X.  For every q~eFmV let r~LX={seNU:sU(co-- 
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N) 1 z • ti(tq0)}. Let a '  be the instance of a where we replace each formula- 
variable q9 • FmV with R,~(Vo,..., Vlv-O where R~0 is an N-ary relation symbol 
and let ~R -a- (U, r~0)~0~F~v. Then T.R~a'[z] can be shown by an easy induction, 
using the fact that z ~ tr(o)ga(fi). Since I UI • L we have ~ • LMod, thus LMod ~ o. 
(i) <=> (iii) has been proved. 

If A has relation symbols of arbitrarily large finite arities, then the above chain 
of thought can be modified to show (i) <=> (ii), as follows. Let a be a scheme, let N 
be the set of (normal) variables occurring in a and let tr' be an instance of a 
where each formula-variable q0 • FmV is replaced with R~ ( V o , . . . ,  Vm) where R~ 
is a relation symbol of arity 1 + rn >~N and different formula-variables are 
replaced with different formulas. Then one can show that LMod ~ a iff ~MOdA 
or'. []  

Remark 2.6. Now, using the above Corollary 2.5, we give here a simple proof for 
Theorem 2.1(i). The proof we give here is an 'optimization' of the proof given for 
Theorem 6(i) in Section 3, adjusted specifically for the goal of proving Theorem 
2. l(i) directly. 

First we prove SOp(Equmd)= SOp(Monmd) = SOp(FMod). Let a be a scheme 
and assume FMod ~ or. We will show Equmd ~ a. Assume that the formula 
variables occurring in o are among q0t, • • . ,  tpn • FmV. Let tr' = a(qgi/~i) be an 
instance of a and ~ • FMod be such that ~ ~ a ' .  We may assume M • to. 
Assume that the variables (bound and free) occurring in a '  are among 
v0, • • •,  vN-1 • V. For every a • NM define m(a) -~/~ { 1 ]  i "-- VN+ai:i • N} and 
define rh ~ V {re(a) :a • NM and ~ ~ ~[a]} .  Then rh is an equality formula for 
every 1 ~< i ~< n. We will show that (M, = ) ~ a(qgi/rh). Let 
k: {oN , . . . ,  vN+M_I}'-">M be such that k(VlV+i)= i for every i • M .  Now the 
following can be shown by induction on the structure of the scheme ~: "Let ~ be 
any scheme with formula variables among t p l , . . . ,  tp, and with (normal) 
variables among Vo, • • . ,  vN-1. Then for every a • NM we have 

.~ ~ ~ (~ i /  fI,~i)[a ] iff ( M, = ) ~ ~(~i/17i)[a U k].'" 

Then by M ~ or(t~oi/~i) we will have (M, = ) ~ a(~gi/l~i).. Thus FMod ~ a implies 
Equmd ~ a. Clearly, Equmd ~ a implies Monmd ~ a. Assume Monmd ~ a. Then 
Monmd ~ a '  for some monadic instance a '  of a. It is known that then ~t ~ a '  for a 
finite .~ e Monmd, too. (For completeness, we note that this can be proved, e.g., 
by the techniques of Monk [22].) Thus FMod ~ o. By the above we have seen 
SOp(Equmd) = SOp(Monmd)= SOp(FMod). Let A be the first-order language 
having only one binary relation symbol. It is known that the first-order formulas 
valid in the finite models with one binary relation is not r.e.,  i.e. that 0p(o, ModA) 
is not r.e. Then SOp(o, Mod) is not r.e. by part (i)==)> (ii) of Corollary 2.5 (which 
part is a direct corollary of Lemma 2.4), hence SOp(FMod) is not r.e., since 
o, Mod = FMod by definition. 
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So far we dealt with 'usual' first-order logics, i.e., first-order logics having 
infinitely many variables. Now we turn to first-order logics having only finitely 
many variables. Let a~ < to. Then SOp~K is the set of tr-schemes tr-valid in K, 
i.e., if ~ ~ Mod and o is an re-scheme, then ~ t ~  tr iff ~t ~ tr' for every instance 
tr' of tr which is a formula of the logic L~ using only a~ variables, and then SOp~K 
is defined the usual way. (For L,~ and its literature see the second part of the 
introduction.) 

Theorem 2.7. Let 2 < a~.,< to. Then (i)-(iv) below hold. 
(i) SOp~(Equmd) is decidable. 

(ii) SOp~(Monmd) = SOp~(FMod) is not r.e. 
(iii) SOp~(Monmd) = SOp~(Mod) 
(iv) Let K c_ Monmd. Then (a)-(b)  below hold. 

(a) SOps(K) is either decidable or not r.e. 
(b) SOps(K) is decidable iff there is a finite monadic language A such that 

every ~ ~ K is definitionally equivalent to some model of  A. 

Remark  2.8. In Theorem 2.7: (i) follows from [11, 4.2.1]; (ii) follows from 
Theorem 6(iii) + Theorem l(ii); (iii) follows from Theorem l(iv), and (iv) follows 
from Theorem 2(i), (iii). Most parts of Theorem 2.7 generalize to a~ ~< 2. 

Problem 2.9. Find a 'nice' axiomatization of SOpMod! This would be relevant to 
solving an old central problem of algebraic logic which is restated as Problem 4.1 
in [11]. 

3. Proofs 

We shall prove the theorems in the following order: 2, 4, 6, 1, 3, 5, 7. The 
following notation will be frequently used in the proofs: 

X - Y ~ {a e X:  a ¢ Y} is the difference of the sets X and Y. 
X ~_,o Y means that X is a finite subset of Y. 
SbU denotes the powerset of U, SbU ~ {X: X ~ U}. 
~ b V  denotes the full cylindric-relativised set algebra with unit V, i.e., 

~ b V  = (SbV, t J, f'l, ~ ,  O, V, C! vl, D!Vl)i.j~ if V ~ ~U for some U. For C! v], 
D! vl see the end of the introduction. 

I a denotes the unit of the CA~ 92. 
s~x ~ ci(dii" x) in any CA~ 92, for i, j e cr and x e A. 
Dof, Rgf  denote the domain and range of the function f. 
f * X  A= {f(x)  :x e X }  is the f- image of X, for any function f. 
f /denotes  f ( i )  if f is a function. 
(a, b) denotes the same as (a, b)  (the pair of a and b). 
f : A  ~ B denotes that f is one-one.  
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f :  A >-, B denotes that f is bijective. 
AB denotes the set of all functions mapping A into B. 

A 1 f = {(u, v) e f :  u e A } is the function f restricted to A. 
Thus if s e nU and f e ~U, then s U (or - n) 1 f denotes the function that agrees 

with s on n and with f on c~-  n. 
Let k e ~U, i.e., let k" or---> U and i e a~. Then k(i /u)  or k~ denote the function 

we get by changing the i-th value to u, i.e., k ( i / u )=  ((i, u)) O (k --- {(i, k(i))}). 
Undefined terminology or notation is taken from [11]. 

Proof of Theorem 2. The difficult part is to show when EqK is not r.e. We begin 
with these parts. 

(A) Let cr t> o9 and assume K c_ Mg~ is unbounded. We will show that EqK is 
not r.e. We shall prove the following theorem. Let oJ & {to, + , . ,  0, 1> be the 
standard model of arithmetic. 

Theorem 3.1. There is a recursive function e mapping the set of  number-theoretic 
equations into the set of  equations of CA,,, such that for all number-theoretic 
equations e(2) we have 

o ~ e ( $ )  iff K~e(e(2)) ,  

where K c_ Mg~ is unbounded, ol >I w. 

Since the set of insatisfiable Diophantine equations is not r.e., Theorem 3.1 will 
imply that EqK is not r.e. Now we turn to proving Theorem 3.1. 

The idea of the translation e: Let x, y, z be variables in the language of CA~s. 
(They can be thought of as formula variables.) We can express, by a cylindrical 
algebraic equation 31(x)= 1, about x that "x is a one-one unary function with 
no fix-point" (cf. 31 in Definition 3.2 below). Lemma 3.3 says that in Mg~,, the 
domain of such an x is always finite. (It is not so in CA~ or in Bg~.) Hence x is 
the successor function restricted to a finite initial segment N of 09. Then we can 
express that y, z are addition and multiplication restricted to this N. (See 32 and 
33 in Definition 3.2 and Lemma 3.4.) Having 0, suc, + ,  • we can then translate 
number-theoretic equations to cylindric algebraic equations. 

The formulas we use to express that x, y, z are successor, addition and 
multiplication are as follows. (These formulas will be coded as CA,o-terms in 
Definition 3.2(i) below.) 

X(VoVO ^ X(VoV2)--, v l  = v2 

x ( v o v O  ^ vo = 

X(VoVl) voCvl 

(i.e., x is a function), 

(x is one-one),  

(x has no fix-point). 
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Define 

d(v6) ¢:> :113o (v0 = v6 ^ 3VlX(Vo131)) 

r(136) ¢:> 3131 (131--" 136 ^ ~130X(O0131)) 

n(136) CC' d(136) ^ ~r(v6)  

(V6 E Dox),  

(v6 E Rgx),  

(136 is a starting point of x). 

:1136/l(136) A V130136(n(136) A n(130)--~" 136 = 130) 

y(130~31132) A y(13oV1133)---~ 132 = 133 

Y(13oV1132) "-'~ (d(13o) ^ d(131) ^ d(v2))  

We shall write u + v = w and u + 1 = v instead 

(There  is exactly one 

starting point  in x). 

(y is a function),  

(y is on the domain of x). 

of y ( u v w )  and x ( u v )  resp. 

n(vo)  ^ d(vl)---~ y ( v o v l  v l )  (O + u = u for u e Dox) .  

--1133[y(133131134) ^ X(O0133)] <'') -]132[X(132134) A y (vov lv2 ) ]  

( (v  + 1 ) + u = w ~ w = ( v  + u ) +  1). 

Similarly we can express that  z is multiplication: 

Z(V0131132) A Z(UO131V3)'"~ 132 -" 133 

z(130131132)"'~(d(130) A d(131) A d(v2) ) 
n(vo)  A d(131) ----~' z(130131130) 

(z is a (partial) function),  

(z is on the domain  of X), 

( 0 .  u = 0 ) ,  

3133[Z(V3V1134) A X(130133) ] ~ :1132[y(132131V4) A Z(VoVlV2)]  

( (v  + 1) " u = w ~-* w - (v  " u)  + u). 

In Defini t ion 3.2(i) below, the above formulas are coded as cylindric terms.  

Definition 3.2. (i) zl is defined to be the CA7-term 

- c ( 3 ) ( x  . s i x  - d12)  - c ( 3 ) ( x  . s ~ x  - do~)  - c ( 2 ) ( x  . d o 1 ) "  - c ( 7 ) ( c ( 7 _ ~ ¢ c  - x ) .  

Le t  d ( x )  ~= s°clx ,  and n(x )  ~= d ( x )  - S~CoX. 
a (x )  is defined to be the t e rm 

C6/1(X) -- CoC6(n(x) " s ~ n ( x )  -- do6). 

z2 is defined to be the CA7-term 

-c(4) (y  • s2y - d23)" 

-c(3) (y  - [s~d(x) • s6d(x )  • s6d(x)])  • 

-c (3)(s~n(x)  . s6d(x)  • d 1 2 -  y )  " 

-c(5)(c3[s~s24y • s~x] ~ c 2 [ s ~  . y])- 
--C(7)(C(7_3)y -- y) .  
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33 is defined to be the CA7-term 

. - d , )  . 

- c < 3 ) ( z  - s 6 d ( x )  . s6d(x)])  • 

. s 6 d ( x )  • do - z )  . 

. s x] . z ] ) .  

--C(7)(C(7~3)Z --  Z) .  

qg(x, y,  z )  is defined to be the term 31" 32.33- o(x) .  
(ii) Let V ~  {vi :i • to, i > 6} be our set of variables when speaking about to. 

Let e($) be a number-theoretic equation with free variables X o , . . . ,  xn e V. 
There is an algorithm which to each number-theoretic equation with free 
variables Xo, • • • ,  Xn ~ V associates a formula :lyo . • • yk(bo ^ • " • ^ bin) equivalent 
to e(:~) in to and such that Y o , . . . ,  Y, e V and each bi has the form u + 1 = v, 
u + v = w ,  u . v = w  or u = 0  for some u , v , w • { x o , . . . , x n ,  y o , . . . , y k } .  (Cf. 
Malcev [21, Section 7.1, Theorem 4].) Denote $ = ( X o , . . . , x ~ ) ,  )7= 
(Y0, . . .  ,Y i,). Let 3)7 ( b 0 ^ - - - ^  bin) be associated to e(.f) by the above 
algorithm. For each l ~< m define the cylindric term fit as follows: fit is defined to 
be s°s}x, S°S}S2ky, s°sls2z or srn(x)  respectively if b, is v~+ l = v #  v , + v i = v k ,  

v~- vj = vk, or vi = 0 (for i, j, k > 6) respectively. 
Now we define e(e(:~)) to be qg(x, y,  z ) .  1-I { f l t : l  <~m} =0.  [] 

We are going to show to ~35 e($) iff K ~ e(e(:~)). But first we need some 
lemmas. 

Notation. Let 92 ~ Gs,, with base U, R ~ A ,  k ~ 1 ~ and n • re. Then R[k,  nil ~ {s • 
" U : s O [ ( o r - n )  l k ] e R } .  E.g., R[k ,  2]] is the following binary relation on 
U :R[k,  2]]= ( (u ,  v)  e E u  :k °l e R} .  

Let R ~ _ n U  and let - be an equivalence relation on U. Then 

R~ =- ~ {(ul/=-,  . . . , un/=-): ( U l , . . . ,  u , , ) e R } .  

Let 92 •Gs,~ and x • A .  We recall from [11, 3.1.1] that x is regular in 92 iff 
('qq, k e 19x)[(1 O A'a(x)) I q _  k ~ (q e x iff k • x)] and 92 is regular if all of its 
elements are regular. Gs~ g denotes the class of all regular Gs,~'s. 

The following lemma says, roughly, that in any 92 e Mgo, n Gs~ g if r ~- Rl[k, 21 
(with R • A ,  k e 1 ~) is a "function between its blocks without fixpoints", then 
Rgr contains only finitely many blocks. We shall use the following lemma in most 
cases when the equivalence relation --- in it is the identity. 

Lemma 3.3. Le t  tr >i 2, 92 e Mg~ n Gs~ g and R • A .  Then there is n • o9 with the 
fo l lowing  property:  I f  k ~ 1 ~ and - is an equivalence relation on base(92) such that 

R[k ,  2]/-~ is a funct ion ,n, ith no fucpoint, then IRg Rqk, 2]/=1 < n. 
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Proof. Let F ~  1 t_J AR. By Mg,~ ~ Lf~, m ~ IFI + 3 is finite• Since 92 e Mg~, there 
is a finite G ~_ Nr192 generating R, such that G is a partition of 1 ~. Let n > m • IGI 
finite. Now let k • 1 ~t and let -- be an equivalence relation on base(92). Assume 
that R~k, 2]]/= is a function with no fixpoint. Let L & Rg R]]k, 2~. 

( .)  Assume I L / ~ I  ~ n. 

There is U • Subb(92) with k • ~U. By regularity, G induces a partition of U, 
namely Go = {{fo:f • X }  n U : X •  G) is one. By IL/=--I >~n and Lc_ U, there is 
Y e G o  with I ( L A Y ) / = - I ~ m .  Let Y + ~ = ( L A Y ) - k * F .  By I (LOY)/==-I~m= 
IFI + 3 we have IY+/-I 1> 3. Let t • Y÷. By Y÷ ~ L, there is a • U with 
(a, t) e R~k, 2]. Then a :/: t because R[k, 2] /=  has no fixpoint. Let e • Y+ 
{a, t}/=-. Such an e exists by IY+/--I >2. Let TAbase(92) and f" T~-~ T be a 
permutation of T interchanging e and t and leaving the rest fixed. I.e., f (e)  = t 
and ( V x e T ~ { e , t } ) f ( x ) = x .  Now f ( a ) = a  by a ~ ( e , t ) .  Then f induces a 
base-automorphism f • I s ( ~ b l  ~, ~ b l  ~) by [11]. Since {e, t} ___ Y • Go and G 
consists of mutually disjoint regular elements, we have G 1 f - Id. Thus fR  = R. 
Now (a, t) • R~k, 2]] :r~ k °1 • R ::),f o kO~ • fR  = R, which by [e, t ~ k* F ~ F 1 (re 

Ol Ol kat) = F ~ kae] and by regularity of R implies k°~ • R, thus (a, e) • R~k, 2]. Since 
e ~ t, this means that R~k, 2]]/= is not a function. A contradiction, disproving our 
assumption (*). [] 

Lemma 3.4. Let 92 • Mg~ fq Gs~ g, a~ i> 7, k • 1 ~ and X,  Y, Z • A. Set s ~= XlIk, 2], 
a & Yl[k, 3]], m a= Z[k, 3]. Assume k ~ c(7)(c(7-2~X- X).  Therl (i)-(ii) below hold. 

(i) k • r l (X)  ~t iff (s is a finite one-one function with no fixpoints), and 
k • o(X)  ~ iff IDos - Rgsl = 1. 

(ii) Assume further that k ~ E (c(7)(c(7-3)W- W)'. W • (Y~ Z)). Then (a) and 
(b) below are equivalent: 

(a) k s  tp(X, Y, Z) ~. 
(b) There are N • to and n :N + 1 ~ base(92) such that 

s = { (ni, n(i + 1)):  i '< N) ,  

a= (<ni, nj, n(i + j ) ) ' i ,  j, i + j  < N } ,  

m = {(ni, nj, n(i . j ) )" i ,  j, i . j  < N } .  

Proof. Let everything be as in the statement of Lemma 3.4. Assume k 
c(7)(c(7_2)X- S ) .  This means that 

(*) v-uv(lr'°l eXiffkuve01 X)  holds for every u, v and k '  e c(7)(k}. 

(1) k ~ c~3~(X" s ~ X -  d12) iff s is a function. 
\ 

For, assume k e c~3~(X, s ~ X -  d12). Then there are u, v, w such that -012 Kuv w E 
X.cl(d12 X) d12. Thus v : / :w and/,.o12 • X .  Then ol ol 

• - .-uww kuv, k~w • X by (*). Hence 
(u, v), (u, w) • X~k, 2] = s and v :/: w show that s is not a function. On the other 
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hand, assume that s is not a function. Then there are u, v, w such that 
ku,,, k , ,w•X,  therefore by (*) we have (u, v), (u, w) • s and v:/ :w. Thus ol ol 

kin)w, k°12~ ~ X, showing k°l)w e X .  s ~ X -  d~2. One can prove similarly the state- 
ments (2), (3) and (4). 

(2) k ~ c(3)(X" s ° X -  do2) iff s is one-one  (i.e., (u, v), (w, v) • s ~ u = w). 

(3) k ~t c(2)(X, d0x) iff s has no fixpoint (i.e., (Vu) (u, u) ~ s). 

(4) k • t r ( X )  iff [ D o s - R g s l = l .  

Assume k • 1:1(X) 9a. Then s is a one-one  function with no fixpoints, by (1)-(3) 
above. By Lemma 3.3 then Rgs is finite, hence s is finite, too. Conversely, if s is a 
finite one -one  function with no fixpoints, then k • ~I(X) ~, by (1)-(3) above. (i) 
has been proved. Assume now 

(**) k $ c(7)([(c(7-2)X- X) + (c(7-3)Y- Y) + (c(7-3)Z - Z)]. 

Let s be a finite one -one  function with no fixpoints and with ]Dos - Rgs[ = 1. Let 
F& Dos O Rgs. Let N &  I F I -  1. Then, by the properties of s, there exists a 
n :N + 1 >-~ F such that nO • Dos - Rgs and n(i + 1) = s(ni) for every i < N. Then 
s =  {(ni, n ( i + l ) ) : i < N }  holds. The converse dearly holds, hence by (i) we 

proved 
(5) k • "ga" °r(X) 9/ iff (3N • t0)(3n :N + 1 >----> base(9~)) 

s = { ( n i ,  n ( i+  1)) :i < N } .  

Assume f rom now on that k • ~1" a(X)  ~t and s, N and n are as in (5) above. Let 
D & Dos and let 0 denote the unique element of D - Rgs. Then nO = 0 and u e/3 
iff (::li < N)  u = ni. 

(6) Let k '  • c(7~{k}. Then 

k'  • d ( X )  iff k ' ( 6 ) • D  and k'  • n ( X )  iff k ' ( 6 ) = 0 .  

For, k'  • d (X)  = co(do6" c lX)  iff ku ° • c l X  where u --- k '(6),  and k "° • c l X  it 
(:Iv) k'°o ~ • X iff (by (**)) (:iv) k°u~ • X iff u • Dos = O. k '  • S~Co(X) iff k '(6) • Rg 
can be proved similarly, hence k' • n(X)  iff k '(6) • D --- Rgs iff k '(6) = 0. 

(7) k $ c(4)(Y" s 2 y -  d23) iff a is a function, i.e., 

(u, v, w), (u, v, z ) e a = > w =  z, 

can be proved analogously to (1). 

(8) k t~co~(Y - [ s6d (X) . s6d (X) ' s6d (X) ] )  iff [(u, v, w)ea=) ,u ,  v, w e D ] .  

For, assume k • c o ) ( Y - s 6 d ( X ) ) .  Then there are u, v, w such that k°12w • Y- 
c6(d06" d(X)).  Then (u, v, w) • a and k °~26 ~ d(X),  therefore u ~ D by (6~ 
Similarly (u, v, w) • a and u ~ D implies k°lfw e Y - s6d(X). The remaining part i 
completely analogous. 
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From now on, assume that  a is a (partial) binary function on D, i .e. ,  that  
a" P--> D for some P ~_ 2D. We shall write u + v = w instead of (u, v, w) • a. 

(9) k ~ c(3)(s~n(X), s6d(X) • d12 - Y) iff 0 + u = u for every u • D. 

For,  assume k • c(3)(s~(X) ,  s6d(X) • d12 - Y). Then there are u, v, w such that  
kmEw•s6n(X) "s6d(X) "d~E-Y .  Then v = w  and ( u , v , w ) ~ a .  By k°~ 2 •  

c6(d06" n(X))  we have k°~26 u • n(X) ,  thus u = 0  by (6). Similarly, k°12� •s61d(X) 
implies v • D. We have seen v • D and 0 + v :/: v. The other  direction, 0 + v #: v 
for some v • D ::> k • c(3)(s~(X) . . . .  ) is analogous. 

(10) k ~ c(5)(c3[s~s2y . s~X] 

(sv + u = = s ( v  + 

For,  assume k • c(5)(- • • ~)-  • 
the o ther  way round,  for 

c2[s°s~( • Y]) iff 

u)) for every u, v, w • D. 

• ). Then k'  • s~s2y • s~X but  k ' ~  c2[sgzs~X. Y], or 
some k ' •c (5){k} .  Assume the first case. Let 

h e n c e  ]¢., 02 • -pw • Y, therefore  p + u = w. Also, 
s ( v ) = p .  Thus s ( v ) + u = w .  By k '  

(v, u, q, p,  w) = 5 1 k ' .  Then  k'p ° • sEy, 
by k ' • s ~ X  we have k 'p l •X ,  thus 

c2[s°s~X • Y] we have that  for every q, e i ther  s(q) :/: w or v + u :/: q. This means 
s(v + u) =/: w (either not defined or  unequal) .  The other  parts  are similar, we omit  
them. 

Now by (7)-(10)  we have k • r2(X , y f a  iff a = { (ni, nj, n(i + j ) ) ' i ,  j, i + j < N} 
as follows. Assume k • r E ( X  , Y)~. Let i, j, i + j  < N. Then  (nO, nj, nj) • a by (9). 
By ~ of (10) then,  by induction,  (ni, nj, n(i + j ) ) •  a since s'~(i)nj = n(i +j)  by 
s = {(ni, n(i + 1 ) ) : i  < N } .  This proves the inclusion a _~ {. - .}. To see the other  
inclusion, assume (ni, nj, n k ) • a  for some i, j, k < N .  By ~ of (10) then 
(nO, nj, n ( k - i ) ) • a ,  hence n j = n ( k - i )  by (9) and (7), thus j = k - i ,  i .e. ,  
k = i + j .  Conversely,  assume a = { ( n i ,  nj, n ( i + j ) ) ' i , j , i + j < N ) .  Then k •  
rE(X, Y)~ by (7)- (10)  and by our  assumption (**). 

Assume k • r l -  rE" O(X, Y)~. Then the proof  of 

(11) k • r a ( X , Y , Z )  9a iff m = { ( n i ,  nj, n ( i . j ) ) ' i , j , i . j < N }  

is similar to the above,  therefore  we omit  it. [] 

Let e(:~) be a number- theore t ic  equation.  Let  3 ) T A B ,  where B =  

{ b o , . . . ,  bin}, W ~= {Xo,. .  •, xn, Yo, . .  •, Yk} ~-- V and {fll ' l<~m} be associated to 
e($) as in Definition 3.2(ii). 

Lemma 3.5. to ~ :I~ e(£') implies K ~ e(e(.f)) for every unbounded K ~ Mg~, 
0¢ .---> to. 

Proof. Assume t o ~ 3 £ e ( £ ) .  Then  t o ~ 3 £  3)7 A B. Let h • w t o  be such that  
t o ~ A B [ h ] .  Let N • t o  be such that  h*W~_N and  let Q • t o  be such that  
W ~_ {vi : i < Q}. Let  N '  & N + 1. Since K is unbounded ,  there  is ~R • K with 

~ d ( N '  x N ' )  = 0. By K ~_ Mg~ ~_ IGs~ = SPCs~ g, we may assume ~ff~ • SPCs~ g. 
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Then by ~ ~ d ( N ' x  N ' )  = 0, ~32 has a subdirect factor ~ • Cs~ g f3 Mg~ with base 
U such that I UI t> N'.  We may assume N '  ___ U. It is enough to show ~ g e(e($)), 
since this implies K ~ ~ g e(e($)). Let k • ~to be such that h ~_k and (Vi • 
N')  k ( a  + i) = i. Define 

X&~'~ d ~ ~ • { o,o+i 0 <~i<-N} • d t ,  o + i +  l .  

{d0,e+i - -  . d l ,  Q +  / 

z E fd o÷i 

d2,a+i+j: i, j • to, i + j < N},  

d2,Q+i.j, i, j • to, i . j < N}. 

Then Xl[k, 2 ] = ( ( i , i + l ) : i < N } ,  Y[k, 3 ] = { ( i , j , i + j ) ' i , j , i + j < N } ,  and 
Z~k, 3 ] = { ( i , j , i . j ) ' i , j , i . j < N }  therefore k e c p ( X , Y , Z )  ~ by Lemma 3.4. 
Also, by h ~_ k and to ~ A B[h], by the definition of fit's, we have k • l-I {fll:l <- 
m} (with x, y, z substituted by X, Y, Z in ~). Thus k • qg(X, Y, Z) ¢ f3 I-I {fit" l <~ 
m} showing ~ ¢ e(e(2)) .  Therefore K ~ e(e(2)). [] 

Lemma 3.6. Mg~ ~ e(e($)) implies top 3~ e($), for ol >i to. 

Proof. Let ~ • Mg,, be such that ~12 ~ e(e(2)). We may assume 99~ • Gs~ g N Mg~. 
By ~02 ~ e(e(2)),  there are X, Y, Z • M and k • 1 ~ such that k • qg(X, Y, Z) ~ N 
l-I {flj :j <~ m}. Let s ~ X[[k, 21, a & Yl[k, 3] and m ~- Z[k, 3~. Let N • to and 
n : N  + 1 >--> base (~ )  be such that s = {(ni, n(i + 1) ) : i  < N } ,  a = {(ni,  nj, n(i + 
j ) ) : i , j , i + j < N } ,  m = { ( n i ,  nj, n ( i . j ) ) : i , j , i . j < N } .  Such N and n exist by 
Lemma 3.4(ii) and by k • qg(X, Y, Z) ~. Let h :W--> to be defined by (Vvj • W) 

~_ ~n-l(kj)  if kj • Rgn, 
h(vj) 

[0 otherwise. 

We will show to ~/~ B[h]. Let bl e B. Assume bl is vi + 1 = vj. Then fit is s°s)x, 
o 1 hence k e s i s jX  by k e l-I {flt:l ~ m}.  Then (k(i) ,  k(l')) • s by i, j ~ 2. Hence 

ki, kj • Rgn and h(vj) = h(vi) + 1. Thus to ~ bt[h]. The other cases are completely 
analogous, hence we omit their proofs. We have seen to ~/~ B[h]. Therefore 

3z  [] 

Now Lemmas 3.5, 3.6 imply t o ~ e ( $ )  iff K~e(e ($ ) )  for all unbounded 
K ~ Mg~. Thus Theorem 3.1 has been proved and EqK is not r.e. 

(B) Again, we will use that the set of unsatisfiable Diophantine equations is 
not r.e. 

Theorem 3.7. There is a recursive function r I mapping the set N T E  of  all 
number-theoretic equations into the set of  equations o f  CA~, such that for  all 
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e(2) • NTE we have 

t o ~ : 1 2 e ( 2 )  ig K~n(e(2) ) ,  

where 3 <<- ol < eo and K ~ Mg~/s  unboundedly generated. 

To prove Theorem 3.7, assume 3 ~< a: < w. First we show that EgMgo, is not r.e. 
and then we will modify the proof to show that EqK is not r.e. whenever 

K _~ Mg~ is unboundedly generated. 
(B1) The proof will be similar to the one in ( A ) - o n l y  the associated 

CA-equation e(e(2)) will be different. 
The idea of the modification: The main idea is that we will simulate variables 11i 

in e(2) by 'constant '  elements (monadic generators) instead of treating them as 
variables ( 'indices', i.e., members  of a:). This will immediately settle the case 
a~ I> 7. To be able to express qg(X, Y, Z) for all a~/> 3 (and not only for a~ t> 7), we 
will use the 'projection functions (or pairing function)' technique, see Tarski -  
Givant [35] or Maddux [18]. Cf. also Remark 3.19. Now the formulas we use to 
express that P0, P~ are projection functions and x, y, z are successor, addition and 
multiplication, using only 3 variables, are as follows (these formulas will be coded 

as cylindric terms in Definition 3.8 below): 
Express that x is a one-one  function with no fix-point, as before. Express also 

that IDox - Rgxl = 1. 
Expressing that Po, P~ are 'projection functions': 

pi(110111) A pi(vov2)-'-> Vl = v2 for i • 2, 

Vo • Dox A 111 • Dox---> :lv2[Po(V2Vo) A pl(V2VO]. 

Using Po, P~ we can code 'addition' as follows: 

y(vovO A y(VoV2)-'-> 111 = 112, 

y (vovO '*  [poVo • Dox A plVo • Dox A Vl • Dox], 

pOllo=OAplVo=11~ A11~eDox---->y(VoVl) ( O + u = u ) ,  

3vl[x(poVo, povO A p lVo=plVl  A y(VlV2)] 

3111[y(VoV1) A X(111112) ] ((11 + 1) + U = W ~ W = (V + U) + 1), 

po110 = pOVl A p1110 = p1111"-> (y(110V2) ~ Y(111V2))" 

/J0 111 1)2 
( v , u ) ~  (11+1, u) Y ( v + l ) + u  /(v+u)+l 

11q-u 
Illustration for the definition of y 

Here we can express x(povo, povO by 

 112(po(v1112) ^  111[po(11oVO A x(v l  v2)]) 
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and pavo  = p l v ~  can be expressed by 

3 v 2 ( P l ( V o V 2 )  ^ p a ( v l v 2 ) ) .  

Expressing that  z is 'mult ipl icat ion '  goes as'follows: 

Z(UoU1) ^ Z(UOU2)-'--> V 1 = V2, 

Z(VoVl)'-"> [povo e Dox ^ p l v o  e Dox ^ vl  e Dox], 

V l = O A p o V o = v l A p l v o e D o x ' - > Z ( V o V l )  (0" u = 0 ) ,  

: l v l [X(poVo ,  p0vl )  ^ p x v o = p l V l  ^ Z(VllJ2) ] 

<'> 3 v x ( p l  Vl  = p l  vo ^ 3v~,[Z(VoV2) ^ p o ( v l  v2)] ^ Y ( V l  v2) ) 

( ( v  + 1) " u = w ~--> w = (v  " u)  + u) ,  

p o v o  = p o v l  ^ p l  vo = px  vl----> (Z(VoV2) <--> Z(U1U2) ). 

130 U 1 

( v , u )  ~ ( v + l , u )  

"-. ~ (v" 

/ 
( v . u , u )  

U2 
z ( v + l ) - u  

u ) + u  

Illustration for the definition of z 

Now to every var iable  w let us associate a constant qw. That  qw is a constant  

can be expressed as follows: 

q. , (Vo) ^ q,, ,(vl)"-> Vo = V l ,  

3Voqw(Vo) .  

Let u, v, w be  variables.  Then  u + 1 = v, u + v = w and u = 0 can be expressed as 

follows 

Vo = q,, ^ v l  = q~ ~ X(VoVl ) ,  

p o v o  = q,, ^ P W o  = q ,  ^ v i  = qw---> y ( v o v O ,  

q u e D o x A q u ~ R g x .  [] 

Defini t ion 3.8. (i) lr 1 is defined to be  the CA3-term 

- c ~ 3 ) ( x  . s ~  - d~2) - c~3)(x . s ~  - do~) - q 2 ) ( x  . d o O  - c ~ ) ( c 2 x  - x ) .  

:r is defined to be the CA3-term 

-c(3)(po • s ~ p o -  d12) - c ( 3 ) ( P l  • s i p 1  - d 1 2 ) .  

- c ( 3 ) ( c l x  " s ° c , x  - c2[s~s°po " s °p l ] ) .  

- - C ( 3 ) ( C 2 P o  - -  Po) - C < 3 ) ( c 2 p l  - -  Pl) .  
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L e t  n ( x )  ~= ClX - S~CoX and  o & c o n ( x )  - c o c l ( n ( x )  . s ° n ( x )  - doO. 

32 is def ined to be the  CA3- t e rm 

--C(3)(y • s l y  - d12 ) • 

- c (3 ) (y  - [cx(Po" S°ClX) • c l ( P l  • S°ClX) • S°ClX]) • 

- c O ) ( c l [ P o  " s ° n ( x ) l  . P l  . S°ClX - y )  . 

- c (3 ) (c l [c2 ( s° s lpo  " c l [po  " s ° s ~ ] )  " c2(s~p,  " s°s12Pl) • s°sl2y] 

~) c , [ y  . s ° d x l )  . 

-c<3)[c2(sgpo . s ° s ~ p o )  • c2 ( s~p l  . s ° d p l )  • ( s~y  • s ° d y ) ]  . 

- -C(3) (c2y  --  y). 

33 is def ined  to be  the  C A a - t e r m  

--C(3)(Z" S l Z  --  d12)"  

--C(3)(Z -- [Cl (P0 • SOClX) " C l ( p l  " s ° q x )  " s ° q x l )  • 

- c O ) ( s ° n ( x )  " Po " c l ( P l  " s ° c l x )  - z )  . 
0 1 --c(3)(Cx[C2(SlS2Po " c l [Po"  s°s~xl)  " c2(s~pl  " SaS2Pl) 1 sOs~z] 

~)  C l [ C 2 ( s l p l  0 1 • Sxs2Pl )"  c2(s~z o 1 • S l S 2 P o ) "  s ° s ~ y ] )  • 

_ c o ) [ c ~ ( d p o  o 1 o 1 • SlSzpo)"  C2(Slpl  " Sas2pI)  • (S~Z ~ SOlS~Z)] • 

- -C(3 ) (C2Z  - -  Z ) .  

Let  ~p(x, y,  z, Po, P l )  A 31" a t -  32" 33" a.  
(ii) Le t  e($)  be  a n u m b e r - t h e o r e t i c  equat ion•  Le t  V, W = 

{ X o , . . .  , x , , y o , . . .  , y k } ~ _ V ,  and  b o , . . . ,  b m  be assoc ia ted  to e(:~) as in 

Def in i t ion  3.2(ii).  To  eve ry  w e W we  associate  a var iab le  q~ in the  l anguage  of  

C A  3. Define  

x ( W )  ~- 1-I { - c o ) ( C a c E q w  - qw) - co)(qw • s°qw - din) . c o q w ' w  e W } .  

For each l ~< m define the cylindric term ~l as follows: ~l is defined to be 

-c(2)(q, ,  " s°q,, - x ) ,  

- c ( ~ ) ( c a [ p o  " S°qul  • c ~ [ p ,  . s ° q o ]  • s ° q ~  - y ) ,  

- c ( 2 ) ( c ~ [ p o  " s ° q , l  • c l [ p ~  " s ° q , l  • S°qw - z ) ,  o r  

- c ( 2 ) ( q u - n ( x ) )  

accord ing  to w h e t h e r  bl is u + 1 = v,  u + v = w, u • v = w or  u = 0. 

N o w  we  define r / (e ($) )  to be  

~p(x, y ,  z ,  Po,  P l )  " x ( W )  . I-[ {~t:  l <- m }  = O. [] 

L e m m a  3.9.  Let a~ >I 3, 2l e Mg,~ f"l G s ~  g, k E 19a and X, Y, Z, Po, P1 e A. Set 
s ~= X [ k ,  2], a ~ Y[[k, 2]]," m ~ Z [ k ,  2], po & Po~k, 2]], p l  ~ Pl[k ,  2]], D ~ D o s  a n d  
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P ~ {u e Dop0 fq DOpl:p0u e D A p lu  e D}.  Assume k ~ E {C(3)(c2q -- q) : q e 
{X, Y, Z, Po, P1} }. 

(i) Then (a) and (b) below are equivalent. 
(a) k e ap(X, Y, Z, Po, P,)~. 
(b) Po, Px are unary functions, (Vu, v e D ) ( 3 w  e P ) ( p o w = u  A p l w = v ) ,  

a : S1-->D, m : SE-->D for some $1, S2~_P, and there are N e to and n : N + l  >--> 
base(gA) such that s = { (ni, n(i + 1)> :i < N} and for every q e P and u e D we 
have 

( q , u ) e a  iff (3i, j e N ) [ i + j e N  An i=poq  A n j = p l q  A n ( i + j ) = u ] ,  

( q , u ) e m  iff (3i, j e N ) [ i . j e N A n i = p o q  A n j = p l q  A n ( i . j ) = u ] .  

(ii) Let g: {qw:w ~ W}--->A. Assume k ~ E {c(3)(clc2g(qw)-g(qw)):w e W}.  
Then (a) and (b) below hold. 

(a) k c r (W)~[g]  iff [g(q~)~k, 111 = 1 for every w e W. 
(b) Assume k • ~p(X, Y, Z, Po, P1) *a. Let N, n, be as in (i)(b). Assume 

k e r(W)~[g]. For every w e W let {c.,} = g(qw)~k, 1]l. Let h : W--> N be defined by 
h~ = n-l(Cw) if Cw e Rgn, hw = 0 otherwise. Then 

k ~ [ ~  {~l:l<~m}[X, Y , Z ,  Po, PI, g] iff (to~AB[hl^(VweW)cweRgn). 

The proof of Lemma 3.9 is similar to that of Lemma 3.4. The proof of the last 
two statements of (i)(b) goes as follows: Let i, j e N be such that Poq = ni, 
Plq = nj. Then both directions are proved by induction on i. We omit the rest of 
the proof. 

Let e(5) be a number-theoretic equation. Let 3 )TAB where B =  
{b0, • • •,  bm}, W = {x0, . . .  , Xn, Yo,. • •,  Yk} ~-- Vand {~l:I<~m} be associated to 
e(5) as in Definitions 3.2, 3.8. 

Lemma 3.10. Let 3 <~ re. Then to~ 35 e(5) iff Mg~ ~ r/(e(5)). 

Proof. The proof of Lemma 3.10 is very similar to the proofs of Lemma 3.5, 3.6, 
using Lemma 3.9 instead of Lemma 3.4. Because of this, we will be more sketchy 
here, in proving Lemma 3.10. Assume to ~ 3£ e(£). Then to ~ 35 3)7/~ B. Let 
h eWto be such that to g / \B[h] .  Let N eto be such that h*W~_N. Let 
U ~  (N + 1) U ZN. Then U is finite. For every u e U let Q(u) ~ {s e °~U'so = u}. 
Let TR ~- ~g(~b'U){Q(u): u ~ U}. Then ~ e C s ~  g ['7 Mgo,. Let 

Pi ~ {s E ~ U : s  0 E 2N and S 1 =p]i($O)) for i e 2, 

X ~- {s e °~U:so~N and sl = S o +  1}, 

Y & {s e '~U :So ~ 2N and sa = pjo(so) + pjl(so) < N},  

Z & {s ~ ~U :So ~ 2N and sl = pjo(so)" pjl(so) < N}. 
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T h e n  

{ Q ( ( m , n ) ) ' s ° Q ( m ) : m ,  n e N } . )  Let g(qw)~=Q(hw) for every 
k • l  ~. Let g ' : { x , y , z ,  po, P l } U { q w : w e W } - - - > M  be defined by 
g'(x)  = X,  g ' ( y )  = Y, g ' ( z )  = Z, g'(Pi) = P~ for i • 2. 
(~/(x, y, z, po, pa)" r ( W ) ) ~ [ g  '] by Lemma 3.9 and by inspecting 

X,  Y, Z,  Po, P1 • M since U is finite. (E.g., P0 = 
w e W .  Let 
g ~_ g '  and 

Now k • 
the above 

definitions. Also, k •I-[ {~l:l<~m}[g '] by Lemma 3.9(ii) and since [o~ A B[h] 
and (Vw • W)hw • N]. These statements show ~ ~ rl(e(i)). 

Conversely, assume Mg~ ~r/(e(;)) .  Then ~IR~ r/(e($)) for some ~0~eGs~gN 
Mg,~, since Mg~ ~_IGs~ g by [22, 11]. Let g: {x, y, . . .}-.-> M be such that 

Let k • l  ~ be such that k e ( ~ p . x ( W ) . I - I  {~t:l<-m})[g].  Then 
to ~ A B[h] for some h : W---> to by Lemma 3.9(ii)(b). Thus to ~ 3~ e ( ; )  and we are 
done. [] 

By the above we have seen that EqMg~ is not r.e. for a~ I> 3. 

(B2) The idea of the modification of the proof in (B1): The problem is that if 
K ~_ Mg~ is unbounded, then we do not necessarily have 'constants' in some 
element of K - t h o u g h  these constants are needed for satisfying x(W):/:O.  
Indeed, let K ~  {92 • Cs~: (3 partition P of base(92)) [(Vp • P) hol I>2 ^ 92 = 
~ g ~  :p • P}]}, where t3 ~ {s • 19a :So • p } .  Then K is unbounded but K 
r ( W )  = 0 for any W, hence K ~ r/(e($)) for any number-theoretic equation e($). 
But, as we shall see below, this is the only shortcoming and it can be overcome by 
changing the formulation of r/(e($)) as follows. 

e is an equivalence relation: 

e(VoVo), e(vovl)---> e(vlvo),  e(vovl)  ^ e(/JlV2)----> e(voV2). 

x, y, z, Po, Pl  do not 'separate' e: Let ~ • {x, y, z, P0, PI} and let w • W. 

~(V0Vl) A e(VoV2)---> ~(v201), 

~(VoVl) ^ e(vlo2) --'> ~(VoV2), 

qw(Vo) ^ e(voVa) ---) qw(Vl). 

The rest of the formulas are the same, except that we replace vi = v j  
everywhere with e(vivj). Below we formalize the above in the language of CA3. 

Definition 3.11. (i) fl is defined to be the CA3-term 

- c (2 ) (d01  - e) - c<2)(e - s~s°s~e) - c¢3)(e " sOils 2e - s~e) - co)(c2e - e). 

For every ~ e {x, y, z, Po, Pl}, cr~ is the term 

- c~3)(~ "s~e - s°~) - c<3)(~ • s°s~e - s ~ ) .  

Let ~, be the following term 

fl" I-[ {ae : ~ e {x, y, z, Po, Pl}}" l--[ {-c<2)(qw" e - s°qw): w • W}.  
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(ii) Let ~p'(e, x, y, z, Po, P~) and x'(e, W) be the terms we obtain by replacing 
d01, doE, d12 respectively with fl, s~fl, 0 1 s~s2fl everywhere in the terms 
~p(x, y, z, Po, Pl) and r ( W )  defined in Definition 3.8. We define 6(e(,f)) to be 

7" ~ ' ( e , x ,  y , z ,  po, Pl)" x(e, W)" I-I {~t: l<~m}=O 

where the terms ~ (l ~< m) are as defined in Definition 3.8(ii). [] 

Now we state (without proof) the lemma analogous to Lemma 3.9. 

Lemma 3.12. Let ol >- 3, 92 ~ Mg~ D Gs~ g, k e 1 ~ and E, X, Y, Z, Po, t'1 e A. Set 
e ~= Eik, 2], s ~= Al[k, 2 ] , . . . ,  P l ~ Pl[k, 2]. Let Qw e A for every w e W. Set 
qw~Q~[k , l ] .  Assume that k ~ E { c ( 3 ) ( c 2 q - q ) : q e { E , X , Y , Z ,  Po, P~}}+ 
E {c(3)(clc2Qw - Qw):W E w } .  Then (i)-(iii) below hold. 

(i) (a) and (b) below are equivalent. 
(a) k e 7(E, X, Y, Z, Po, P1, (Q~:w e W))  ~. 
(b) e is an equivalence relation on base(92) and s, a, m, Po, Pl, q~ do not 

separate e. 
(ii) Assume that k e y(E, X, Y, Z, Po, P1, (Q~:w  E W) )  ~. Then (a) and (b) 

below are equivalent. Let D and P be as in Lemma 3.9. 
(a) k e ~p'(E, X, Y, Z, Po, PO ~ " x ' (E,  (Qw:w e W ) )  ~. 
(b) po~-po/e and p l A p l / e  are unary functions, (Vu, v e D ) ( : l w e  

P)(wpou ^ wplv) ,  a/e, m/e  are partial functions from P/e to D/e; there are N e to 
and n : N  + 1 >---> base(92)/e such that s / e=  {(ni, n(i + 1)):i <N}  and for every 
q e P a n d u e D  

(q, u) e a 

( q , u ) e m  

iff (=li, j e N)[i + j e N ^ ni = Po(q/e) 

^ nj ^ n(i + j) = u/e],  

iff (3i, j eN)[ i  . j  e N  ^ n i=po(q /e )  

^ n j = p l ( u / e )  ^ n ( i  . ] )=u /e ] ,  

and further Iqw/el = I for every w e W. 
(iii) Assume that k e ( y .  1/)'. r ' (W)) (E ,  X , . . . ,  (Qw:w ~ W))  ~. Let n, N b, 

as in (ii)(b). Let h: W--> N be defined as h(w) ~ n-X(c~) if q~/e = {cw} ant 
cw eRgn,  h(w) ~O otherwise. Then k e lI {~l:l <~m}[X, Y, Z, Po, P1, ( Q ~ : w e  
W)] iff (o~  A B[h] & (Vw ~ W)cw ~ Rgn). 

Now one can prove a lemma analogous to Lemma 3.10, but using Lemma 3.1," 
instead of Lemma 3.9. We sketch the proof of one direction of the modifier 
Lemma 3.10. 

Lemma 3.13. Let 3 <~ te and K ~ Mg~ be unboundedly generated. Let e($) be an 
number-theoretic equation. Then o~ ~ :I~ e($) implies K ~ tS(e(:~)). 



Varieties of cylindric algebras 265 

Proof. Assume to ~ :!~ e($). Let h, N, and U be as in the beginning of the proof 
of Lemma 3.10. Let n ~ 2 Ivl. Then K ~ S P M ~ ,  hence there is ~ e K ~ SPMg~. 
We may assume ~R e Cs~ g --~ Mg'~. Then there is Q:U--> (Nrl~02 ~ {0}) such that 
Q~ fq Q~ = 0 whenever u #: v. Let V ~ base(~l~). Let e be an equivalence relation 
on V such that {Q~ :u e U) ~_ V/e. Define 

E ~ {s e °"V : (So, sO e e}, 

Po a= {s e ~V: (:In, m ~ N)(so e Q( (n, m )) ^ sl e a(n) )} ,  

P1 ~= {s e ~g: (3n, m e N)(so e a (  (n, m ) ) A sl e Q(m))) ,  

X ~ {s e off,: (3n e N)(soe a ( n )  ^ sl e Q(n + 1))}, 

Y ~ {se ~V: (qn, m e N ) ( s o e a ( ( n ,  m ) )  ^ sl e Q ( n + m )  ^ n + m  e N)}, 

Z ~= {s e %1: (:in, m eN) ( so e  a ( ( n ,  m ) )  AS1 e Q(n .  m) ^ n .  m e N ) } .  

From now on the proof goes almost exactly as the proof of Lemma 3.10. [] 

By the above, Theorem 3.7 has been proved. Hence EqK is not r.e. if 
3 ~< tr < to and K ~ Mg~ is unboundedly generated. 

(C) Now we start proving the cases when EqK is decidable. 
(C1) Let te~> to. We shall prove more, namely we shall consider classes 

K ~_ CA~, too, and not only classes K ~_ Mg~. We will show that if K ~ CA~ is 
bounded, then EqK is decidable. We note that the converse of this statement is 
also true: If EqK for K ~ CA~, tr I> to, is decidable, then K is bounded. This is 
proved in [29]. We shall use the following lemmas, which also give information on 
the lattice of varieties of CA~'s. Recall the notation ~Gs~, ,Mn~, (L)Mn~ and 
<,CA~ from the end of Section 1. Let 92 e CA a, /3 t> re. Then ~Rb~92 denotes the 
a~-dimensional reduct of 92, i.e., ~Rb~92 = (A, + , . ,  - ,  O, 1, cai , d u ~)~,j~. 

Lemma 3.14. Let l < o: < to > n 
HSP{~b~92} = l ,Gs~.  

and /3 >1o~ + n. Let 92enGs a. Then 

Proof. Assume 92 e ,Gst3. We may assume 1 ~ = an (since HRd92 _~ RdI-I92). Let 
H A  (/3 - or) and t e/-/n be such that (Vi < n )  t(a~ + i) = i. To every s e ~n there is 

(+) x s e A  such that ( V q e a n ) [ t ~ _ q ~ ( q e x s c ~ s ~ _ q ) ] .  

To define this xs we need only the du's with i < tr and cr<~j < a~ + n, namely 
xs=II{di.=+s(i):i<te}.  Let h =  ({c~1 q : t ~ _ q e Y } : Y ~ A > .  Now h e  
Hom(ff~b~92, ~b~'n) is easy to verify, see [12, 4.7.1.2(ii)]. Let ~3 = h*~Rb~92. By 
(+) above and since h(xs) = {s} for all s e ~n, we have {{s} :s e 1 ~} ~ B which by 
n, c~<to implies that ~3 is full. Then clearly S P ~ 3 = S P , C s ~ , , G s ~ .  Thus 
SPH{fftb~92} ~ nGs~. It was proved in [12, 7.180)] that I,,Gs~ is a variety (and 
this is easy to prove based on results in [11]), and Rdo~,,Gst3 _ l ,Gs~ by pp. 53-54 
of [11]. [] 
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Corollary 3.15. Let  n < to <~ o:. Then l~Gs~ has no nontrivial subvariety. 

Proof. Let 92 • nGs, be arbitrary. We will show HSP{92} = l~Gs~. Let e be any 
equation in the language of CAo~ and assume that ~Gs~ ~ e. Then there is/~ ~_ o,o~ 
and ~ • , ,Gs ,  such that ~ b r ~  ~e. By Lemma 3.14 we have HSP{fftbr~} = 
lnGsr=HSP{fftbr92}, hence ~br92~e ,  i.e., 92~e. [] 

Remark 3.16. Corollary 3.15 is not true for a~< to, and n > 1, because 
~Mn~ ~c(~_l)x = c(~)x ~ ,,Cs~ for n > 1, hence Eq(nMn~) is a proper nontrivial 
subvariety of l~Gs~, which is a variety for 0 <  o:, n < to by [12, 11.7.18]. 

Lemma 3.17. (i) Let K ~_ FbGs~. Then EqK = Eq((L)Mn~) for  some L c_ to. 

(ii) Let  K ~_ <~CA~. Then EqK = Eq((L)Mn~) for  some L ~_ n. 

Proof. Let 92 • K, n & Ibase(92)l and let ~ be the minimal subalgebra of 92. Let 
L ~ {n • to" K n ~Gs~ :/: 0}. Then n • L and ~ • (L)Mn~ n EqK. Also, 92 • 
I,Gs~=Eq{~l~} by Corollary 3.15. This shows EqK=Eq((L)Mno,) .  If K_~ 
<,CAr, then K ~_ FbGs~ by [11, 4.2.53] and L ~_ n. [] 

Lemma 3.18. Let  L ~_ to be finite and o: >t to. Then Eq((L)Mn~)/s decidable. 

Proof. Let 92 • ,Cs~ n Mn~ and 92 ~ e. Then ~br92 ~ e for some finite F ~_ to. (*) 
Actually, F is the set of all indices occurring in e. Since ffibr92 • InGsr by [12, 
4.7.1.2] (or equivalently by the proof of [11, 3.1.118]) we have SPnCsr = 
InGsr ~e. We have proved (**) ~Mn~ ~ e ~ C s r  ~ e. In the other direction, 
assume ~Csr ~ e. Then ~Cs~ ~ e by the proof of [11, 3.1.121], so by Corollary 
3.15, HSPnMn~ = I~Gs~ ~ e, hence ~Mn~ ~ e. Together with (**) this proves 
(***) ~Mn~ ~ e ¢=>~Csr ~e. Clearly, nCsr has only finitely many finite elements 
(note that [rn I <to),  hence given e and F we can effectively decide whether 
~Csr ~e holds. By (*), F is effectively computable from e. (.4) This provides us 
with a decision procedure for ~Mn~. Let L _  o9 be finite. Then Eq((~)Mn~)= 
Eq O {kMn~" k • L} = n {EqkMn~ • k • L} provides us with a decision procedure 
using (,4) and finiteness of L. [] 

(C2) Assume 2 <  t~ < to and K _  Mg~ is boundedly generated. Then K _  
SPMgn~ for some n • to. We have Mgn~ ~_ SP(Mg n n Cs~) since Mg~ ~ IGs~. Then 
K ~_ SP(M~'~ O Cs~)~_ PsS(M~O Cs~), where PsL denotes the class of all sub- 
direct products of members of L. Thus there is L ~_ S ( M ~  n Cs~) with EqK = 
EqL. By [11, 2.2.26] we have S ( M ~  O Cs~) is a finite set of finite algebras, hence 
so is L and we can decide EqL. [] (Theorem 2) 

Proof of Theorem 4. Let fit be a monadic-generated RA. Then fit = ffta92 for 
some 92 • SNr3CA4 by [11, 5.3.17]. Let R = SgG where (Vx • G) x ; 1 = x. Then 
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(Vx • G )  A a x  =_ 1 can easily be seen. We may assume that A - Sg~tG by [11, 
5.3.12]. Hence 92 • Mg3, therefore 92 is representable by Monk [22, Theorem 21] 
(or by [11, 3.2.12]). Then [R is representable, too. The second statement of 
Theorem 4 has been proved. By the above we also see that an analog of Lemma 
3.3 holds for the class MRA of monadic-generated RA's. 

Let M R A  denote the class of all monadic-generated RA's. The proof of 
"EqMRA is not r .e ."  is practically the same as that of "EqMg3 is not r.e." The 
only difference is that instead of r/(e(2)) we will now use a relation algebraic 
correspondent p ( e ( 2 ) )  of the number-theoretic equation e(2). We give here the 
translation. Let e(2) be a number-theoretic equation with free variables 
Xo,  • • • , Xn • V = ( y i ' i  • t o ,  i > 6}. Let e(2) be equivalent in to to 3yo- • • y k ( b o  A 

• • • ^ bm) such that Yo, • • • ,  Yk • V and each b i has the form u + 1 = v, u + v = w, 
u - v = w  or u = 0  for some u , v , w • W & ( x o , . . . , x , , y 0 , . . . , y k } .  First we 
translate the 
R A - t h e o r e t i c  

(1) x u ; x < l '  

(2) x ; x u < 1' 

(3) 

formulas "x is a one-one function 
inequalities and non-equalities: 

(x is a function) 

(x is one-one) .  

(4) 

(5) (x ; 1 ) -  (1 ;x)U¢O.  

(6) p ~  ; pi  <~ l ' f o r i • 2  

(7) ( x ; 1 ) . ( x ; 1 ) U < ~ p t d ; p l  

(8) yU ;y<~l '  

(9) y ; l ~ p i ; x ; 1  f o r i e 2  

(10) (1 ;y)U 

(11) [Po ;(x 

with no f ix-point . . . "  to 

x ~< - 1 '  (x has no fix-point). 

[(x ; 1) - (1 ;x)U] • [(x ; 1) u - (1 ;x)] ~< 1' 

(12) [(P0 

(12)' (Po 

(13) z ° ; z ~< 1'. 

(14) z ; l ~ p i ; x ; 1  

(15) (1 ; z )  u 

(16) [x ; 1 -  

(17) [(Po 

(IDox - Rgxl ~< 1). 

(IDox - Rgx ~ 0). 

(VVo, vl • Dox) 3v2(pov2  = Vo A p lY2  = V l ) .  

(Vo e Doy- -*  pivo • Dox). 

~< x ; 1 (Rgy _= Dox). 

; 1 - ( 1 ; x ) U ) ] . p ~ . ( x ; 1 ) U < ~ y  (0 + u = u, see the formula 
preceding Definition 3.8). 

; x ; p ~ ) . ( p l ; p ~ ) l ; y = y ; x  ( ( v + l ) + u = w * - ~ w = ( v + u ) + l ) .  

; P~)" (Pl ; P~) ~< 1' ('pairs' are unique). 

for i e 2 .  

~<x;1. 

( 1 ; x ) U ] O . p o . [ p l ; x ; 1 ] ~ z  ( 0 - u  =0) .  

; ; • ;P o ) ]  ,Y x p~) ( P l ; P ~ ) ] ; z = [ ( P l ; P ~ ) ' ( z  u . 

((v +1)"  u = w *-> w = (v  " u)  + u). 
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(18) qw=qw;ll}u< , 
(19) qw" q w --~ for every w e W (qw is a constant). 

(20) qw 4=0 

Let u, v, w e W. Then 

~(u + 1 = v) ~ (qu" q~ ~<x), 

~(u + v  = w) ~ [(Po ;qu)" (Pl ;qo)" q~ <~y], 

~(u-  v = w) ~ [(Po ;qu)" (Pl ;qv)" q~ ~<z], 

~(u = O) ~ [qu ~< (x  ; 1 - (1 ; x )U) ] .  

Now to each statement (i) (1 ~< i ~< 20) we associate an RA-term zi such that for 
every simple fit e RA and evaluation k of the variables we have 

(.)  ~R ~ (i)[k] aft ~R ~ "1~ i :~= 0[k] iff ~ ~ l~ i - -  l[k]. 

E.g., for ~ we can take zx & - ( 1  ; (x u ;x - 1') ; 1). Indeed, in a simple RA we 
have z ~ g : 0 i f f l h = l i f f l ; ( x  u ; x - l ' ) ; l = 0 i f f ( x  u ; x - l ' ) = 0 i f f x  u ; x ~ < l ' .  
We can also associate such terms ~(u + 1 = v), etc. to ~(u + 1 = v), etc. 

Now we define p(e(~)) to be I-[ {zi ' l~<i~<20}-l-I  {~(bi):O<~i<-m}=O. We 
will show 

to~ 3~ e(~) iff M R A  ~ p(e(~)). 

Assume to ~ :l~ e(~). Let to ~/~ B[h] and let h*W ~_ N for N e to as in the proof of 
Lemma 3.10. Let U ~  (N + 1)U 2N. Let ~R denote the full relation set algebra 
with base U (i.e., R = Sb(U x U)). Then fit e M R A  and there are X, Y, Z, P0, /1,  
Q~" w e W in R for which (1)-(20) together with /~ (~(bi)" 0 <~ i <~ m} hold. 
Therefore ~R~p(e(~)) by (*). Assume ~R~p(e(~)) for some ~R e MRA.  We 
may assume that ~g is simple and representable. Then by (*) there are 
X, Y, Z, Po, t'1, Qw:w e W in ~t for which (1)-(20) together w i t h / ~  {~(b~):0~ < 
i <~ m} hold. Now Lemma 3.3 and [11, 5.3.17] imply that X is finite. Therefore 
X, Y, Z, Qw :w e W provide a solution for e(:~) in to. [] (Theorem 4). 

Remark 3.19. We note that there are deeper reasons why we could translate 
these sentences to RA-terms: (1) If projection functions are available, then every 
first-order formula with free variables v0, vl can be translated to a formula with 
free variables Vo, Vl but using only the (bound or free) variables Vo, Vl, v2; and 
(2) every formula of the latter shape can be translated to an RA-term (with the 
same meaning of course). See Tarski-Givant  [35, Theorem (ix) in Chapter 6], or 
stated and proved precisely in the above form in [27, Lemmas 1, 2]. 

Proof of Theorem 6. First we prove Theorem 6(iv). Proof of BbLf~ _ SMg~: Let 
e BbLf~. This means ~ -  ~ e Bb'Gs~ n Lf~ for some ~ .  If a~ < to, then ~ is 

regular. If cr >t to, then (Ss~ ~_ IG-s~ g and by ~ e BbGs~ we have c(,,)d(n x n) = 0 
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in ~3, hence c(,)d(n x n) = 0 in every ~3' isomorphic to ~3 (for some n). Thus we 
may assume ~3 • Gs~ g N Lf~. We will show ~3 • SMg~. Let V be the unit of ~ and 
U a-- base(~3). For every S c U define S =~ {s • V :So • S}. Let 93 ~ ~g(~bv){s :S ~_ 
U}. Then 93 • Mg~. Let b • B be arbitrary. Let A =~ Ab and bzx ~ {A 1 s "s • b}. 
Then I zal < to and b = {s • V" A 1 s • ba} by ~3 • Gs~, eg A Lf,~. Let N • to be an 
upper bound of the sizes of ~3's subbases. (Exists by ~3 • Bb'Gs~.) Let n = I~NI. 
Then (VW • Subb(~3)) Ib~ f7 AW I ~< n, hence there are e0, • • •,  en such that 
ba = eo U • • • U en and 

(*) (Vi<~n)(VW • S u b b ( ~ ) ) l e i O  zXWl<l. 

For every i~<n let bi & ( s • V ' A ] s • e i } .  Then b = b o U - - . U b n .  Let i<~n be 
fixed. We will show that bi • A .  For every j • A define Sj ~= {sj:s • bi}. Then 
bi = l-I {s°Sj:j • za} holds by (*), showing b~ • A .  Hence b • A, too, by b = bo U 
• • • U b,,. Therefore B ___ A, hence ~ ~_ 93. [] (Theorem 6(iv)) 

For proving the rest of Theorem 6, we formulate some lemmas. Lemma 3.20 
below is taken, with some reformulation, from Monk [22]. 

Lemma 3.20. Let  tr < to. Then (i)-(ii) below hold. 

(i) Every finite Mg~ can be represented as a Gs~ with a finite base• 
(ii) Every finitely generated subalgebra of  a Mg~/s finite• 

Proof. (ii) is stated as Theorem 13 in [22] and it can easily be derived from [11, 
2.2.24]. (i) is an easy consequence of Theorems 17, 20 of [22], but can also be 
proved by using [11] as follows. The proof of [11, 2.5.61] shows that a finitely 
generated free monadic-generated CA~ (i.e., ~r(~)CA~ with IS l<to  and 
RgA = {1}) with a: finite is a subdirect product of finitely many Cs~'s with finite 
bases, hence is in FbGs~. It is easy to see that I-IFbGs~ ~ FbGs~ if a: < to (since if 
93 e Gs~ and tr < to, [base(93)[ < to, then every ideal of 93 is generated by a single 
zero-dimensional element z in 93, and this z is a union of some subunits of 93). 
Hence every finite Mg,~ is in FbGs~, if a~ < to. [] 

Remark 3.21. (i) Lemma 3.20(i) is not true for Cs~ N Lf~ for a~/> 3 in general, 
not even for a Cs~ generated by a single 2-dimensional element• For coun- 
terexample see [11, 3•1.38]. But one can show that every finite Mg~ 17 Gs,, 
(tr < to) is actually ext-isomorphic to one with finite base. 

(ii) As a corollary of Lemmas 3.20 and Theorem 6(iv) we get that every finitely 
generated subalgebra of a BbLf,~ is finite. 

The next lemma is a corollary of results in [12]. If a~ is not an ordinal, but an 
arbitrary set, then by a CA,,, Mg~ etc. we understand the natural thing. 
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Lemma 3.22. Let 0 e A ~_ o~. Then (i)-(ii) below hold. 
(i) FbMga ~_ SIRdaFbMg~. 

(ii) RdaBbGso~ ~ BbGsa. 

Proof. (i) Let ~ E FbMga. Then ~ is isomorphic to a ~ ¢ Gsa fq Mga with a 
finite base U. Let {Uj:] C J} be the set of subbases of ~.  Define V& [,_3 {~U~:j 
J}. Then V is a Gs~-unit. For every b ~ B define f (b)  ~- {s e V ' A  1 s ~ b}. Let 
~-~g<~ 'e ) f*B .  Then it is not difficult to check that f:~>--->~Rba~. Clearly, 

~ FbGs~, since base(~) - base(?3) is finite. It remains to show that ~ ¢ Mg~. Let 
G ~_ B be a set of monadic generators for ~.  Then f*G generates f*B in ~ by 
f" ~ ) > ~ b a ~ ,  hence f*G generates ~ by C = Sgf*B. Clearly, A~(fg) = 1 for 
every g e G. (i) has been proved. (ii) follows from the proof of [11, 3.1.125] 
namely, the function rd p defined in [11, 3.1.124] does not change the sizes of the 
subbases by [11, 3.1.125(iii)]. [] 

We are ready to prove the rest of Theorem 6. First we prove (iii). Proof of 
Mg~ ~_ SUpFbMg~: Let ~IR ~ Mg~. Let G ~_ M be a set of monadic generators for 
~R. For every 0 e A ~ _ t r ,  A finite and Go~_G, Go finite define 
fit & ~(A,  Go) & ~g(~b~an)Go. Then 9~ ~ FbMga by Lemma 3.20. Let ~ ( A ,  Go) 
FbMgo~ be such that ffl ~ 3tba@(A, Go). Such an FbMg~ exists by Lemma 3.22(i). 
Since for every finite X ~ M  there are finite A ~_ tr and Go ~_ G such that 
X~_R(A,  Go), we have that ~3~ESUp{(~(A, Go):OE A~o,  tr, Go~o~G}~_ 
SUpFbMg,,,. 

Proof of BbGs,, ~ SUpMg~ • BbGs~ _ SUpBbLf~, because if tr < to then Gs~ 
Lf~ and if a~t>to then Gs,~_SUpLfo~ by [11, 2.6.52, 3.2.10]; and by using 
Gs~, ~SUpLf~  it is easy to prove that if ~ e Gs~,, ?3~c(n)cl(n x n ) = 0  then 

~ SUp{92 e Lfo~" 92 ~ C<n)d(n x n) = 0} ~_ SUpBbLf,~. By Theorem 6(iv) BbLf,, _ 
SMg,~, hence BbGs~ = SUpBbLf~ ~_ SUpMg~. Clearly, FbMg~ ~ BbGs~, hence 
(iii) of Theorem 6 has been proved. 

Proof of Theorem 6(i): Let tr I> to. We want to prove Mg~ ~_ EqMn~,. Let e be 
an equation and assume Mg~ ~ e. Then BbGs~ ¢ e by Theorem 6(iii). Then there 
is a finite A ~ o~ such that BbGsa ~ e, by Lemma 3.22(ii). Then FbCs,, ~ e. Let 

E Csa with a finite base U such that ~ ~ e. Let ~IR be the minimal Cso~ with base 
U. Let w" U >---> tr - A. For every s e AU define 

m(s) & 1--[ (di, w<si):i ~ A}. 

For every a e C define f (a)  ~= ~ {m(s):s ca}. Then f 'C--> M since aU is finite. 
The next argument is extracted from [12, II.4.7.1.2] or [11, 3.1.124, 3.1.125]. Let 
k e t ~ a ) U  be such that (Vu e U) k(wu) = u. For any X e M let gX = {t ~ aU" tU 
k e X}. Then it is easily verified that g : fftba~JJ~---> ~b(aU) .  Moreover, gfa = a for 
all a ~ C, so ~ ~_ g*~gba~El~. Since ~ ~ e, it follows that ~Rba~ ~e, hence ~ ~ e. We 
have seen Mno, ~ e. We have seen Mn,, ~ e f f  Mg ,  ~ e. By Mn~ _ Mg~ this implies 
EqMn~ = EqMg~. EqMg = EqFbCs~ follows from Theorem 6(iii). Theorem 6(i) 
has been proved. 
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Proof of Theorem 6(ii): Let 6 denote the formula Vx (x .  c~dol = 0 V x >I 
coSdol). Then clearly Mn,  ~6 (of. [11, 2.1.20(ii)]), but Mg~ ~ 3 for ~ > 2 .  This 
proves Theorem 6(ii). 

Proof of Theorem 6(v): Let q0 denote the following H2-formula 

Vx 3y ( l i t ( y ) -  Co(cly (~ clx)] + ( o ( y ) -  Co(cly (~ -ClX)] 

+ fl(c x) + fl(-c x) . o ) ,  

where 

a (y)  & -c(3)(y • s l y  - a12) - co ) (y ,  sOy - do2) - c(2)(y • do1)- - - C ( 7 ) ( C ( 7 - - 2 ) Y  - -  Y), 

and f l (z)&-c(2)(z  " s ° z - d o O .  Roughly speaking, q9 expresses that either 
Do(c~x) or the complement of Do(clx) is finite. We will show that Mn~ ~ q) 
while ~3~ q9 for some hereditarily nondiscrete Mg~ ~ .  Let ~ e  Mno~ (q Gs~ 
and X e M ,  s e 1 an be arbitrary. Let x & c l X .  Define Do ~ {u:s(O/u) e x }  and 
D1 & {u :s(O/u) e - x } .  We will show that 

( .)  either IDol < o) o r  IDd < ¢0. 

Assume both Do and D1 are infinite. Let A & Ax and S& {s~:i e A}. Then 
IS] < w. Let u e Do ~ S, v e D~ ~ S and let f :  base(93~)>->> base(~ff~) be the function 
interchanging u and v and leaving all the other elements fixed. Then f x  = x for 
the induced base-isomorphism f since ~ e Mn,~. Let s '  & f o s. Then A 1 s'  = A 1 s 
since f is identity on S, hence s ( O / w ) e x  iff s ' (O /w)ex  for every w by the 
regularity of x (every Mn~ N Gso~ is regular (see [11, 3.1.63]). Now s (O/u)ex ,  
hence s ' (O/u )ex ,  therefore f o ( s ' ( O / u ) ) e f ( x ) = x ,  but fo (s ' (O/u) )=s(O/v) ,  
contradicting s(O/v) e - x .  (*) has been proved. 

Assume IDol ~< 1. Then s e fl(x) and we are done. Assume now 1 < IDol < o9. 
Let w "Do >---> a~ ~ A. Let k e 1 ~ be such that A 1 s ~ k and (Vu e Do) k(wu)  = u. 
Let g be any one-one  function without fixpoints and with domain and range Do. 
Define y & E {do.w,," dLw(~,,)" u e Do}. Then y~k, 2~ = g, hence k e a (y)  by 
Lemma 3.4. By A 1 s ~_k we have Do = { u ' s ( O / u ) e x }  = { u : k ( O / u ) e x } ,  hence 
k ~ Co(c~y- ClX). The other case, IDol < w, is completely analogous. We have 
seen Mn~ ~ qg. Let V, W be disjoint infinite sets and U & V U W, X & {s e '~U: So e 
V}. Let ~ ~ ~ g(~b*U){x}. Then ~ e Mg~. Assume Y e M and k e *'U is such 
that 

k e [o(Y) - Co(C1Y (9 ClX)] + [o(Y) - Co(C1Y (D -c lX) ] ,  

say k e a (Y)  - co(cl Y ~ clX). (Note that fl(ClX) + f l ( -ClX)  =0 . )  Let 
R & Yl[k, 2~. Then R is finite by k e o(Y) ,  see Lemma 3.4. By k ~ Co(C~ Y - c lX)  
we have D o R -  V, hence R is infinite since V is infinite. Contradiction. [] 
(Theorem 6) 

Proof of Theorem 1. "Proof of Theorem l(iii): EqMno = EqMgo since Mno 
consists of the one- and two-element BA's and Mgo = BA. EqMnl ~ EqMgl since 
Mnl ~ CoX = x while Mgl ~ CoX = x. For 2 <~ tr < 09, EqMn~ :/: EqMg~ since EqMn~ 
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is r.e. while EqMg~ is not. A concrete equation distinguishing them is, e.g., 
c(~_~yr = c (~x .  For tr I> to, EqMn~ - EqMg,~ is proved in Theorem 6(i). 

and R p l = C A I  by  [11, Proof of Theorem 1(iv): Mgl = CA1 by definition 
3.2.551. 

Proof of Rp2 ~_ SUpMg2:Rp2 ~_ SUpFRp2 by s [11, 
Henkin's result [11, 3.2.66], and FbRpE~_SMg2 by 

4.2.8], FRp2 ~_ FbRp2 by 
Theorem 6(iv). Mg2 _ 

SUpRp2 by Monk [22, Theorem 21] or by [11, 3.2.12], and SUpRp2 = Rp2 by [11, 
3.1.97]. U n M g 2 -  Rp2 has been proved. To see EIMg2 c Rp2, let 

q9 ~- :Ix (CoX = 1~^ c~x = 1 ^ x < - d o l ) - ~  3y  (coy > y = c l y ) .  

Now Mg2~q0 but ,~CSE~q0 if r > l .  Let re>2.  Then EqMg~ is not r.e. by 
Theorem 2(ii) while EqRp~ is r.e. (by, e.g., [11, 4.1.15-16]), hence EqMg,~ ~e 
EqRp~ = Rp,~. A concrete equation showing EqMn~ c Rp,~ for a~ > 2 is given in 
[11, 4.1.32]; that equation works for showing EqMg~ c Rp~,, too. An alternative 
equation, using the techniques of the present paper (see the proof of Theorem 2), 
is the CA-equational formulation of "x is a one-one function without fix-points 
and Dox ~ R g x  =/=0 implies that Rgx ~ D o x  :/:0". Theorem 1(iv) has been 
proved. 

Proof of Theorem l(i)-(ii): For re>2,  Theorem l(i)-( i i)  follow from 
Theorem 2 since Mn~, Mg~ a~ 1> to are not bounded and for tr < to, Mn~ is 
boundedly generated while Mg~ is not. Let tr ~< 2. Then EqMn~ is decidable by 
[11, 4.2.1], EqMgE=EqRp2 is decidable by 9 [11, 4.2.9]. Let t e = l .  Then 
Mg~ = CA~. By Comer [6, p. 176], the elementary theory of FCA~ is decidable 
(see also [11, 4.2.24]). Since C A ~ -  EqFCA1 by [11, 2.5.6], the equational theory 
of C A 1 ,  hence EqMgl also, is decidable. The equational theory of Mgo = BA is 
obviously decidable. [] (Theorem 1) 

Proof of Theorem 3. Proof of Theorem 3(ii): Let a~ i> to. We want to show 
EqBg~ = Rp~. Now Bg~ c_ Bg,~ c Lf,~ ~_ Rp~ by [11, 3.2.8], thus EqBg 1 ~  
EqBg~ c_ Rp~. By [11, 3.1.123] we have Rp~ = Eq(Cs~ g n Lfo,). Thus it is enough 
to show Cs~ g N Lf~, ~_ HSPBg 1. Let 92 e Cs~ g n Lf~,. Let U A base(92). Let ~R 
denote the greatest regular Lf-subalgebra of ®b~U. Then 92 c_ 9t • Cs~gn Lf~. 
Assume I uI < to. We will show that ~R • Bg~. We may assume U • to. Define 
X A  {s • ~'U :sl = So + 1}. For i • U define Y~ A {s e ~U'so = i}. Now Yo = Cl(dol - 
coX)  and Y~+I = Cl(dol- co(Y-- X)) if i, i + 1 e U. Using the Y/s, it is not difficult 
to see that ~R = ~g{X},  hence ~R • Bg 1. Assume now IUI I> to. We will show that 
0t • EqBg~. To this end it is enough to show that ~ g X  • SBg~ for every finite 
X c_ R. Let X c_ oR. We may assume that the elements of X are disjoint. First we 
note that we may assume that IxI = 1. For we may assume that Ax n Ay = 0 for 

8 We note that  a simple short proof, analogous to [11, 2.5.4] and not using it, can be found in [1]. 

9 We note that the proof  of decidability of EqqGs2 in Scott [34] is based on a claim of G6del which 
has been disproved in the meantime (see [7]), hence the proof in [34] does not work. 
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distinct x, y e X (hint: use the substitution functions s~). Then if we set Z =~ U X 
and 0 & U {Ax "x e X}, we have x = c(o_a~)Z for all x e X, as desired. So, 
suppose that X = {Z}. We may assume without loss of generality that A Z  = 
m + 1 e to and m >1 2. Now we use the well-known method of interpreting an 
m-ary relation in a binary one, see, e.g. [26, proof of 16.51]. Let S = {a e 
" U : a c _ x e Z  for some x}. By [11, 3.1.112], ~R is subisomorphic to some 
E e Cs~ g f3 Lf~ with base W such that IWl = IUI ÷. Let E'  be the greatest regular 
locally finite subalgebra of ~b('q~¢). Note that the isomorphism f of ~R into 6 '  is 
given by ft = {a e ,qz¢: At 1 a ~ x e t for some x}. We now define a symmetric 
binary relation (graph) T on W. For each a e S, choose distinct elements 
eg, e ~ , . . ,  e a in W ~ U and put the following diagram in T: 

a a 

eg - -  el e m  

I 
ao a i " • " a m  

(Distinct a's get distinct ea's.) Then there is a formula qg (vo , . . . ,  vm) in the 
language of (W, T) which defines S, that is, such that S = {s e roW" (W, T ) k  
q~[a]}. E.g., 

(P(1)0'"""' l)m)~ 3LIm+I""" L12m+2( ~/~m TUiUi+m+IA A TUi+m+lUi+m+2) i i<m 

will do. We may assume that tp is restricted. With each formula ~p in the language 
of (W, T) we associate a cylindric term lp' as follows: 

(Rvovl) '  & Vo, (vi = vj)' ~ dij, 

(--,~)' & -'¢,', (~ v x)' & V" + x', (3v,~)' ~ c,~'. 

Let T'  & {a e ~W:21 a e T}. Then q0'[ZlT ' =fZ.  Thus f*~f i{Z}  c_ ~ g { T ' } ,  as 
desired. EqBg~ = Rp~ has been proved. 

Proof of Theorem 3(i): That EqBg~ is r.e. for tr i> to follows from Theorem 
3(ii). Next we prove that EqBg~ is not decidable for a~ > 3. Let tr > 3. Recall 
from [11, §5.3] that Ra*CA~ = Ra*Nr3CA~ _ RA. By Theorem 5.3.16 of [11, p. 
220], we have R R A  c RA*SNr3CA~ = SRa*CA~. Since Ra*CA~ = Ra*Bg~, we 
have R R A  ~ SRa*Bg~ c RA.  Theorem 1 of Chapter 12 of Maddux [16, p. 220] 
says VK (RRA c K ~ R A  ~ EqK is undecidable). Therefore EqSRa*Bg~ = 
EqRa*Bg~ is undecidable. Since ~Ra92 is a (generalized) reduct of 92, this means 
that EqBgo, is undecidable, too. [] (Theorem 3) 

Proof of Theorem 5. Let r(x) denote the following cylindric term 

- c ~ 3 ) ( x  . S i X  - d , 2 )  - c ( 3 ) ( x  . s ° x  - d o 2 )  - c ( ~ ) ( x  . ,:loO - c ( ~ ) ( c 2 x  - x )  . c ~ c l x .  

Let e be the equation c~do~ + r(x) = 0. Let tr >t to and 92 e Mg~. We may assume 
92 e Gs~ s. Assume 92 ¢ e. If 92 gc~dox = O, then clearly 92 q ooMg~. Assume 92 
c~do~ = 0. By 92 g e then there are X E A and k e 1 '~ such that k e z(X). Let 
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R ~ X[k, 2]]. Then by Lemma 3.4, R is a one -one  function with no fix-point, 
hence DoR is finite by Lemma 3.3. Let U be the subbase of 92 for which k e ~U. 
Assume u e U. Then k ° e c~X by k e C~ClX. Thus u e DoR, showing U = DoR. 
Since DoR is finite, this shows 92 ~ ~Mg~. Assume now 92 $ ~Mga. Then there is a 
homomorphic image ~ of 92 such that ~ e Cso, with a finite base U. It is enough 
to show ~ ~e, since then 92 ~e, too. We may assume U e  to. If U =  1, then 
9.1 ~ c~do~ = 0 and we are done. Assume U t> 2. Let X ~ E {d0,3+i  " d i ,3+( i~1)"  i e 
U} where ~ means addition modulo U, and let k e ~U be such that (Vie 
U) k ( 3 + i ) = i .  Let R&X[[k, 2]. Then R = { ( i , i ~ l ) : i e U } ,  hence R is a 
one -one  function with no fix-point and DoR = U, showing k e z(X). [] 
(Theorem 5) 

Proof of Theorem 7. Proof of Theorem 7(i): It is enough to show ~Mgo, t3 Cs~ ~ 
Eq~Mn,,. Let 92eooMg~MCs~ and let e be a CA~-equation such that 
92 ~ e ( a o , . . . ,  an) for some a 0 , . . . ,  a,  e A. We will show that ~Mn~ g e. Let 
F ~_ ,o tr and G ~_ o~Nr~92 be such that all the indices occurring in e are contained in 
F and {a0, • • •,  a,} _ R where 9~ ~ ®g¢~b~)G. Then ~R ~ e (ao , . . . ,  an) and 
9t e ~Mgr. If G = 0, then we are done. Assume G 4=0. For every g e G let 
g ~  {So:S eg} .  We may assume that {g:g e G} is a partition of base(~) .  Fix an 

element ), e G with I~1 i> to. For every g e G define g '  as ~ if Igl < IF[ or if g is 7, 
otherwise let g '~_~ be such that Ig l - IF I .  Let U & U { ~ ' : g e G } .  Define 
9t' =~ 9~(~U)9t. Exactly as in the proof of Lemma 3.20, one can show thai 
~1t---9~'. Let ( ~ , & { g ' : g e G }  and WA=U{g ' :geG,  g4=~,}. Then W~_o)U. Fol 
every z e r(~ define 2 & {s e ru:(vi  e F)si e z~}. Then it is not difficult to sho~ 
that (Va e R) ( 3 Z  _ r o )  a = I._J {2 "z e Z}. Let w- W ~ tr ~ F be arbitrary. Fol 
every z e r(~ define 

m(z)~H(2{di,  wu'UeZi}'iEF, zi~y)" 

11 (-di.wu:i e F, zi = 7, u e W}. 

For every a e R  define f(a)~=E { m ( z ) : z e Z } ,  where a = U { ~ . : z e Z } .  Fron 
now on the proof is basically the same as that of (FbCsA ~ e ::), Mn~ ~ e) in the 
proof of Theorem 6(i). Therefore we omit it. 

Proof of Theorem 7(ii): Let e be the equation we defined in the proof o 
Theorem 5. Then Eq(~Mn~)~e by Theorem 5. We will show that EqMn~ ff 
I ~Cs~ ~ e. Let I & to - 2 and let U be any non-principal ultrafilter on L For ever  
n e I  let ~ , & ~ b ~ n  and define ~ & P ( ~ n : n e I ) / U .  Then ~ e U p F b C s ~ c  
EqMn,, by Theorem 6(i). For every n e to, ~co , )a (n  x n ) =  1 since (Vm.~ 
n) ~,,, ~c(,,)d(n x n ) =  1. Thus ~ is of characteristic 0 by Theorem 2.4.63(i) o 
[11]. Hence ~ e I = C s ~  by [11, 3.1.108-109]. For every n e l  let f,,:n>-~n be 
permutat ion of n with no fix-point and define bn&{Se°'n:sl=fn(So)} 
b& (bn:n e l ) /U .  Then bn e Cn and r(bn) = 1 for every n e L  hence r ( b ) =  1 il 
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~, too, where ~ is the term in the definition of e. This shows q g e. 
7) 

[] (Theorem 

List of  notation 

FmV set of formulavariables 
SOpK set of formula-schemes valid in K 
Equmd class of models with equality only 
Monmd class of models with only unary relations 
1-Binmd class of models with one binary relation 
Mod class of all models 
FMod class of all finite models 
tr(a) translation of the formula-scheme tr to a CA-term 
eq(o) CA-equation corresponding to the scheme tr 
Mod 27 class of models of 27 
to = (to, +, -, 0, 1 } the standard model of arithmetic 
EqK, UnK, ElK least class containing K and axiomatizable by 

universal formulas, first-order formulas resp. 
EqK, OpK set of all equations, first-order formulas resp. valid in K 
IK, HK, SK, PK, UpK, UfK 

images, subalgebras, direct 
members of K 

to least infinite ordinal 
[XI cardinality of X 
X -  Y =  {a 6 X : a  ~ Y}  
X ~-,o Y X is a finite subset of Y 
SbU set of all subsets of U 
Dof, Rgf  domain and range resp. of f 
f * X  f-image of X 
fi, f ( i )  the value of f at place i 
f ( i / u )  function f changed at place i to u 
f :A >---> B, f :A >->> B f is one-one,  bijection resp. 
aB set of all functions mapping A into B 
A 1 f f domain-restricted to A 
R I - - - { ( u , / = ,  . . . , Un/~-):(Ul, . . . , Un) E R}  

equations, 

class of all isomorphic copies, homomorphic 
products, ultraproducts, ultrafactors resp. of 

R[k, n] n-ary relation defined by R e 9~ e Gs~, k ~ 1 a (see above Lemma 3.3) 
/ tax = {i : c~x q: x} ,  dimension set of x 
Nrt3~ = {x e A : A a x  ___fl} 
C ! v l x  = {s e V : (=lu)s(i/u) e X }  

O !  V] = {S E V : s  i - -  s j }  

~bV = (SbV, U, N, ~ ,  O, V, C! vl, D[Vl~ full cylindric set algebra with ij l i,j<ot, 

unit V ~" 
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1 ~t unit of 92 
s i ]x  --" c i ( d i ]  " x )  

Subb(92) set of all subbases of 92 
base(92) - I._J Subb(92), base of 92 
d(n x n ) =  II {-dij:i <j <n} 
C ( { i l  . . . . .  in})  x - -  Ci  1 " . • C i n X  

fftb~92 e-dimensional reduct of 2f • CAa, fl t> or 
Rdo, K= {ffib~92:~ • K} 
Sg~X subset of 92 generated by X 

gaX subalgebra of 92 generated by X 
CA~ class of or-dimensional cylindric algebras 
Mn. = {~ga0:92 • CA~}, class of minimal CA's 
Mg~ = {~g~X:X ~ Nr12I, 9R • CA~}, class of monadic-generated CAr's 
Mg~= {~g~X:  9A • CA~, X~_ Nrx92, IXl ~<n} 
Bg~ = {~g~X:  92 • CAr, X c_ Nr292}, class of binary-generated CAr's 
Bg~ = {~ga{x} :92 • CAr, x • Nr292} 
Rp= class of representable CA='s 
Gs~ class of generalized cylindric set algebras 
Gs~ g class of all regular Gs~'s 
Cs~ class of cylindric set algebras 
Lf~ = {92 e CA~" (Vx • A) [A~x[ < to}, class of locally finite CA~'s 
Fb'Gs~ class of all Gs~'s with finite base 
Bb'Gs= class of all Gs~'s with bounded subbases 
FK class of finite members of K 
FbK = K f3 IFb'Gso~ 
BbK = K f3 IBb'Gs,, 
<,,K= K N Mod(a(n x n ) =0 )  
,,K = <,,+IK - <,,K, ,oK = ®K 
<,oK=U{, ,K:n•~} ,  (L)K=U{, ,K:n•L} 
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