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The microplane model allows for the description of damage induced anisotropy in a natural manner by
introducing constitutive laws for quantities on individual microplanes at each material point. However, if
damage or other strain softening constitutive laws are used within the microplane approach, the well-
known problem of localization arises leading to spurious results and mesh dependency. This problem
demands some regularization method to stabilize the solution. The paper focuses on the efficient imple-
mentation of implicit gradient enhancement for microplane damage models. Previous works enhanced
the strain tensor, thus resulting in large number of extra degrees of freedom, which limits the use of this
method for large scale 3D simulations. A new method which enhances the equivalent strain driving the
damage on each microplane is introduced in this work. The new method limits the number of additional
degrees of freedom to one, while preserving the regularizing effect. The two methods are implemented
within a 3D finite element code to compare their performance. The microplane model used is based
on a thermodynamically consistent formulation and on a volumetric–deviatoric split of strains on each
microplane. Furthermore, an exponential damage law is used and an equivalent strain expression which
distinguishes between compression and tension is applied to simulate the behavior of concrete. The capa-
bilities of the proposed formulation are demonstrated by comparison to published experiments on plain
concrete.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The microplane model is a powerful tool for modeling concrete
and other quasi-brittle materials (Bažant et al., 2000; Caner and
Bažant, 2013a). The behavior of those materials is characterized
by the transition from isotropic to anisotropic response once the
material enters the inelastic regime. Concrete, for example, which
consists of different constituents, exhibits upon loading initiation
of microcracks often at the interfaces between aggregates and
the mortar matrix. The growth of these microcracks leads to aniso-
tropic behavior and eventually to macroscopic cracks and failure.
The microplane approach provides a simple and straightforward
way to model this phenomenon by defining the constitutive
material relations between stress and strain vectors on randomly
oriented planes. Since the pioneering work by Bažant and Prat
(1988), it has been researched extensively, and a variety of consti-
tutive material laws has been implemented within the microplane
approach including damage and plasticity. However, the strain
localization problem which is well known for strain softening
constitutive models persists also with microplane models. This
problem is caused by ill-posedness of the governing differential
equations in case of strain softening material laws, which leads
to pathological mesh dependency and numerical instability of the
finite element solution.

Many remedies have been proposed to counter this problem
and some of them have been already used to regularize microplane
damage models. One powerful and physically motivated method is
the nonlocal integral type approach. Although usually motivated
by its ability to eliminate mesh dependency and slow convergence
rate, micromechanical arguments have been also presented. For
example, the dependency of damage at one microcrack on the
release of stored energy from its neighborhood, and the effect of
material inhomogeneity, which causes the dependency of the
stress state at a given material point on its surrounding region
(Bažant, 1991). One difficulty with the integral type formulation
is that it leads to a set of integro-differential equations, which
require sharing information between points, thus abandoning the
advantage of classical finite element method and complicating
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the implementation within the finite element software. This issue
motivated the so-called gradient enhanced models, which preserve
the mathematical locality of the finite element method, while tak-
ing the field around the point into account by enhancing the equa-
tions with higher gradients of strain or other internal variables.
There are two types of gradient models, explicit and implicit. Expli-
cit gradient enhancement is only weakly nonlocal, thus fails to reg-
ularize the solution under some circumstances. Implicit gradient
enhancement, on the other hand, have the advantage of being
strongly nonlocal and largely equivalent to the integral type
(Peerlings et al., 2001), while keeping the differential nature of
the equations, thus results in a straightforward implementation
in finite element codes. Its idea is to introduce a second differential
equation to calculate the nonlocal field, which is usually the coun-
terpart of the local strain or other local internal variables. The
expense to be paid in this case is adding extra degrees of freedom.
For isotropic damage models, it is sufficient to apply the enhance-
ment for a scalar valued quantity, such as the equivalent strain
(Saroukhani et al., 2013), thus the extra degrees of freedom is
limited to 1. This fact makes implicit gradient enhancement for
isotropic damage models very successful. On the other hand, for
anisotropic models, the nonlocal field needs to be a tensorial quan-
tity, or in case of microplane models a scalar quantity at every
microplane. This problem means that the number of extra degrees
of freedom is very large and renders the method unpractical for
large scale 3D simulations.

Though the microplane model has been researched extensively,
little attention has been paid to the regularizing techniques which
are essential for the practical application of the model (Caner and
Bažant, 2013a). A nonlocal integral type method has been imple-
mented for the microplane model, for instance, in Bažant and Di
Luzio (2004), Bažant and Ozbolt (1990) and Luzio (2007). Implicit
gradient enhanced microplane models have been introduced in
Kuhl et al. (2000) and Leukart (2005), where the strain tensor
has been used as the nonlocal variable. The aim of this work is to
explore the feasibility of formulating an efficient and reliable
way to regularize the microplane damage models using an implicit
gradient enhancement. The paper is organized as follows. Firstly,
the gradient model used in Kuhl et al. (2000) and Leukart (2005)
is reviewed and explained. Afterwards, a new simplified method
for the implicit gradient enhancement is derived. Finally, the
behavior of the two methods is demonstrated and compared by
simulations of experiments on plain concrete.

2. Strain gradient model

2.1. Finite element formulation

The gradient enhanced microplane damage model in Kuhl et al.
(2000) and Leukart (2005) is based on enhancing the strain tensor.
This means that a tensorial nonlocal field is considered. The system
is then governed by 2 coupled differential equations and solved
using a simultaneous, fully coupled scheme. The first equation is
balance of linear momentum for quasi-static case

r � rþ f ¼ 0 ð1Þ

and the second is the modified Helmholtz equation to describe the
nonlocal strain tensor

��� cr2�� ¼ �; ð2Þ

with the homogenous Neumann boundary condition

r�� � nb ¼ 0; ð3Þ

where, r is the Cauchy stress tensor, r� is the divergence operator
and f is the body force vector. Moreover, � is the local strain tensor,
�� is its nonlocal counterpart, c is the gradient activity parameter, nb

is the normal to the outer boundary, r is the gradient operator and
r2 is the Laplace operator.

The homogenous Neumann boundary condition adopted here is
commonly used and it is enough to ensure the regularizing effect.
With this boundary condition the local and nonlocal strains are
equal for homogenous deformations and the gradient method is,
therefore, consistent with integral type formulation. Peerlings
et al. (2001) showed that this type of boundary condition provides
larger nonlocal weight factors for the material close to the external
boundaries. This is motivated from the physical point of view,
because the model in this case will be more sensitive to surface
effects. This boundary condition is applied to the entire external
boundary regardless whether there are applied displacements or
loads to some regions or not, since a physical connection between
the two fields boundaries is not clear.

To get the weak form of Eqs. (1) and (2), they are multiplied by
the weight functions du and d��, respectively,Z
B

du � r � rdv þ
Z
B

du � f dv ¼ 0; ð4Þ

Z
B

d�� � ��dv �
Z
B

d�� � cr2��dv ¼
Z
B

d�� � �dv: ð5Þ

Substituting the relation r � r � duð Þ ¼ du � r � rþ r : rdu, Gauss
divergence theorem

R
@B rnb � duda ¼

R
B r � r � duð Þdv and Cauchy

theorem r � nb ¼ te in Eq. (4) yieldZ
@B

te � duda�
Z
B
r : rdudv ¼

Z
B

du � f dv ð6Þ

and similarly for Eq. (5), substituting the relation r � d�� � r��ð Þ ¼
d�� � r2��þrd�� � r��, Gauss divergence theorem

R
@B r�� � nb � d��da ¼R

B r � d�� � r��ð Þdv and the boundary condition r�� � nb ¼ 0 yieldZ
B

d�� � ��dv þ
Z
B
rd�� � cr��dv ¼

Z
B

d�� � �dv: ð7Þ

Space discretization for the finite element method is obtained by
dividing the domain B into sub-domains Be � B. Interpolation
within the elements is achieved with eight nodes using linear shape
functions Nðn;g; fÞ within the isoparametric concept of finite ele-
ment method, where n;g and f are local coordinates that can have
values from �1 to 1. Then, the displacement field, and the varia-
tional field du may be interpolated over the sub-domains as follows

u ¼ Nðn;g; fÞde
; duðn;g; fÞ ¼ Nðn;g; fÞdde ð8Þ

and the gradient of the displacement field is given as

ru ¼ @xNde ¼ Bde
; rdu ¼ @xNdde ¼ Bdde

: ð9Þ

Similarly, the nonlocal strain field and its variational field are also
interpolated with linear shape functions N as follows

�� ¼ NEe; d�� ¼ NdEe ð10Þ

and the gradient of the nonlocal field is given as

r�� ¼ @xNEe ¼ BEe; rd�� ¼ @xNdEe ¼ BdEe; ð11Þ

where de are the nodal displacements and Ee are the nodal nonlocal
strains. The equations have to be satisfied for all admissible dde and
dEe, so finally Eqs. (6) and (7) becomeZ
B

BTrdv ¼
Z
B

NT f dv þ
Z
@Be

NT teda; ð12Þ

Z
B

NT ��dv þ
Z
B

BT cr��dv ¼
Z
B

NT�dv: ð13Þ
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2.2. Linearization

Eqs. (12) and (13) should be linearized, in order to be solved by
an incremental iterative Newton–Raphson solution. The residual
expression of the previous system of equations may be written as

Re ¼
Re

u

Re
��

" #
¼

f ext
u

f ext
��

� �
� f int

u

f int
��

" #
: ð14Þ

These equations are nonlinear in the unknown solution vector
Xe ¼ de Ee

� �T of all degrees of freedom. Linearization yields

LinRe ¼ Re��
Xe ;i þ

@Re

@Xe

� �����
Xe ;i

� MXe
;iþ1; ð15Þ

where iþ 1 is the current time step. The fully coupled simultaneous
solution takes the form

Ke
uu;i Ke

u��;i

Ke
��u;i Ke

����;i

" #
Dde

;iþ1

DEe
;iþ1

" #
¼ �

Re
u;i

Re
��;i

" #
; ð16Þ

where the residual vectors are

Re
u;i ¼

Z
B

BTrdv �
Z
B

NT f dv �
Z
@Be

NT teda; ð17Þ

Re
��;i ¼

Z
B

BT cBEedv þ
Z
B

NT NEe � Bde� �
dv ð18Þ

and the submatrices of the consistent stiffness matrix

Ke
uu;i ¼

@

@de Re
u;i ¼

Z
B

BT @r
@�

Bdv ; ð19Þ

Ke
u��;i ¼

@

@Ee Re
u;i ¼

Z
B

BT @r
@��

Ndv ; ð20Þ

Ke
��u;i ¼

@

@de Re
��;i ¼ �

Z
B

NT Bdv ; ð21Þ

Ke
����;i ¼

@

@Ee Re
��;i ¼

Z
B

BT cBdv þ
Z
B

NT Ndv: ð22Þ
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Fig. 1. Exponential damage evolution law.
2.3. Microplane damage model

Many microplane models exist in the literature with different
types of strain and stress splits and a variety of constitutive laws.
Here, the model proposed in Leukart (2005) is adopted, which is
based on a volumetric–deviatoric (V–D) split of strains and formu-
lated in a thermodynamically consistent way. The model applies
the kinematic constraint, i.e. the microplane strains are assumed
to be equal to the projection of the macroscopic strain tensor to
the microplanes, not stresses as assumed in case of static con-
straint. Furthermore, the damage is considered with one damage
parameter applied for both the volumetric and the deviatoric parts
of the stresses. Although, the volumetric and deviatoric damages
are different and using one damage law is not the best way to
model concrete, this version is still a simple and robust version
of the microplane model. It also gives some kind of deviatoric-vol-
umetric coupling, which is usually ignored by the 2 damage
parameters models. The macroscopic free energy is computed as
the integral of microplane free energies over the solid angle X,

Wmac ¼ 3
4p

Z
X

WmicdX ð23Þ

and the free energy at the microplane level is defined as

Wmic ¼ 1� dmic
h i 1

2
Kmic�2

V þ Gmic�D � �D

� �
; ð24Þ
where dmic is the damage variable at each microplane and �V and �D

are the volumetric and deviatoric microplane strains, respectively.
They are computed by projecting the macroscopic strain tensor to
microplanes as follows

�V ¼ V�; �D ¼ Dev � �; ð25Þ

where the projection tensors V and Dev are defined knowing the
normal vector n to each microplane as

V ¼ 1
3

1; Dev ¼ n � Idev ¼ n � Isym � 1
3

n � 1� 1; ð26Þ

DevT ¼ Idev � n; ð27Þ

where 1 is the second order identity tensor, I is the fourth order
identity tensor and Isym ¼ 1

2 Iþ IT
h i

is its symmetric part. Further-
more, the elastic material parameters Kmic and Gmic are related to
the elastic macroscopic parameters as follows

Kmic ¼ 3K; Gmic ¼ G: ð28Þ

The evolution law of the damage variable dmic is an exponential law
(Geers et al., 1998),

dmic ¼ 1� c0

cmic
1� aþ a exp b c0 � cmic

� �� �� �
; ð29Þ

where a;b and c0 are positive material parameters. a represents the
maximum degradation of the material, b controls the shape of soft-
ening, and c0 is the damage threshold. Fig. 1 shows the law graph-
ically. The damage evolution is driven with the history variable cmic,
which represents the largest value of equivalent strain that has ever
occurred in the whole loading history up to the current time step t.
This may be expressed as

cmic tð Þ ¼max
s6t
ðc0;g

mic sð ÞÞ: ð30Þ

The equivalent strain at each microplane gmic is computed as in de
and Brekelmans (1995). This is a modified form of von Mises equiv-
alent strain to distinguish compression from tension, which is an
essential property of concrete,

gmic ¼ 3k1��V þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k1��Vð Þ2 þ 3

2
k2��D � ��D

r
: ð31Þ

Note that unlike the local model, the equivalent strain now is a
function of the nonlocal stress tensor gmic ¼ f ��ð Þ. The components
��V and ��D are computed by projecting the nonlocal strain tensor ��
to microplanes,

��V ¼ V��; ��D ¼ Dev � �� ð32Þ



I. Zreid, M. Kaliske / International Journal of Solids and Structures 51 (2014) 3480–3489 3483
and the constants k1 and k2 are computed from material parame-
ters, namely Poisson’s ratio m and the ratio between the compres-
sive and tensile strength as follows

k1 ¼
kr � 1

2kr 1� 2mð Þ ; ð33Þ

k2 ¼
3

kr 1þ mð Þ2
: ð34Þ

The stress tensor can be found by taking the free energy derivative
with respect to the strain tensor,

r ¼ @W
mac

@�
¼ 3

4p

Z
X

1� dmic
h i

KmicV�V þ 2GmicDevT � �D

h i
dX ð35Þ

and the tangent terms

C ¼ @r
@�
¼ 3

4p

Z
X

1� dmic
h i

KmicV � V þ 2GmicDevT � Dev
h i

dX; ð36Þ

C¼ @r
@��
¼� 3

4p

Z
X

@dmic

@cmic

@cmic

@gmic
KmicV�V þ2GmicDevT�D

h i
�@g

mic

@��
dX; ð37Þ

where the required derivatives are

@dmic

@cmic
¼ c0

cmicð Þ2
1� aþ a exp b c0 � cmic


 �
 �
 �
ð38Þ

þ c0

cmic
ab exp b c0 � cmic


 �
 �
; ð39Þ

@cmic

@gmic
¼ 1 if cmic tð Þ ¼ gmic tð Þ;

0 otherwise;

(
ð40Þ

@gmic

@��
¼ 3k1V þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k1��Vð Þ2 þ 3

2 k2 ��D � ��D

q 18k2
1
��V V þ 3k2DevT � ��D

� 

: ð41Þ

Note that in this method the elastic part of the model is not affected
by the gradient enhancement. The nonlocal field is only present in
the damage evolution law.

Regarding the integration over the surface of the sphere to
calculate the homogenized stress tensor and stiffness matrix for
the microplane model, numerical integration is used in this work
according to Bažant and Oh (1986). Here, the integration is com-
puted with 42 microplanes, but due to symmetries, it is enough
to use 21 microplanes as follows

3
4p

Z
X
�ð ÞdX ¼

X21

mic¼1
�ð Þwmic;

where wmic is the weight for each integration point. Table 2 in
Appendix A gives the coordinates and weight coefficients of the
integration points.

3. A model with gradient of equivalent strain

This method is commonly used for isotropic damage models
(Geers et al., 2000), but was avoided for microplane models,
because this kind of models involves large number of microplanes
with independent internal variables, which means a large number
of degrees of freedom. The newly proposed method uses the
equivalent strain of one microplane as the nonlocal field, thus
the modified Helmholtz equation becomes

�gm � cr2 �gm ¼ gm; ð42Þ

also with the homogeneous Neumann boundary condition

r�gm � nb ¼ 0; ð43Þ
where gm is the equivalent strain of one microplane and �gm is its
nonlocal counterpart. Choosing the suitable microplane is discussed
later in this section. The computational gain of the new method is
very substantial, since only one extra DOF is required. This means,
for 3D simulations, solving a system of 4 DOF per node, compared
to solving a 9 DOF system per node in case of the method explained
in the previous section. Discretization of the previous differential
equation yieldsZ
B

NT �gmdv þ
Z
B

BT cr�gmdv ¼
Z
B

NTgmdv : ð44Þ

Following similar steps as explained in Section 2. The residual
expression of the problem may be written as

Re ¼
Re

u

Re
�g

" #
¼

f ext
u

f ext
�g

" #
�

f int
u

f int
�g

" #
ð45Þ

and the fully coupled simultaneous solution

Ke
uu;i Ke

u�g;i

Ke
�gu;i Ke

�g�g;i�

" #
Dde

;iþ1

DEe
;iþ1

" #
¼ �

Re
u;i

Re
�g;i

" #
; ð46Þ

where the residual vectors are

Re
u;i ¼

Z
B

BTrdv �
Z
B

NT f dv �
Z
@Be

NT teda; ð47Þ

Re
�g;i ¼

Z
B

BT cBEedv þ
Z
B

NT NEe � gm

� �
dv ð48Þ

and the stiffness submatrices are

Ke
uu;i ¼

@

@de Re
u;i ¼

Z
B

BT @r
@�

Bdv; ð49Þ

Ke
u�g;i ¼

@

@Ee Re
u;i ¼

Z
B

BT @r
@�gm

Ndv; ð50Þ

Ke
�gu;i ¼

@

@de Re
�g;i ¼ �

Z
B

NT @gm

@�
Bdv ; ð51Þ

Ke
�g�g;i ¼

@

@Ee Re
�g;i ¼

Z
B

BT cBdv þ
Z
B

NT Ndv: ð52Þ

Note that the element stiffness matrix is nonsymmetric since
Ke

u�g – Ke
�gu, which is the case for coupled systems in general, there-

fore a nonsymmetric solver is required. However, this is not only
the case for the new method, but also for the previous strain gradi-
ent method. Moreover, it cannot be considered a drawback only for
the implicit gradient enhancement, since even local damage models
have often nonsymmetric stiffness matrices. Only in special cases, a
symmetric tangent matrix is achieved (Jirásek and Patzák, 2002).

The microplane chosen for the gradient enhancement is the one
with the largest equivalent strain of the 21 microplanes used to
approximate the integration,

gm ¼max
21

mic¼1
ðgmicÞ ð53Þ

and its nonlocal counterpart of �gm evaluated from the additional
gradient enhancement equation. Moreover, the equivalent strains
of the remaining microplanes are modified with the same ratio of
the local to nonlocal largest equivalent strain as follows

�gmic ¼
�gm

gm
gmic: ð54Þ

This means that while the largest equivalent strain is replaced
directly by its nonlocal counterpart, the rest of the microplanes
are modified with same ratio. Using this method, only one addi-
tional degree of freedom is needed, but all the microplanes are



Fig. 2. Geometry of the L-shaped specimen and material parameters.
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Fig. 3. Comparison of the results for (a) Method 1 and (b) Method 2.
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regularized. Moreover, the anisotropic nature of the microplane
model is preserved, since the modifying ratio is multiplied by the
local equivalent strain of each microplane, i.e. the microplanes are
still independent of each other, though the gradient enhancement
is driven by one microplane. As can be seen, this method differs
from the strain gradient method. First, the equivalent strain now
is computed from the local strains,
gmic ¼ 3k1�V þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k1�Vð Þ2 þ 3

2
k2�D � �D

r
ð55Þ

and then is modified by the ratio �gm=gm to prevent localization. The
history variable driving damage evolution cmic may now be evalu-
ated as the maximum value of the modified equivalent strain
reached in the whole loading history on each microplane
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using Method 2.
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Fig. 6. Experimental crack pattern of the L-shaped specimen test as reported in
Winkler (2001).

Fig. 7. Damaged zone as predicted by

Fig. 8. Mesh objectivity pr
cmic tð Þ ¼max
s6t
ðc0; �g

mic sð ÞÞ ð56Þ

and the damage is evaluated as a function of cmic with the same
exponential function as before, see Eq. (29).

The stress tensor after homogenization takes the same form as
in the previous method

r ¼ @W
mac

@�
¼ 3

4p

Z
X

1� dmic
h i

KmicV�V þ 2GmicDevT � �D

h i
dX; ð57Þ

however, the tangent terms for the new method are different,

C ¼ @r
@�
¼ 3

4p

Z
X

1� dmic
h i

KmicV � V þ 2GmicDevT � Dev
h i

dX

� 3
4p

Z
X

KmicV�V þ 2GmicDevT � �D

h i
� @dmic

@�
dX; ð58Þ

C ¼ @r
@gm

¼ � 3
4p

Z
X

@dmic

@gm
KmicV�V þ 2Gmic�D � Dev
h i

dX: ð59Þ

The required derivatives are

@dmic

@�
¼ @dmic

@cmic

@cmic

@gmic

gm

gm

@gmic

@�
� gm

g2
m
gmic @gm

@�

� �
; ð60Þ

@dmic

@gm
¼ @dmic

@cmic

@cmic

@gmic

gmic

gm
; ð61Þ
(a) Method 1 and (b) Method 2.

eserved by Method 2.



Fig. 9. The effect of gradient parameter c on the size of the damaged zone for Method 2.

Fig. 10. Geometry and boundary conditions of the four-point bending test.

Table 1
Material parameters used in the four-point bending test.

E m a b c0 kr c

38 [GPa] 0.18 0.94 150 0.00007 10 4 [mm2]
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@gmic

@�
¼ 3k1V þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 11. (a) Experimental and simulated load–displacement curves for the bending test w
4. Numerical examples

The two methods explained in the previous sections are imple-
mented within a 3D finite element code with 8-node hexahedral
brick element. Next, the simulation results of three commonly
used experiments for testing concrete fracture are given.
4.1. L-shaped specimen

The first example deals with testing of an L-shaped concrete
specimen, which represents an interesting problem for testing
ith 3 different notch depths, (b) the corresponding damage distribution (Method 2).



Fig. 12. 4-point bending test with two mesh sizes for notch depth 10 mm (Method 2).

Fig. 13. Geometry and material parameters for the biaxial test.
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Fig. 14. Biaxial strength envelope and experimental data.
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crack propagation and fracture of concrete and which is particu-
larly suitable for the verification of numerical models, since it
involves mixed-mode fracture (Ožbolt and Sharma, 2012). The
experimental data which is simulated is taken from Winkler
et al. (2001). Fig. 2 shows the geometry of the test specimen. It is
fixed at the bottom, and the load is applied at the shown position
using displacement control at a rate of 0.04 mm/s. In the following,
the strain gradient method will be referred as Method 1, while the
new method is referred as Method 2. The test is performed using
two different meshes to check for localization and mesh depen-
dency. The material parameters for Method 1 are taken from
Leukart (2005), while the parameters for Method 2 are identified
to fit the experiments. The parameters for both methods are shown
in Fig. 2.

The comparison of the behavior of the regularized models with
two different meshes is shown in Fig. 3 for the two methods. As can
be observed, both methods are capable of limiting localization and
restoring mesh objectivity. Moreover, quadratic convergence is
achieved in both cases as shown in Fig. 4. The capability of the
new method to fit the experimental data is demonstrated in
Fig. 5. The experimental crack pattern is shown in Fig. 6. Fig. 7
shows and compares the crack pattern as observed for the two
methods. While both methods reproduce to a good extent the gen-
eral crack path, a difference is observed between them. Due to the
fact that there are 21 independent damage variables dmic , a scalar
damage measure dhom is calculated to have a representation of
the total damage at each material point. The homogenized damage
dhom is given as

dhom ¼
3

4p

R
X dmicdX

3
4p

R
X dX

: ð63Þ

The mesh objectivity achieved by Method 2 is demonstrated in
Fig. 8. Different mesh sizes result in similar size and shape of the
damaged zone. The effect of the gradient parameter c is shown in
Fig. 9. A larger value of c produces a larger inelastic zone, however,
the values of the gradient parameter of the two methods are totally
different. Method 2 requires larger c to produce a damaged zone
with equal size as Method 1. It is clear that the decisive parameter
in this method is the characteristic length

ffiffiffi
c
p

. However, there is no
explicit relation between it and the macroscopic material proper-
ties, i.e. changing it will lead to a change in macroscopic material
parameters, and it has been observed that the same experiments
may be fitted with different length scales. These facts indicate that
this length is not a material parameter that can be correlated to the
material properties only. It is now clear that, this length is influ-
enced by other factors, such as the type of problem. It changes from
tensile fracture to shear failure. It is also confirmed that it is not
constant but a function depending on stress and strain fields
(Ožbolt and Bažant, 1996), and decreases at larger strains. However,
this does not hinder the practical application of the this type of
models, since a good calibration of the length scale may be obtained
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by conducting a notched fracture test of specimens with different
sizes (Caner and Bažant, 2013b).

4.2. Four-point bending test

A notched beam of plain concrete is tested at four-point bend-
ing conditions. The experimental data are taken from Hordijk
(1991). The specimen’s geometry and boundary conditions are
shown in Fig. 10. The specimen was tested with different notch
depths 10, 30 and 50 mm. The finite element model is discretized
with 298 brick elements, with a finer mesh near the notch. The
material parameters are shown in Table 1. The elastic properties
of the material are taken from the same source as the experiments
(Hordijk, 1991), while the rest of the parameters are identified to
fit the curves. The same set of parameters is used to fit the results
of the three notch depths and very good agreement is observed
between simulation and experiments, see Fig. 11. Furthermore,
mesh objectivity is checked and confirmed by two finer meshes
with 832 and 3168 elements, see Fig. 12. It should be noted that
gradient models require the use of relatively fine meshes, in order
to have a correct nonlocal interaction, since the localized zone can-
not be smaller than the size of one element.

4.3. Biaxial strength envelope

In order to test the model further in the case of different direc-
tions of damage, a biaxial failure envelope of concrete is simulated.
Kupfer et al. (1969) tested a set of concrete panels of
200 mm � 200 mm and 50 mm thickness, subjected to various
biaxial load conditions, as shown on Fig. 13. The tested concrete
has the following properties: Young’s modulus 20.970 MPa, Pois-
son’s ratio 0.2 and tensile strength ft ¼ 2:608 MPa. The material
parameters used are listed in Fig. 13. The test is modeled with
the boundary conditions, such that to produce a homogeneous dis-
tribution of the stress field in the panel. The test is driven by dis-
placements with different magnitudes in two directions and the
ultimate stress reached and its corresponding lateral stress is
obtained. The strength envelop obtained is shown in Fig. 14, and
the experimental data is plotted in the same figure. The results
show an overestimation of the concrete strength under biaxial
compression and shear, this is related to the used modified von
Mises equivalent strain law. However, the gradient formulation is
still working correctly also under different directions of damage.
Table 2
Integration over a sphere surface with 21 integration points – coordinates and weight coe

Mic x-Coordinate y-Coordinate

1 0.187592474085 0.000000000000
2 0.794654472292 �0.525731112119
3 0.794654472292 0.525731112119
4 0.187592474085 �0.850650808352
5 0.794654472292 0.000000000000
6 0.187592474085 0.850650808352
7 0.577350269190 �0.309016994375
8 0.577350269190 0.309016994375
9 0.934172358963 0.000000000000

10 0.577350269190 �0.809016994375
11 0.934172358963 �0.309016994375
12 0.934172358963 0.309016994375
13 0.577350269190 0.809016994375
14 0.577350269190 �0.500000000000
15 0.577350269190 0.500000000000
16 0.356822089773 �0.809016994375
17 0.356822089773 0.000000000000
18 0.356822089773 0.809016994375
19 0.000000000000 �0.500000000000
20 0.000000000000 �0.500000000000
21 0.000000000000 �1.000000000000
5. Conclusions

The present work demonstrates numerically that implicit gradi-
ent enhancement is a powerful tool of regularization for micro-
plane damage models, and introduces a new efficient method of
enhancement. A microplane damage model based on a thermody-
namically consistent approach and a volumetric–deviatoric split is
implemented and enhanced with two different implicit gradient
enhancement methods. The damage law used is mainly suitable
for concrete-like materials, where distinction between compres-
sion and tension is incorporated and the exponential damage law
can simulate the long tail in the load displacement curve. The ver-
sion of the implicit gradient enhancement found in literature,
which is based on enhancing the strain tensor is explained, and
then, a new method which enhances the equivalent strain is
derived for the case of the microplane model. Both methods are
implemented within an implicit finite element code, and their
behavior is tested against experiments, as well as against each
other. Both methods show the ability to regularize the solution
and eliminate the pathological mesh dependency of the local
model. Moreover, both methods can simulate the crack pattern
of mixed mode fracture, though there is a difference between the
size and shape of the damaged zone. The new method shows a very
good capability in fitting experimental data as observed in the
L-shaped specimen test as well as in the 4-point bending test.
Furthermore, an important advantage of the new method is the
substantial reduction of computational time by reducing the extra
degrees of freedom.

Future work may be dedicated to identifying the gradient
parameter with more experiments as well as the possibility of
using a transient evolving gradient parameter to have a more accu-
rate crack patterns. Moreover, regularizing microplane plasticity
models with an implicit gradient enhancement is also an impor-
tant topic to consider.
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Appendix A

See Table 2.
fficients.

z-Coordinate Weight wmic

0.982246946377 0.1190476190478
0.303530999103 0.1190476190478
0.303530999103 0.1190476190478
�0.491123473188 0.1190476190478
�0.607061998207 0.1190476190478
�0.491123473188 0.1190476190478

0.755761314076 0.1523809523808
0.755761314076 0.1523809523808
0.356822089773 0.1523809523808
�0.110264089708 0.1523809523808
�0.178411044887 0.1523809523808
�0.178411044887 0.1523809523808
�0.110264089708 0.1523809523808
�0.645497224368 0.1523809523808
�0.645497224368 0.1523809523808

0.467086179481 0.1523809523808
�0.934172358963 0.1523809523808

0.467086179481 0.1523809523808
0.866025403784 0.1523809523808
�0.866025403784 0.1523809523808

0.000000000000 0.1523809523808
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