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Abstract

The lim-inf convergence in a complete lattice was introduced by Scott to characterize cont
lattices. Here we introduce and study the lim-inf convergence in a partially ordered set. The
result is that for a posetP the lim-inf convergence is topological if and only ifP is a continuous
poset. A weaker form of lim-inf convergence in posets is also discussed.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let P be a partially ordered set (or poset, for short). The Birkhoff–Frink–McSh
definition of order-convergence inP is defined as follows (see [1–3]): a net(xi)i∈I in P is
said to o-converge toy ∈ P if there exist subsetsM andN of P such that

(1) M is up-directed andN is down-directed,
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(2) y = supM = inf N , and
(3) for eacha ∈ M andb ∈ N , there existsk ∈ I such thata � xi � b hold for all i � k.

In general, o-convergence is not topological, i.e., the posetP may not be topologized
so that nets o-converge if and only if they converge with respect to the topology. One
problem here is: for what posets is the o-convergence topological? Although it ha
been known that in every completely distributive lattice the o-convergence is topolo
one still has not been able to find a satisfactory necessary and sufficient conditi
o-convergence to be topological.

In [4] the lim-inf-convergence in complete lattices is introduced. A net(xi)i∈I in a
complete lattice lim-inf-converges tox if x � limi∈I xi = inf{supi�k{xi}: k ∈ I }. It was
proved that for a complete latticeL, the lim-inf-convergence is topological if and only
L is a continuous lattice. The notion of continuous lattice was introduced by Dana
as a generalization of algebraic lattices and has found its applications in many field
as computer science, topology and logic. Later on, continuous direct complete pos
continuous dcpos) was introduced as an appropriate generalization of continuous
(see [5]). In this note we consider the lim-inf-convergence in an arbitrary partially ord
set. We prove that the lim-inf-convergence in a poset is topological if and only if the
is a continuous poset. The definition of continuous poset is similar to that of contin
dcpo. We shall also consider another type of lim-inf-convergence, the counterpart
o2-convergence studied in [6,7], and prove a similar characterization of the poset for
this convergence is topological.

2. Lim-inf-convergence and continuous partially ordered sets

A net (xi)i∈I in a complete lattice is said to lim-inf-converge to an elementx if
x = lim i∈I xi = sup{inf{xi : i � k}: k ∈ I }. Since in a poset the infimum of a subset ne
not exists, thus we have to define the lim-inf-convergence in an arbitrary poset in a
ent way. Throughout of the paper we shall use

∨
A and

∧
A to denote supA and infA,

respectively.

Definition 1. A net (xi)i∈I in a posetP is said to lim-inf-converge to an elementy ∈ P if
there exists an up-directed subsetM of P such that

(A1)
∨

M exists with
∨

M � y, and
(A2) for anym ∈ M , xi � m holds eventually (that is, there existsk ∈ I such thatxi � m

for all i � k).

In this case we writey ≡ lim-inf xi .

Remark 1.

(1) Let P = {a, b} ∪ {bi : i ∈ N}, whereN denotes the set of all natural numbers. T

order onP is defined bya < b, b1 < b2 < · · · < b. Let S = (xi)i∈N be the net where



B. Zhao, D. Zhao / J. Math. Anal. Appl. 309 (2005) 701–708 703

et
e

for

ed

h

d

xi = bi,∀i ∈ N. TakeM = {bi : i ∈ N}. ThenM is an up-directed subset ofP with∨
M = b > a. In addition, for eachm ∈ M there isk ∈ N such thatxi � m whenever

i � k. ThusS lim-inf-converges to the elementa. However, there is no up-directed s
M ⊆ P such that

∨
M = a and for everyx ∈ M , xi � x holds eventually. Hence th

inequality for
∨

M � y in condition (A1) cannot be reduced to the equality
∨

M = y.
(2) Let (xi)i∈I be a net inP such thatx = inf{xi : i ∈ I } exists. The singletonM = {x} is

an up-directed set,
∨

M = x andxi � x holds for alli, so (xi)i∈I lim-inf-converges
to x.

(3) If (xi)i∈I lim-inf-converges tox, then it lim-inf-converges to everyy with y � x. Thus
the lim-inf-limits of a net is generally not unique.

For a posetP , the way-below relation� on P can be defined in the same way as
dcpos. We say thatx is way belowy, x � y, if for any up-directed setD ⊆ P for which∨

D exists andy �
∨

D, then there isd ∈ D such thatx � d .
From the definition of the way-below relation we see easily that ifx � y � z � w, then

x � w, and ifx � y, thenx � y.

Lemma 1. If x andy are two elements of a posetP , thenx � y if and only if for any net
(xi)i∈I which lim-inf-converges toy, xi � x holds eventually.

Proof. Supposex � y and(xi)i∈I lim-inf-converges toy. Then there exists an up-direct
setM such thaty �

∨
M and for eacha ∈ M , xi � a holds eventually. Sincex � y, there

is a ∈ M with x � a. Hencexi � a � x holds eventually.
Conversely, suppose the condition is satisfied. IfD is an up-directed subset wit∨
D � y, then the net(xd)d∈D lim-inf-converges toy, wherexd = d for eachd ∈ D.

By the assumption, there isxd ∈ D such thatxd � x. Thusx � y. �
Definition 2. A posetP is called a continuous poset if for eacha ∈ P , the set{x ∈ P :
x � a} is an up-directed set anda = ∨{x ∈ P : x � a}.

It can be seen thatP is continuous if and only it for eacha ∈ P there is an up-directe
subsetD of {x ∈ P : x � a} such that

∨
D = a. The way-below relation� on a contin-

uous poset is interpolating, i.e., ifx � y, then there isz with x � z � y (see [4] for the
proof of the interpolating property of continuous dcpos).

Example 1. For any setX, letP0(X) be the set of all finite subsets ofX. Then(P0(X),⊆)

is a continuous poset. This follows from the observation that for eachA ∈P0(X), A � A.
However,P0(X) is not direct complete unlessX is a finite set.

The lemma below follows from Lemma 1.

Lemma 2. If P is a continuous poset, then a net(xi)i∈I in P lim-inf-converges toy if and

only if for eachx � y, xi � x holds eventually.
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Let L be the class consisting of all the pairs((xi)i∈I , x) of a net(xi)i∈I and an elemen
x in a posetP with x ≡ lim-inf xi . The classL is called topological if there is a topologyτ
onP such that((xi)i∈I , x) ∈ L if and only if the net(xi)i∈I converges tox with respect to
the topologyτ . By Kelley [8], L is topological if and only if it satisfies the following fou
conditions:

(Constants) If (xi)i∈I is a constant net withxi = x, ∀i ∈ I , then((xi)i∈I , x) ∈ L.
(Subnets) If ((xi)i∈I , x) ∈ L and(yj )j∈J is a subnet of(xi)i∈I , then((yj )j∈J , x) ∈ L.
(Divergence) If ((xi)i∈I , x) is not inL, then there exists a subnet(yj )j∈J of (xi)i∈I which

has no subnet(zk)k∈K so that((zk)k∈K,x) belongs toL.
(Iterated limits) If ((xi)i∈I , x) ∈ L, and if ((xi,j )j∈J (i), xi) ∈ L for all i ∈ I , then

((xi,f (i))(i,f )∈I×M,x) ∈ L, whereM = ∏
i∈I J (i).

Lemma 3.

(1) For every poset the classL satisfies the axioms(Constants) and (Subnets).
(2) If P is a continuous poset, thenL also satisfies the axioms(Divergence) and (Iterated

limits).

Proof. (1) The axiom (Constants) is clearly satisfied.
(Subnets) Suppose now that((xi)i∈I , x) ∈ L andD is up-directed such thatx �

∨
D

and for eacha ∈ D, xi � a holds eventually. Thus for any subnet(yj )j∈J of (xi)i∈I and
everya ∈ D, yj � a also holds eventually. Thus((yj )j∈J , x) ∈ L.

(2) Now assume thatP is continuous.
(Divergence) Suppose that((xi)i∈I , x) is not inL. Since the setD = {z ∈ P : z � x}

is an up-directed set whose supremum equalsx, there existsz ∈ D such that for anyi ∈ I

there is aj ∈ I with j � i andxj � z. Let J be the subset ofI consisting of allk ∈ I such
that xk � z. ThenJ is co-final inI and(xj )j∈J is a subnet of(xi)i∈I . In addition, from
Lemma 1 it follows that there is no subnet(zk)k∈K of (xj )j∈J such that((zk)k∈K,x) ∈ L.
Hence axiom (Divergence) is satisfied.

(Iterated limits) Assume((xi)i∈I , x) ∈ L and((xi,j )j∈J (i), xi) ∈ L for everyi ∈ I . We
show that((xi,f (i))(i,f )∈I×M,x) ∈ L, whereM = ∏

i∈I J (i). By Lemma 2, it is enough to
show that for eachz � x, xi,f (i) � z holds eventually. Choosew such thatz � w � x.
There existsi0 such thatxi � w for all i � i0. Thus z � xi for all i � i0. Again as
(xi,j )j∈J (i) lim-inf-converges toxi , so for eachi � i0 there existsg(i) ∈ J (i) such that
if j ∈ J (i) andj � g(i) thenxi,j � z. Defineh ∈ ∏

i∈I J (i) such thath(i) = g(i) if i � i0
andh(i) is any element inJ (i) otherwise. Now if(i, f ) ∈ I ×M and(i, f ) � (i0, h), then
xi,f (i) � z. The proof is complete. �
Lemma 4. If, in a posetP , the classL satisfies the conditions(Iterated limits), thenP is
continuous.

Proof. Let a ∈ P and letDa = {{xi,j }j∈J (i): i ∈ I } be the family of all directed subse
of P whose supremum exist and is abovea. For eachi ∈ I , let xi = ∨{xi,j : j ∈ J (i)}.

Then for eachi ∈ I , we havexi � a. Moreover, since{a} is a member ofDa , we have
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inf{xi : i ∈ I } = a. Let the setI be equipped with the largest pseudo order onI , that
is i � k holds for any twoi, k ∈ I . The order is transitive and reflexive but need not
antisymmetric. Then(xi)i∈I is a net and, by Remark 1(2) it lim-inf-converges toa. For
each{xi,j : j ∈ J (i)} ∈ Da , define an order onJ (i) by j1 � j2 if xi,j1 � xi,j2. ThenJ (i) is
a directed set and(xi,j )j∈J (i) is a net inP , which obviously lim-inf-converges toxi . Now
since the condition (Iterated limits) is satisfied, the net(xi,f (i))(i,f )∈I×M lim-inf-converges
to a, whereM = ∏

i∈I J (i). By the definition of lim-inf limit, there exists an up-directe
subsetD ⊆ P such that

∨
D � a and for eachd ∈ D, xi,f (i) � d holds eventually. We now

show thatD ⊆ {x ∈ P : x � a}. Let d ∈ D. For any directed setA ⊆ P with
∨

A � a,
A = {xm,j : j ∈ J (m)} for somem ∈ I . There exists(id , fd) such that(i, f ) � (id , fd)

impliesxi,f (i) � d . Now m � id (note that the order onI is the biggest pseudo order, th
is i � k for anyi, k ∈ I ), hencexm,fd (m) � d . Note thatxm,fd(m) ∈ A, thusd � a. ThusD

is an up-directed subset of{x ∈ P : x � a} and
∨

D � a. Thusa �
∨{x ∈ P : x � a} � a,

which impliesa = ∨{x ∈ P : x � a}. HenceP is continuous. �
The combination of Lemmas 3 and 4 deduces the following theorem.

Theorem 1. For any posetP the lim-inf-convergence is topological if and only ifP is a
continuous poset.

3. Lim-inf2-convergence

In [7], the o2-convergence was considered (in [6] this convergence is called 2
vergence). This convergence can be generalized by replacing directed subsets w
bitrary subsets. Here we consider only the lim-inf2-convergence, a part of generaliz
o2-convergence for lim-inf-convergence. We shall establish a characterization for thi
vergence to be topological.

Definition 3. A net (xi)i∈I in a posetP is said to lim-inf2-converge tox ∈ P if there exists
a subsetM ⊆ P , such that

(B1)
∨

M exists andx �
∨

M , and
(B2) for eachm ∈ M,xi � m holds eventually.

Obviously if (xi)i∈I lim-inf-converges tox, then it lim-inf2-converges tox.
In [9] Raney established a characterization of completely distributive lattices usin

long-below relation�.
A complete latticeL is completely distributive if and only if for everya ∈ L, a =∨{x ∈ L: x � a}, wherex � y if for any subsetA ⊆ L with

∨
A � y, there existsz ∈ A

such thatx � z.
For any two elementsx andy in a posetP , we definex � y, if for any subsetA ⊆ P

for which
∨

A exists andy �
∨

A, there existsz ∈ A with x � z. It is easy to verify tha
(i) the relation� is transitive; (ii)x � y impliesx � y. If P is a chain, thenx < y implies

x � y.
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A posetP is calledsupercontinuousif for eacha ∈ P , a = ∨{x ∈ P : x � a}.

Example 2.

(1) Every chain(P,�) is supercontinuous. In this case, for everya ∈ P , if x < a, then
x �a. If

∨{x ∈ P : x < a} < a thena �a. Hence it follows thata = ∨{x ∈ P : x �a}
holds for everya ∈ P .

(2) Given a setX. Let P0(X) be the set of all finite subsets ofX. Then(P0(X),⊆) is
supercontinuous. Again,P0(X) is generally not a complete lattice. In general, ifm is a
cardinal, thenPm(X) = {A ⊆ X: |A| � m} is supercontinuous with respect to⊆. This
follows from the observation that{x} � A holds for everyx ∈ A,A ∈Pm(X).

(3) Let P be a supercontinuous poset andA = ↓A = {x ∈ L: x � y, for somey ∈ A}.
Suppose for anyD ⊆ A for which

∨
D exists inA then

∨
D is the supremum ofD

in L. ThenA is also a supercontinuous poset.

Although in every poset,x � y impliesx � y, but a supercontinuous poset need no
a continuous poset.

Example 3. Let E(N) = {A ⊆ N : |A| � 1 or |A| = ∞}. Then as a subposet ofP(N), E(N)

is a supercontinuous poset. Indeed, for eachx ∈ N one can easily see that{x} � {x} and
A = ∨{{x}: x ∈ A} holds for everyA ∈ E(N). On the other hand,A � N if and only
if A is a singleton. But the set of all singletons is not a directed set, that is the se{A ∈
E(N): A � N} is not a directed set. So(E(N),⊆) is not a continuous poset. Notice th
this poset is a dcpo.

Definition 4. Let P be a poset.

(1) Let x, y ∈ P . Definex �α y if for every net(xi)i∈I which lim-inf2-converges toy,
xi � x holds eventually.

(2) A posetP is calledα-continuous ifa = ∨{x ∈ P : x �α a} holds for everya ∈ P .

Remark 2.

(1) Obviously every supercontinuous poset isα-continuous. The converse is not true. It
easy to check that every finite lattice isα-continuous. But a finite lattice is superco
tinuous if and only if it is distributive.
A poset is constructed at the end of the paper which is continuous but notα-continuous
(see Example 4).

(2) If P is α-continuous, then for eacha ∈ P , a = ∨{x ∈ P : ∃z ∈ P,x �α z �α a}. This
is becausea = ∨{y ∈ P : y �α a} and for eachy �α a, y = ∨{x ∈ P : x �α y}.

Lemma 5. If P is a complete lattice, thenx � y if and only ifx �α y.

Proof. Supposex � y and(xi)i∈I is a net that lim-inf2-converges toy. It then follows that∨
{inf{xi : i � k}: k ∈ I } � y. Since{inf{xi : i � k}: k ∈ I } is a directed set andx � y,
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there existsk0 ∈ I such that inf{xi : i � k0} � x. So xi � x holds for all i � k0. Thus
x �α y.

The converse implication is true for all posets.�
Note that ifL is a complete lattice, then{x ∈ L: x � a} is a directed set for everya ∈ L.

Thus it follows that a complete lattice is continuous if and only if it isα-continuous.
Now letS be the class consisting of all pairs((xi)i∈I , x), where(xi)i∈I is a net that lim-

inf2-converges tox. Again one can easily show that for any posetP , the classS satisfies
the axioms (Constants) and (Subnets).

Proposition 1. If P is α-continuous, then the classS satisfies the axioms(Divergence) and
(Iterated limits).

Proof. (Divergence) Suppose that((xi)i∈I , x) is not inS . Since
∨{y ∈ P : y �α x} = x,

there isy �α x such thatxi � y does not hold eventually. PutJ = {i ∈ I : xi � y}. Then
(xj )j∈J is a subnet of(xi)i∈I which has no subnet lim-inf2-convergent tox.

(Iterated limits) Suppose(xi)i∈I lim-inf2-converges tox, and for eachi ∈ I , (xi,j )j∈J (i)

lim-inf2-converges toxi . By Remark 2(2),x = ∨{y ∈ P : ∃z ∈ P,y �α z �α x}. Thus in
order to show that the net(xi,f (i))i∈I lim-inf2-converges tox, it is enough to verify that if
y �α z �α x, thenxi,f (i) � y holds eventually. But this is similar to the proof of the ca
for lim-inf-convergence, so we omit it.�
Lemma 6. If P is a poset such that the classS satisfies the axiom(Iterated limits), thenP

is α-continuous.

Proof. The proof is similar to that of Lemma 4. For anya ∈ P , consider the collection
{(xi,j )j∈J (i): i ∈ I } of nets(xi,j )j∈J (i) that lim-inf2-converges toa. Let (xi)i∈I be the
constant net in whichxi = a, ∀i ∈ I . So for eachi ∈ I , (xi,j )j∈J (i) lim-inf2-converges
to xi . Thus by the assumption, the net(xi,f (i))(i,f )∈I×M lim-inf2-converges toa, where
M = �i∈I J (i) andI is equipped with the pseudo orders thatk � i holds for anyk, i ∈ I .
Thus there is a subsetA of P such that

∨
A � a and xi,f (i) � y holds eventually for

any y ∈ A. Then one can verify that
∨

A = a and A ⊆ {x ∈ P : x �α a}. Thus P is
α-continuous. �
Theorem 2. For any posetP the lim-inf2-convergence is topological if and only ifP is
α-continuous.

Remark 3. SupposeP is a lattice and(xi)i∈I is a net inP that lim-inf2-converges tox.
Then there is a subsetM of P with

∨
M � x and for eachm ∈ M , xi � m holds eventually

Put K = {∨D: D is a finite subset ofM}. ThenK is up-directed and for eachk ∈ K ,
xi � k holds eventually. Hence(xi)i∈I lim-inf-converges tox. Hence in a lattice the tw
convergences are equivalent.

The following is an example of a poset in which the two convergences are not eq

lent.
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Example 4. The following example is a modification of one in [5]. LetP = {T } ∪
{a1, a2, . . .} ∪ {b1, b2, . . .}. The order� onP is defined as follows:

(1) ai < T , bi < T for all i = 1,2,3, . . . ;
(2) if k � i, thenak � bi .

By definition, if i �= j thenai andaj are incomparable andbi andbj are incomparable
too. Note thatT is the top element. LetB = {b1, b2, . . .}. Then clearly

∨
B = T . Since

for eachbi ∈ B, an � bi whenevern � i, thus the net(ai)i∈N lim-inf2-converges toT .
However(ai)i∈N is not lim-inf-convergent toT because there exists no up-directed seD

with
∨

D = T and for eachd ∈ D, ai � d holds eventually.
One can easily check thatT � T , ai � ai andbi � bi for all i. ThusP is a continuous

poset (actually a continuous dcpo).
On the other hand, thisP serves also as an example of poset which is continuou

not α-continuous. Indeed, consider the elementa1 of P . Since the net(ai)i∈N lim-inf2-
converges toT , it lim-inf 2-converges toa1 as well. Butai � a1 does not hold even
tually, thusa1 �α a1 does not hold. The only elementx satisfyingx �α a1 is b1. So∨{x ∈ P : x �α a1} = b1 �= a1, henceP is notα-continuous.
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