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Abstract

The lim-inf convergence in a complete lattice was introduced by Scott to characterize continuous
lattices. Here we introduce and study the lim-inf convergence in a partially ordered set. The main
result is that for a poseP the lim-inf convergence is topological if and only #f is a continuous
poset. A weaker form of lim-inf convergence in posets is also discussed.
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1. Introduction

Let P be a partially ordered set (or poset, for short). The Birkhoff—=Frink—-McShane
definition of order-convergence if is defined as follows (see [1-3]): an@t);c; in P is
said to o-converge tp € P if there exist subsetd andN of P such that

(1) M is up-directed andV is down-directed,
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(2) y=supM =inf N, and
(3) foreachu € M andb € N, there exist& € I such thatz < x; < b hold for alli > k.

In general, o-convergence is not topological, i.e., the p&setay not be topologized
so that nets o-converge if and only if they converge with respect to the topology. One basic
problem here is: for what posets is the o-convergence topological? Although it has long
been known that in every completely distributive lattice the o-convergence is topological,
one still has not been able to find a satisfactory necessary and sufficient condition for
o-convergence to be topological.

In [4] the lim-inf-convergence in complete lattices is introduced. A @&};<; in a
complete lattice lim-inf-converges to if x < lim, ,x; = inf{sup>,{x;}: k € I}. It was
proved that for a complete lattide, the lim-inf-convergence is topological if and only if
L is a continuous lattice. The notion of continuous lattice was introduced by Dana Scott
as a generalization of algebraic lattices and has found its applications in many fields such
as computer science, topology and logic. Later on, continuous direct complete posets (or
continuous dcpos) was introduced as an appropriate generalization of continuous lattices
(see [5]). In this note we consider the lim-inf-convergence in an arbitrary partially ordered
set. We prove that the lim-inf-convergence in a poset is topological if and only if the poset
is a continuous poset. The definition of continuous poset is similar to that of continuous
dcpo. We shall also consider another type of lim-inf-convergence, the counterpart of the
02-convergence studied in [6,7], and prove a similar characterization of the poset for which
this convergence is topological.

2. Lim-inf-convergence and continuous partially ordered sets

A net (x;);c; in a complete lattice is said to lim-inf-converge to an elemerit
x =lim;;x; =suginf{x;: i > k}: k € I}. Since in a poset the infimum of a subset need
not exists, thus we have to define the lim-inf-convergence in an arbitrary poset in a differ-
ent way. Throughout of the paper we shall 3get and A A to denote su@ and infA,
respectively.

Definition 1. A net (x;);<; in a posetP is said to lim-inf-converge to an elemept P if
there exists an up-directed subsétof P such that

(A1) \/ M exists with\/ M > y, and
(A2) foranym € M, x; > m holds eventually (that is, there exigts I such that,; > m
foralli > k).
In this case we write = lim-inf x;.

Remark 1.

(1) Let P ={a,b} U {b;: i € N}, whereN denotes the set of all natural numbers. The
order onP is defined bya < b, b1 <bs <--- < b. Let S = (x;);en be the net where
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x; =b;,Vi e N. TakeM = {b;: i € N}. ThenM is an up-directed subset &f with

\/ M =b > a. In addition, for eactn € M there isk € N such thatr; > m whenever

i > k. ThusS lim-inf-converges to the element However, there is no up-directed set
M C P such that\/ M = a and for everyx € M, x; > x holds eventually. Hence the
inequality for\/ M > y in condition (A1) cannot be reduced to the equaljiy = y.

(2) Let(x;);c; be anetinP such thate =inf{x;: i € I} exists. The singletoM = {x} is
an up-directed sely/ M = x andx; > x holds for alli, so (x;);e; lim-inf-converges
tox.

(3) If (x;)ies lim-inf-converges tox, then it lim-inf-converges to everywith y < x. Thus
the lim-inf-limits of a net is generally not unique.

For a posetP, the way-below relatiorg on P can be defined in the same way as for
dcpos. We say that is way belowy, x <« y, if for any up-directed seb C P for which
\/ D exists andy < \/ D, then there ig/ € D such thatx <d.

From the definition of the way-below relation we see easily thatdfy « z < w, then
x < w,andifx <y, thenx < y.

Lemma 1. If x andy are two elements of a poset, thenx « y if and only if for any net
(xi)ie7 Which lim-inf-converges tg, x; > x holds eventually.

Proof. Supposer « y and(x;);<; lim-inf-converges toy. Then there exists an up-directed
setM such thaty < \/ M and for each: € M, x; > a holds eventually. Since < y, there
isa € M with x < a. Hencex; > a > x holds eventually.

Conversely, suppose the condition is satisfiedDIfis an up-directed subset with
\/ D >y, then the netx;)4ep lim-inf-converges toy, wherex; = d for eachd € D.
By the assumption, there ig € D such thatc; > x. Thusx < y. O

Definition 2. A poset P is called a continuous poset if for eagh= P, the set{x € P:
X < a} is an up-directed set and=\/{x € P: x < a}.

It can be seen thak is continuous if and only it for eacth € P there is an up-directed
subsetD of {x € P: x <« a} such that\/ D = a. The way-below relatiorg on a contin-
uous poset is interpolating, i.e.,if< y, then there ig with x <« z < y (see [4] for the
proof of the interpolating property of continuous dcpos).

Example 1. For any sefX, let Po(X) be the set of all finite subsets &f Then(Po(X), <)
is a continuous poset. This follows from the observation that for daelPo(X), A K A.
However,Pp(X) is not direct complete unless is a finite set.

The lemma below follows from Lemma 1.

Lemma 2. If P is a continuous poset, then a net);<; in P lim-inf-converges ty if and
only if for eachx < y, x; > x holds eventually.
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Let £ be the class consisting of all the pai(s;);c;, x) of a net(x;);c; and an element
x in a posetP with x = lim-inf x;. The clas<C is called topological if there is a topology
on P such that((x;);c;, x) € £ if and only if the net(x;);c; converges ta with respect to
the topologyr. By Kelley [8], £ is topological if and only if it satisfies the following four
conditions:

(Constants) If (x;);<; is a constant net with; = x, Vi € I, then((x;)ics, x) € L.

(Subnets) If ((xi)ier,x) el and(yj)jej is a subnet ofx;);cs, then((yj)jej, x)eL.

(Divergence) If ((xi)ies,x) isnotinL, then there exists a subr@t;) jcs of (x;);e; Which
has no subndtzy)rex SO that((zx)rek, x) belongs tal.

(terated limits) If ((x;)ics,x) € £, and if ((xi,j) jesq), xi) € L for all i € I, then
((xi,rG)) G, frerxm» X) € L, whereM =[T;c; J(0).

Lemma 3.

(1) For every poset the class satisfies the axiomEonstants) and (Subnets).
(2) If P is a continuous poset, thehalso satisfies the axionBivergence) and (Iterated
limits).

Proof. (1) The axiom Constants) is clearly satisfied.

(Subnets) Suppose now that(x;);es, x) € £ and D is up-directed such that< \/ D
and for eachz € D, x; > a holds eventually. Thus for any subn@t;) ;s of (x;);e; and
everya € D, y; > a also holds eventually. Thugy;)jes, x) € L.

(2) Now assume thak is continuous.

(Divergence) Suppose thaf(x;);cs, x) is not in L. Since the seD = {z € P: 7 < x}
is an up-directed set whose supremum equatbere existg € D such that for any € 1
thereis aj € I with j >i andx; # z. Let J be the subset of consisting of alk € I such
thatx; 2 z. ThenJ is co-final in/ and(x;)jes is a subnet ofx;);c;. In addition, from
Lemma 1 it follows that there is no subr@f)cex Of (x;) e such that((zi)kek, x) € L.
Hence axiomDivergence) is satisfied.

(iterated limits) Assume((x;);es, x) € £ and ((x;, ) jes), xi) € L for everyi e I. We
show that((x;, ri))a, fyerxm. x) € L, whereM =[], J(i). By Lemma 2, it is enough to
show that for each < x, x; ;) = z holds eventually. Choose such thatt < w < x.
There existsip such thatx; > w for all i > ig. Thusz « x; for all i > ip. Again as
(xi,j) jesq) lim-inf-converges tay;, so for each > ig there existg (i) € J(i) such that
if jeJ@) andj > g(i) thenx; ; > z. Defineh € [[,.; J (i) such that:(i) = g(i) if i > i
andh(i) is any element iy (i) otherwise. Now if(i, f) € I x M and(i, f) > (ig, h), then
Xi, f(i) = z. The proof is complete. O

Lemma 4. If, in a posetP, the classC satisfies the condition@terated limits), then P is
continuous.

Proof. Leta € P and letD, = {{x; ;j};jcsi): i € I} be the family of all directed subsets
of P whose supremum exist and is abaweFor eachi € I, letx; = \/{x; j: j € J(i)}.
Then for each € I, we havex; > a. Moreover, sincda} is a member ofD,, we have
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inf{x;: i € I} = a. Let the setl be equipped with the largest pseudo orderigrhat

is i < k holds for any twoi, k € I. The order is transitive and reflexive but need not be
antisymmetric. Therix;);c; is a net and, by Remark 1(2) it lim-inf-convergesdoFor
each{x; ;: j € J(i)} € D,, define an order od (i) by j1 < j2 if x; j; <x; j,. ThenJ (i) is
adirected set antk; ;) jes() is a netinP, which obviously lim-inf-converges tg;. Now
since the conditioniferated limits) is satisfied, the netx; r))q, r)erxm lim-inf-converges
to a, whereM = [],.; J(i). By the definition of lim-inf limit, there exists an up-directed
subsetD C P suchthat\/ D > a and for eacl € D, x; 7, > d holds eventually. We now
show thatD C {x € P: x < a}. Letd € D. For any directed set C P with \/ A > a,

A = {xp, j: j € J(m)} for somem € I. There existiy, fy) such that(i, f) > (4, fa)
impliesx; iy > d. Nowm > iz (note that the order oh is the biggest pseudo order, that
isi <k foranyi, k € I), hencex,, r,in) = d. Note thatx,, r,um) € A, thusd < a. ThusD

is an up-directed subset pf € P: x < a}and\/ D > a. Thusa < \/{x € P: x K a} < a,
which impliesa = \/{x € P: x <« a}. HenceP is continuous. O

The combination of Lemmas 3 and 4 deduces the following theorem.

Theorem 1. For any posetP the lim-inf-convergence is topological if and onlyHfis a
continuous poset.

3. Lim-inf,-convergence

In [7], the o»-convergence was considered (in [6] this convergence is called 2-con-
vergence). This convergence can be generalized by replacing directed subsets with ar-
bitrary subsets. Here we consider only the limpiobnvergence, a part of generalized
02-convergence for lim-inf-convergence. We shall establish a characterization for this con-
vergence to be topological.

Definition 3. A net (x;);<; in a posetP is said to lim-ing-converge tor € P if there exists
a subsei C P, such that

(B1) \/ M exists andr < \/ M, and
(B2) for eachn € M, x; > m holds eventually.

Obviously if (x;);ey lim-inf-converges tox, then it lim-inf-converges ta.

In [9] Raney established a characterization of completely distributive lattices using the
long-below relation<.

A complete latticeL is completely distributive if and only if for every € L, a =
\/{x € L: x <a}, wherex < y if for any subsetA C L with \/ A > y, there existg € A
such thatr < z.

For any two elements andy in a posetP, we definex < y, if for any subsetA C P
for which \/ A exists andy < \/ A, there existg € A with x < z. It is easy to verify that
(i) the relation< is transitive; (ii)x < y impliesx < y. If P is a chain, then < y implies
x<y.
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A posetP is calledsupercontinuou§ for eacha € P,a =\/{x € P: x <a}.

Example 2.

(1) Every chain(P, <) is supercontinuous. In this case, for everg P, if x < a, then
x<a.lf \/{x € P: x <a} <athena <a. Hence it follows thatt = \/{x € P: x <a}
holds for every: € P.

(2) Given a setX. Let Po(X) be the set of all finite subsets a&f. Then (Po(X), Q) is
supercontinuous. Agaiffo(X) is generally not a complete lattice. In generalgifs a
cardinal, ther?,,(X) = {A C X: |A| < m} is supercontinuous with respectdo This
follows from the observation thdgk} <t A holds for everyx € A, A € P, (X).

(3) Let P be a supercontinuous poset aAd= |A = {x € L: x < y, forsomey € A}.
Suppose for anyp C A for which \/ D exists inA then\/ D is the supremum ob
in L. ThenA is also a supercontinuous poset.

Although in every posely <y impliesx < y, but a supercontinuous poset need not be
a continuous poset.

Example3. Let E(N) ={A CN:|A| <1or|A| = oco}. Then as a subposet Bf(N), £(N)

is a supercontinuous poset. Indeed, for ea@hN one can easily see théat} < {x} and

A =\/{{x}: x € A} holds for everyA € £(N). On the other handA « N if and only

if A is a singleton. But the set of all singletons is not a directed set, that is thd set
E(N): A « N} is not a directed set. S& (N), ) is not a continuous poset. Notice that
this poset is a dcpo.

Definition 4. Let P be a poset.

(1) Letx,y e P. Definex <, y if for every net(x;);c; which lim-inf,-converges toy,
x; > x holds eventually.
(2) A posetP is calleda-continuous ifa = \/{x € P: x <4 a} holds for everyu € P.

Remark 2.

(1) Obviously every supercontinuous posetisontinuous. The converse is not true. It is
easy to check that every finite latticedscontinuous. But a finite lattice is supercon-
tinuous if and only if it is distributive.

A poset is constructed at the end of the paper which is continuous butemitinuous
(see Example 4).

(2) If Pisa-continuous, then foreache P,a =\/{x € P: 3z € P, x <4 7z Ky a}. This

is because = \/{y € P: y <y a}andforeacly <y a,y=\{x e P: x Ly y}.

Lemmab. If P is a complete lattice, then < y if and only ifx <, y.

Proof. Supposer « y and(x;);¢s is a net that lim-ing-converges tg. It then follows that
\A{inf{x;: i > k}: ke I}>y. Since{inf{x;: i > k}: k € I} is a directed set and < y,
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there existskg € I such that infx;: i > kg} > x. Sox; > x holds for alli > kg. Thus
XLy Y.
The converse implication is true for all posetsa

Note that ifL is a complete lattice, thelx € L: x < a} is a directed set for everye L.
Thus it follows that a complete lattice is continuous if and only if ikisontinuous.

Now letS be the class consisting of all paii&;);<s, x), where(x;);<; is a net that lim-
inf,-converges toc. Again one can easily show that for any po#etthe classS satisfies
the axioms Constants) and Gubnets).

Proposition 1. If P is «-continuous, then the classsatisfies the axion{®ivergence) and
(Iterated limits).

Proof. (Divergence) Suppose that(x;);cs, x) is notinS. Since\/{y € P: y <y x} = x,
there isy < x such thaty; > y does not hold eventually. Put={i € I: x; # y}. Then
(x;)jes is a subnet ofx;);c; which has no subnet lim-ipfconvergent tox.

(Iterated limits) Suppose&x;);e; lim-infa-converges tar, and for eachi € 1, (x; ;) jes)
lim-inf,-converges ta;. By Remark 2(2)x = \/{y € P: 3z € P,y K4 7 < x}. Thus in
order to show that the nét; r¢))ie;s lim-info-converges ta, it is enough to verify that if
Y Lo 2 Lo X, thenx; r;) > y holds eventually. But this is similar to the proof of the case
for lim-inf-convergence, so we omit it. O

Lemma 6. If P is a poset such that the classsatisfies the axiorfiterated limits), then P
is ¢-continuous.

Proof. The proof is similar to that of Lemma 4. For aaye P, consider the collection
{(xi,))jes): i € I} of nets(x; ;) jes) that lim-inf,-converges tar. Let (x;);c; be the
constant net in whichy; = a, Vi € I. So for eachi € I, (x; ;) jesq) lim-infa-converges
to x;. Thus by the assumption, the n@t 7)) g, r)erxm lim-infa-converges tar, where
M =Tl,¢;J (i) and] is equipped with the pseudo orders that i holds for anyk,i € 1.
Thus there is a subset of P such that\/ A > a andx; r;) > y holds eventually for
any y € A. Then one can verify thadtf/ A =a and A C {x € P: x <4 a}. ThusP is
a-continuous. O

Theorem 2. For any posetP the lim-inb-convergence is topological if and only # is
a-continuous.

Remark 3. SupposeP is a lattice andx;);<; is a net inP that lim-inf,-converges tor.
Then there is a subsgf of P with \/ M > x and for eaclm € M, x; > m holds eventually.
Put K = {\/ D: Dis afinite subset oM}. Then K is up-directed and for eache K,
x; > k holds eventually. Henceéx;);<; lim-inf-converges tax. Hence in a lattice the two
convergences are equivalent.

The following is an example of a poset in which the two convergences are not equiva-
lent.
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Example 4. The following example is a modification of one in [5]. L&t = {T} U
{ai,a», ...} U{b1, by, ...}. The order< on P is defined as follows:

(1) ai<T,b;<Tforali=1,23,...;
(2) ifk>1i,thena; > b;.

By definition, ifi # j theng; anda; are incomparable arlg andb; are incomparable
too. Note thatT is the top element. LeB = {b1, by, ...}. Then clearly\/ B = T. Since
for eachb; € B, a, > b; whenevem > i, thus the ne{q;);cn lim-infy-converges tdr'.
However(q;); < is not lim-inf-convergent td” because there exists no up-directedBet
with \/ D =T and for each! € D, a; > d holds eventually.

One can easily check th@t« T, a; <« a; andb; < b; for all i. ThusP is a continuous
poset (actually a continuous dcpo).

On the other hand, thi® serves also as an example of poset which is continuous but
not «-continuous. Indeed, consider the elemenof P. Since the neta;);cn lim-info-
converges tar, it lim-infy-converges tai; as well. Buta; > a; does not hold even-
tually, thusai <, a1 does not hold. The only elementsatisfyingx <, a1 is b1. So
\/{x € P: x <4 a1} = b1 # a1, henceP is nota-continuous.
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