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1. INTRODUCTION 

Let F,, r > 1, be a free group with r generators. In this paper we study a 
principal series and a complementary series of irreducible unitary represen- 
tations of F,, which are defined through the action of F, on its Poisson 
boundary, relative to a simple random walk. We show that the regular 
representation of F, can be written as a direct integral of the representations 
of the principal series and that the resulting harmonic analysis on the free 
group bears a close resemblance with the harmonic analysis of SL(2, IR). 

In Section 2 we introduce the algebra of radial functions, i.e., functions 
which depend only on the length Ix] of a word x, and we define spherical 
functions as the radial eigenfunctions of the convolution operator by p,, 
where ,~i denotes the probability distribution of the simple random walk. 
Spherical functions are naturally indexed by a complex number z, in such a 
way that, if 4, is spherical, then ~1~ * 4, = y(z) $,, with y(z) = [(2r - 1)’ + 
(2r - l)‘-‘]/2r, and #z(e) = 1. Thus the spherical function 4, is uniquely 
determined by the corresponding eigenvalue of the convolution operator by 
,u,. In our context, this operator plays the role of the Laplace-Beltrami 
operator on semisimple Lie groups [ 121: for other aspects of this analogy, 
see [3, 10, 131. We also show that there exist complex numbers cz, c; such 
that #z(x) = c,(2r - l)-ziXl + ci(2r - l)(r-‘)lx’ if (2r - l)“-’ # 1, and 
#Jx) = (1 + 1x1 (r - l)/r)(2r - l))““‘, otherwise. As a consequence, 4, is 
bounded if and only if 0 < Re z < 1, and it is positive definite if and only if 
-1 < y(z) < 1. The decomposition of 4, as a linear combination of 
exponentials is the analogue of Harish Chandra’s asymptotic expansion for 
spherical functions on semisimple Lie groups (see Section 9.1 of [25], in 
particular Theorem 9.1.1.1 and Theorem 9.1.1.2). 
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In Section 3 we introduce representations x, of F,, acting on L2(L?, v), 
where (0, V) is the Poisson boundary of F,, relative to ,u,. If P(x, w)=dvJdv 
is the Poisson kernel relative to the action of F, on R, and l E L’(B, v), we 
let x,(x) r(w) = P’(x, CO) @-‘CO). Denoting by 1 the function identically one 
on Q, we have (Jx) = (a,(x) 1, 1). The representations 71, are unitary if 
-(2r - l)“‘/r < y(z) < (2r - l)“‘/r (principal series) and unitarizable if 
Im z = kn/ln(2r 2 1) (complementary series). We prove that if Re z # 0, 1, 
the unitary representations of the principal and complementary series are 
irreducible. The main difference from the corresponding case for the 
representations of SL(2, I?) is due to the fact that the action of F, on its 
Poisson boundary is not transitive. We base our reasoning on the heuristic 
argument that, since the free group can be realized as a lattice in SL(2,1R), 
for large integers n an appropriate average of the operators Z,(X) over the 
words of length it should be similar to the average I, n(k) dk, where K is a 
maximal compact subgroup of SL(2, IR) and 7c belongs to the principal or 
complementary series of SL(2, IR). This integral average over K gives the 
projection on the function which are constant on the Poisson boundary of 
X(2, I?). In our case, we define averages T,, of the operators n,(x), 1x1 = n, 
in such a way that, for every <E L*(R, v), T,< converges to the constant 
I, < dv. Irreducibility then follows from the fact that 1 is a cyclic vector. 

In Section 4 we give an explicit expression for the resolvent (,D, - y(z))-’ 
as the operator of convolution by a constant multiple of (2r - l)Pr’x’. We 
also show that the regular representation decomposes as a direct integral of 
the representations of the principal series (z,,,, i,}. The corresponding 
Plancherel measure can be expressed in terms of the coefficients of the 
decomposition of the spherical function #,,2+il as a sum of exponentials. 
This is the analogue of the expression of the Plancherel measure of a 
semisimple Lie group in terms of Harish Chandra c-function (see Theorem 
9.2.1.5 of [25]). The Plancherel formula is then applied to give a proof of the 
analogue of Herz’s principe de majoration [ 7, 171. We show that, for every 
coefficient f * g of the regular representation of the free group, there exist 
functions 5, rl EL*(Q) such that f * g*(x)1 < h12(x> 5, r>, and Ilfl12 II gll, = 
II4 Lqn) II v lIL2W. 

Spherical functions and radial functions on free groups have been studied 
by Cartier [3,4] and Sawyer [23] in the context of random walks on 
homogeneous trees. In particular, the Plancherel measure was computed in 
[4, 231. Later, but independently, Cohen studied the algebra of radial 
functions [5]. Cohen’s work was used by Pytlik 1211 to compute again the 
Plancherel measure; he also proved that the von Neumann algebra generated 
by radial functions acting on 12(F,.) by convolution is maximal Abelian. 

Cartier’s point of view is different from ours. He is interested in the group 
G of isometries of a homogeneous tree (endowed with its natural metric). 
This group is the product of a compact subgroup K and a closed subgroup 
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isomorphic to F, [24]. Bi-invariant functions with respect to K restrict to 
radial functions on F,, and the Poisson boundary of F, can be naturally 
identified with a homogeneous space for K. While all the theory of radial 
functions could be obtained within this framework, the irreducibility of the 
representation of the principal and complementary series of F, cannot be 
deduced from the irreducibility of the corresponding representation of the 
group of isometries of the tree. 

2. SPHERICAL FUNCTIONS 

We denote by Ix) the length of the word x E F,, i.e., the number of letters 
of the word x in its reduced form. A complex-valued functionf on F, will be 
called radial if it depends only on the length of a word, that is, iff(x) =f(y) 
whenever lx]= 1 y 1. The space of all finitely supported radial functions will 
be denoted by M’. Denote by e the identity in F,, let pu, = 6, be the Dirac 
function at e, and ,u, be the function which takes the value 1/2r(2r - l)‘-i 
on all words of length n, and zero otherwise. Clearly every element of ~8’ is a 
linear combination of the pn’s. The following lemma is known [ 3,4] and its 
proof is included for completeness. 

LEMMA 1. ,c&’ is a commutative convolution algebra generated by ,q, and 
jf,; in fact 

1 2r- 1 
PI *rlln=z;illn4 + zr Pnt1. (1) 

Proof: Observe that ,ui * p,,(x) = (1/2r) C,,, =, ,~,,(yx); on the other hand 
(y( = 1 and pn(yx) # 0 implies Ix]= n - 1 or n + 1. If Ix]= n - 1, there are 
2r - 1 words y of length 1 such that ( yx] = n; on the other hand, if (x] = 
n + 1, there is only one word y such that ] y J = 1 and I yx] = n. This yields 
the identity (l), which implies that J#’ is the commutative algebra generated 
by ,uO = 6, and ,u, . 

DEFINITION. A function (b defined on F, is callled spherical if: 

(1) Q is radial; 
(2) 4 *f = cd for every fE -t4, where c is a constant depending on f 

and 4; 

(3) 4(e) = 1. 

If f is any function on F,., we denote by 8f the radial function whose 
value on the words of length n is (1/2r(2r - l)“-‘) C,,,=,,f (x). Since there 
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are exactly 2r(2r - l)“-’ words of length n, 8” is just the average offon the 
words of equal length. In particular, if we adopt the notation 

(whenever it makes sense), then (8f, 8g) = (8” g) = (f, 8g). For any 
function f we write (A(x)f)(y) =f(x-‘y) and @(x)f)(y) =f(yx). 

LEMMA 2. If 4 is not identically zero the following are equivalent: 

(1) # is spherical, 

(2) a@(x) 4)(Y) = 4(x) 4(Y), 
(3) 4 is radial and the functional Lf = (f; 4) is multiplicative on the 

convolution algebra ,d. 

Proof: Let 0 be spherical, and x, y E F,; define a,(y) = 8(1(x-‘) d)(y). 
Set F,,(x) = as,(x), where 6, is the Dirac function at y. Then F, E J, and 

4 * F,(x) = (L(x-‘) $3 86,) = (@,, 6,) = Q,(Y). 

Since d is spherical, Q,(y) = cd(x). By comparison with the obvious identity 
Q,(y) = 4(y), it follows that c = o(y) and Q,(y) = &Y) d(y). Thus (1) 
implies (2). 

If (2) holds, choose x such that o(x) # 0, and write d(y) = 
Z@(x) d)(y)/@(x); this shows that 4 is radial. Furthermore, ifS, g E ZJ’, then 

L(f* g)= x f(x)g(Y)qqxY)=~f(x)(4-1)~~g) 
X.Y x 

= Cf (Gwx-‘) $8, g> 
x 

= 2 f(x) g(y) 4(x) 4(Y) = Lf . Lg. 
X,Y 

Thus (2) implies (3). 
If (3) holds and fEd, then 4 *f(x)=L(f * S,)=# *f * 6,(e)= 

Lf . L6, = (Lf) . 4(x). Furthermore, choosing f = 6,) this means d(x) = 
4(e) 4(x), hence 4(e) = 1. Thus $ is spherical, and (3) implies (1). 

COROLLARY. Let a be any word of length one in F,: then the values of 
the spherical function 6 satisfy the identity 

@(a”+‘) = ~NWa”)-&-j-W~l). (2) 
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In particular, a spherical function is uniquely determined by its value on the 
words of length 1. 

Proof. Since 4(a”) = (4, ,u,), and the functional defined by $ is 
multiplicative on XZ’, Lemma 1 yields 

from which (2) readily follows. 
We now consider the Poisson boundary of F,, as in [ 10, 131. Let R be the 

set of all infinite reduced words in the generators of F, and their inverses. 
The space R is compact in the product topology, and F, acts on Q, by left 
multiplication, as a group of homeomorphisms. For each x E F,, 1x1 = n, let 
E(x) be the subset of R consisting of all infinite words whose first n letters 
coincide with the crresponding letters of x. Each E(x) is open in 0 and the 
topology of B is generated by the basis {E(x), x E F,}. Let us define a 
probability measure v on R by the rule r@(x)) = 1/2r(2r - l)‘-r where 
n = 1x1. The measure v is quasi-invariant with respect to the action of F, on 
I2: for every x E F, and for every measurable subset A of Q, its translate V, 
defined by v,(A) = v(x-‘A) is absolutely continuous with respect to v. To 
compute the Radon-Nikodym derivative, let x E F,, [xl= n, w E R, and 
consider the word w, of length n consisting of the first n letters of w; define 
6(x, w) = n - Jx- lo,\. Then it is clear that 

2 (w) = (2r - l)6(x,w) 

The action of F, on 0 defines a convolution product of a measure on F, and 
a measure on Q; obviously p, * v = (1/2r) CIX, = I v, = v. The function 
P(x, w) = dv,(w)/dv, defined on F, x R, is called the Poisson kernel of F, 
associated to the simple random walk defined by ,u,. 

The following cocycle identities are immediate: 

P(xy, 0) = P( y, x- ‘Co) * P(x, w), 

P(e,o)= 1. 

The next result shows how spherical functions arise from the Poisson kernel. 

THEOREM 1. For each z E C the function 

O,(x) = I, P'(x, ~1 dv(o) 
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’ spherical, 
;S2r- 1)‘-2). 

and ,u, * 4, = y(z) q5,, with r(z) = (2r)-’ ((2r - 1)’ + 
c onversely, every spherical function can be obtained in this 

way. Furthermore, 4,(x) = ~(P’(x, w)). 

Proof: By the cocycle identity, 

WY) = i, WY9 x - ‘w) P’(x, w) dv(o). 

Clearly, for every 0 E Q, 

,$, P’(y, 0) = (2r - 1)’ + (2r - l)r-’ 

which is independent of o, hence equal to 2r(#,,,u,). Therefore the cocycle 
indentity implies that P’(x, o) * ,u, = (4,) ,D,) P’(x, w), and 

4, *h(x)= Pr)-‘J c P”(y, x-‘w) P’(x, w) dv(w) 
a lYl=l 

= (h 7 PI > 4,(x) = Y(Z) h(x)* 

Furthermore, d, is radial because the distribution of P(x, w) with respect to v 
depends only on the length of x. Since tiz(e) = 1 and 6, and ,u, generate the 
algebra &, we conclude that 4, is spherical. Conversely, let 4 be any 
spherical function and let 1x(= 1. Choose z E C so that 4(x) = 
(2r)-’ [(2r - 1)’ + (2r - l)‘-‘1 (this is possible because the function y(z) is 
surjective). Then 4,(x) = g(x) when 1x1 = 1. By the corollary to Lemma 2, 4, 
and 4 coincide on the whole of F,. Finally, ~(P’(x, CO)) * ,D, = 
~‘(P’(x, u> *cl,> = (#,YPl> mu% 0)) and a(P’(e, 0)) = 1, whence 
a(P’(x, CO)) = 4,(x) for every x E F,. 

Remark 1. The first part of the proof shows that 4,(x) = #r-,(x). More 
generally, 4, = 4, if and only if y(z) = y(w). 

Let now z E C, and denote by 4, the corresponding spherical function. Set, 
as above, y(z) = (2r))’ [(2r - 1)’ + (2r - l)‘-‘1. The next statement gives 
an expression of 4, as a linear combination of exponentials. 

THEOREM 2. (i) Zf D = Re z, then, for every x E F,, 

I h(x)l G 4,(x)* 

(ii) Zf (2r - I)“-’ # 1, denote by (err cl) the solution of the linear 
system c+c’= 1, c(2r - 1))’ + c’(2r - I)‘-’ = y(z). Then, for every 
xE F,, 

qbz(x) = c,(2r - l)-z’Xi + ci(2r - l)(z-‘)‘X’. 
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In particular, c, = (2r)-‘[(2r - l)‘-’ - (2r - l)‘-‘]/[(2r - 1))’ - 
(2r - l)‘-‘I, c; = c,-, and 

9z=C,~,+c’-,~‘-,, 

where h,(x) = (2r - l)-z’X’. 
(iii) Zf (2r - 1)2L-1 = 1, then,fir every x E F,, 

4,(x) = (1 + Ix] (r - l)/r)(2r - l)-z’X’. 

ProoJ Observe that P(x, w) is positive, and, if cr = Re z, then 
] P’(x, w)] = PO(x, w): this proves (i). To prove (ii), suppose 
(2r - 1)2z-1 # 1. Then (2r - 1))’ - (2r - l)‘-’ # 0, hence the linear system. 
c + c’ = 1, c(2r - l)-’ + c’(2r - I)‘-’ = y(z) is nonsingular. Let (cL, c;) be 
the solution of this system and form the function f(x) = c,(2r - l)-z’X’ + 
ci(2r - l)(r-l)‘x’. Thenfis radial,f(e) = 1 andf(x) = y(z) = d,(x) whenever 
1x1 = 1. As a consequence, p, *f(e) = y(z). By the corollary to Lemma 2, in 
order to prove that f = 4, it remains to show that p, *f(x) = y(z)f(x) for 
every x f e. Set h,(x) = (2r - l)-z’x’: we now show that, if x # e, 
p, * h,(x) = y(z) h,(x). Indeed, when I y] = 1, h,(xy) = (2r - l).-’ h,(x) if 
]xyl = 1x1 + 1, and h,(xy) = (2r - 1)’ h,(x) if lxyl = Ix] - 1. Therefore 

p, * h,(x) = (2r)-’ C h,(xy) = (2r)-‘[(2r - l)‘--r + (2r - l)‘] . h,(x) 
lYl=’ 

= Y(Z) * k(x). 

Since f = c,h, + cih, --L and y(z) = y( 1 - z), (ii) is proved. To prove (iii), 
suppose (2r - 1) “-’ = 1, and let h,(x) = (2r - l)-‘I”‘, k,(x) = 1x1 h,(x) and 
q(x) = (1 + 1x1 (r - 1)/r) h,(x) = h,(x) + r-‘(r - 1) k,(x). Then q(e) = 1, 
and if 1x1= 1, one has 

q(x)=(2r- 1))‘(1 +(r- l)/r)=r-‘(2r- l)‘-‘=y(z) 

because (2r - 1)’ = (2r - l)‘-‘, by the hypothesis. Therefore p, * q(e) = 
y(z). It remains to show that pu, * q(x) = y(z) q(x) for every x # e. By the 
proof of part (ii), we know that this convolution equation is satisfied by the 
function h,; therefore it suffices to show that k, satisfies the same equation, 
i.e., p, * k,(x) = y(z) k,(x) for every x # e. Indeed, when x # e, 

(2r)-’ c k,(xy) = (2r)-’ [(2r - l)‘-‘(lx] + 1) + (2r - l)‘(]xl - I)] h,(x) 
lYl=’ 

= Y(Z) . k,(x), 

using again the fact that (2r - l)‘--z = (2r - 1)‘. 



288 FIG&TALAMANCAAND PICARDELLO 

Denote by 1: the completion of M’ in the I’ norm. An immediate conse- 
quence of Lemma 2 is that a spherical function d determines a continuous 
multiplicative functional on 1: if and only if $ is bounded. Let z E C, and let 
4, be the corresponding spherical function. By means of Theorem 2, we can 
now characterize the subset of C associated to bounded spherical functions. 

COROLLARY. (i) The spherical function 4, is bounded if and only if 
O<Rez< 1. 

(ii) For every p > 2 (p # a~), 4, E P(F,) if and only if l/p < Re z < 
1 - l/p. 

ProoJ: If 0 < Re z < 1, it follows immediately by parts (ii) and (iii) of 
Theorem 2 that 4, is bounded. Conversely, if Re z < 0 or Re z > 1, then 
Theorem 2, part (ii) implies that lim,,,,, /$Jx)] = co. This proves (i). A 
similar argument proves (ii). Indeed, let c = Re z, and for a given p such that 
2 <p < 00, suppose l/p ( c < 1 - l/p. If (2r- l)2Z-’ # 1, then 1 -pa and 
1 +p(a - 1) are both negative, and by Theorem 2 one obtains the estimate 

< c f [(2r- 
n=l 

where a is any word of length 
(2r- 1)22-l = 1, then Rez=i 

lYPU + (2r- l)“+n+r)] < co, 

1 and C is a constant. On the other hand, if 
and by part (iii) of Theorem 2 one has 

00 
ll~,ll; < c 1 n(2r- 1)n--np’2 < co 

II=1 

since 2 < p < co. Vice versa, if u = Re z < l/p, then 

Il4zll:: - g (2r - 1)” I#z(a”)(p = co 
“=I 

because the terms of the series behave asymptotically as (2r - l)n(l-prr). An 
analogous estimate holds for Re z > 1 - l/p, and (ii) is proved. 

Remark 2. We have already observed that #,, = #,, if y(z,) = y(zZ). 
Thus the Gelfand spectrum Z of the Banach algebra 1; can be identified 
with the image under y of the strip S = (0 < Re z < I}. Since 1: has an 
identity, Z is compact: indeed, y is a periodic function of Im z, that is, 
Y(Z + 2ni/ln(2r - 1)) = y(z). It is easy to see that Z = y(S) = (z: (Re z)’ + 
((r/(r - 1)) Im z)’ < 1). The same ellipse was found by other methods by 
Cartier [4]; see also [9,21]. 
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It is convenient to describe the map y: S + Z: in some detail. The central 
axis of the strip, Re z = i, is mapped by y onto the segment Z connecting the 
two foci of z, I= {z:Imz=O,-(2r- l)“‘/r<Rez<(2r- l)“‘/r}. The 
segment {Im z = 0,O < Re z < 1 } c S is mapped onto (Imz=O, 
(2r-1)‘/2/r<Rez<1}c,?Y, and the segment (Imz=O,-l<Rez< 
-(2r - l)“‘/r) is the image under y of {Im z = irr/ln(2r - l), 0 < Re z < 1 }. 
We also remark that the substrip {l/p < Re z < 1 - l/p} maps onto the 
subellipse {(Re z)* + ((r/(r - 1)) Im z)’ < 1 - l/p}. 

A phenomenon similar to the periodicity of the function y arises in the 
study of bi-K-invariant functions defined on the group G = X(2, QP), with 
respect to a suitable compact subgroup K ([ 141; see also [22]). Indeed, as in 
the case of I:, the commutative convolution algebra of bi-K-invariant L ‘- 
functions on G contains an identity, and therefore has compact spectrum. 

3. PRINCIPAL AND COMPLEMENTARY SERIES OF REPRESENTATIONS 

For each complex number z, with 0 < Re z & 1, we define a representation 
n, of F, on the Hilbert space L*(Q, V) in the following way: for every 
ox’(Q), 

(n,(x) r>(w) = pL(x, u> <(x - ‘w). 

The fact that n, is a homomorphism follows from the cocycle identity. The 
spherical function 4, is a matrix coeffiient of 71,: 

#L(X) = Mx) 13 119 

where 1 denotes the function identically one on Q. It is easy to see that X: is 
a unitary representation if and only if Re z = f (however, if Re z # 1, rt’, 
extends to an isometric representation on Lp(f2, v), for p = (Re z))‘). More 
generally, 4, is positive definite whenever y(z) is real, i.e., if Re z = f or 
Im z = kn/ln(2r - 1) for some integer k. Indeed, for every z such that Im z = 
kn/ln(2r - l), 4, is positive definite as a consequence of Theorem 2, because 
both (2r- l)-‘iXl and (2r- l)-(‘-‘)‘x’ are positive definite functions when 
0 ,< t < 1 [8, 15). The fact that 4, is positive definite if y(z) is real can also 
be proved directly: it suffices to notice that (, defines a positive functional 
on lk, and to show that the map 8’: I’ + 1: preserves positivity. This 
approach was used in [6]. On the other hand, 0, is not positive definite if 
y(z) is not real because a radial positive definite function is necessarily real. 

We presently show how, for -1 < y(z) < 1, the representation n, can be 
unitarized. Let ,K be the linear subspace of L*(Q) generated by the constant 
function 1 under the action of R,: in other words, Xi consists of the linear 
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combinations of the function o + P’(x, w). A Hilbert space norm on <ZZ can 
be defined, when 4, is positive definite, by 

IIZCiPr(Xj, CO)llf = 1 CiCj#r(xixi')* 
iJ 

Then Z, is isometric with respect to this norm and extends to a unitary 
representation n; on the completion e of 3;. We shall prove that, for 
z # krri/ln(2r - l), k E II, the vector 1 is cyclic for 7cZ, in other word that XZ 
is dense in L*(R). In particular, for Re z = f, this implies J$ = L*(R) and 
rtL, = 7c;, because rtZ is unitary. 

PROPOSITION 1. If z # kni/ln(2r - l), k E L, then the function 1 is a 
cyclic vector for z, . 

Proof: As in Section 2, let E(x) c R be the set of infinite words whose 
first 1 XI letters are the same as the letters of x. Since E(x) f7 E(y) = E(y) if 
E(x) n E(y) # QJ and 1x1 ( 1 y 1, linear combinations of the characteristic 
functions x, of the sets E(x) are dense in L*(R). Therefore it suffices to show 
that, for every x E F,, x, belongs to the linear space .XZ of linear 
combinations of functions of the type n,(y) 1, y E F,. We shall prove this 
fact by induction on the length of x. Suppose that xY E ZZ for all ( yl < n, 
and let IxI=n, x=x1.,.x,. For j=l,...,n let yj=x,..+xj. Write 
Bj = E(yj). Then, by (3), the function P’(x, w) (regarded as a function on Q) 
is constant on the sets B,, R-B, and Bj - Bj+l, for j= l,..., n - 1. 
Furthermore, if (and only if) z # kni/ln(2r - l), P’(x, CO) takes on different 
values on these sets. In particular, one has P’(x, w) = (2r - 1)” if and only 
if o E B, = E(x). Therefore xX is a linear combination of P’(x, w) and of 
characteristic functions of the set Bj,j= l,..., n - 1, and R -B,. Now these 
sets are finite unions of sets of the type E(y), with / y 1 < n, and the proof is 
complete. 

The previous proposition, applied to the representations 71, such that 
-1 < y(z) < 1, yields the fact that such representations are unitarizable: 

THEOREM 3. Let z # klzi/ln(2r - l), k E H, and suppose that 4, is 
positive definite. There exists a densely defined injective linear operator Jz 
mapping < into LZ(G?) such that J; ’ is densely defined and II; = J; ‘n, J, on 
the domain of J,. 

ProojI It is enough to define J, as the identity map on 3;. 
In analogy with the current terminology for semisimple Lie groups, the 

family of unitary representations rr, with Re z = f will be called the principal 
series of representations of F,, while the unitary representations ;rri with 
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Re z # 0, 1, i and Im z = klr/ln(2r- l), k E Z, will be called the 
complementary series. 

We shall use an alternative realization of the space e, as a Hilbert space 
of functions on F,. Indeed, for every square-integrable function r on Q, we 
define its Poisson transform 

p, r(x) = (7&> & 1) = la P’(x, WI ax- ‘4 dv(w). 

The transform P, maps the linear space 3; to the space of linear 
combinations of left translates of 4,. We shall prove that, if z # 1 + 
kzi/ln(2r - l), k E Z, then P, is injective. When P, is injective and 4, is 
positive definite, & is isomorphic with the completion z of the space of 
linear combinations of left translates n(x) 4, in the norm llCi c&xi) @,llf = 
xi,! ciCj#,(xix; I), and P, extends to an isometry of & onto e which 
intertwines rc; with the representation by left translation on R: this isometry 
will be denoted again by P,. 

PROPOSITION 2. Let 0 < Re z < 1. Then the Poisson transform P, is 
injective on L*(R) if and only if z # 1 + krri/ln(2r - l), k E Z. Therefore, if 
-1 < y(z) < 1, P, is injective on *. 

Proof It is easy to show that rrL,(x)* = 7ci-Ax-‘). Thus, if <E L*(Q) 
and P, r = 0, it follows, for every x E F,.: 

(r,7c,-~x-l)l)=(~,(x)r, l)=P,T(x)=O. 

By Proposition 1, this implies that <= 0, unless z = 1 + krci/ln(2r - 1). 
Conversely, suppose z = 1 + kzi/ln(2r - 1). If k is even, then y(z) = 1, #L is 
identically one and P, maps the linear subspace X2 generated by (xl(x) 1, 
x E F,.} onto the constant functions on F,.; on the other hand, if k is odd, 
then y(z) = -1, 4, is the nontrivial radial character x of F, defined by x(x) = 
(-l)‘X’, and P, is not injective on ,FZ because x is invariant under translation 
by words of even length. 

This argument shows that P, is injective on $ if and only if z # 1 + 
kni/ln(2r - 1). Therefore, if -1 < y(z) < 1, P, is injective on & and $; is 
positive definite: thus P, extends to an isometry of < onto z, and is 
injective on the whole of q. 

Remark 3. The Poisson transform P, maps L*(a) into a space of 
functions on F, that are eigenvectors of the convolution operator on the right 
by ,D,, with eigenvalue y(z): this space is obviously stable under left tran- 
slations. As observed in the Introduction, the convolution operator by ,~r on 
the free group plays the role of the Laplace-Beltrami operator on semisimple 
Lie groups. Thus the realization of the representation lz: given above 
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corresponds with the construction of representations of a semisimple Lie 
group on eigenspaces of the Laplace-Beltrami operator [ 12, 161. 

It is important to notice that, if -1 ( y(z) = y(w) ( 1, then the represen- 
tations n; and nh are equivalent. In fact, under this assumption, the Poisson 
transform P, interwines z; with the representation acting by left translations 
on 2, having cyclic vector $, = P, 1 (Proposition 2 and remarks preceding 
it). Since y(z) = y(w), then 4, = $,, and the representations YZ: and ;rrC. are 
both equivalent to the representation by left translations on the same Hilbert 
space of functions on F,. 

Let us consider, in particular, the representations of the principal series. 
Since the function t -+ y(1/2 + it) is an even periodic function on R, with 
period 2z/ln(2r - 1), we can choose as a set of representatives for the prin- 
cipal series the subset (z,, z E J) where J= {l/2 + it, 0 < t < z/ln(2r - I)}. 
On the other hand, it is easy to see that a set of representatives for the 
complementary series consists of the family {n;, z E J, U J,}, with J, = 
{z: l/2 < Re z < 1, Im z = O), J, = (z: l/2 ( Re z < 1, Im z = rr/ln(2r - I)}. 
As observed in Remark 2, these sets of parameters are mapped under y onto 
the following subsets of the ellipse (Re z)’ + ((T/(Y - 1)) Im z)’ < 1: the 
principal series corresponds to the segment connecting the two foci, while the 
complementary series corresponds to the two real segments y(J,) = 
((2r - l)“*/r, 1) and y(J,) = (-1, -(2r - l)“‘/r). 

In the remainder of this section we shall prove that the representations ~1 
of the principal and complementary series are irreducible. 

We need first a few preliminary results. Let x,y E F, and let q,(j; x, y) be 
the probability that lxwy I= n + 1x1 + / y I- 2j when w is a random word of 
length n > j. 

LEMMA 3. For every x,yE F,, lim, q,( j; x, y) = pj(x, y) exists and 
depends only on j, 1x1 and 1 y 1. Moreover 

qn(j; X,Y) -pj(x,Y) = O(P - I)-“1. 

ProoJ Let A,,(j;x,y)={w:Iw(=n,IxwyI=n+Ix(+lyl-2j}: then 
q,(j; x, y) = IA,(j; x, y)1/(2r)(2r - 1),-l. Let (xl = k and / yl = m. The 
estimate for IA,(j; x, y)l is slightly different in the cases: j < min(k, m), 
k <j < m, k < m <j < m + k, j = m + k. We shall restrict attention to the 
case j < min(k, m); the other cases are treated with the same methods. We 
observe that A,(j; x, y) is the union of j + 1 disjoint subsets: indeed, if 
x=x, ...xk and y=y, ...yrnr then AJj; x, y) = lJ{Zl B,, where B, is the 
subset of all words w which have t - 1 cancellations on the right with y and 
j - (t - 1) cancellations on the left with x. Observe also that B, is in one-to- 
one correspondence with the set An -i(O; Xk=lj+, , y,- ‘). NOW, if I u I = 1 v I = 1, 
one has 
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IA,,(O; u, ?I)1 = 1 + (2r- 2) i (2r- 1)2’-’ 
i=l 

(if 24 # u - ’ ), 

1‘4 2hG-t 4 u -‘)I = (2r- 2) + (2r- 1)2’-‘, 
iZ-1 

IA**+ ,(O; u, u)l = (2r - 2) i (2r - q2’ 
i=O 

IA2h+l(O; u, u)l = 1 + (2r- 2) i (2r- l)? 

(if u # v), 

i=O 

These formulas are proved by an induction argument on the index h, as a 
consequence of the equality A,,+,(O; U, II) = U(A,,(O; U, 0’) u’: ]u’] = 1, 
u’ f v-‘}. This shows that, if h = [(n -j)/2], then 

(2r- 2) 5 (2r- l)*‘-’ < ]Br] Q 6 (2r- 1)2’f’; 
i=l iZl 

therefore 

(j+1)(2r--2)5 (2r-1)2’-1<]A,(j;x,y)]<((j+1) 5 pr- 1)2i+l. 
i=l i=O 

As a consequence, for eachj, the limit 

pj(x, y) = liy qn(j; x, y) = 1iF ]A&; x, y)]/2r(2r - I)“-’ 

exists and depends only on Ix] and I y]; moreover, q,(j; x, y) -pj(x, y) = 
O((2r - 1))“). 

Let rc = rc; be a representation of the principal or complementary series, 
and 4 = 4, be the corresponding spherical function. From now on the proof 
of the irreducibility of 7ri splits into two different cases. On the one hand, 
we have the representations z, with -1 < y(z) < -(2r - l)“‘/r or 
(2r - l)“‘/r < v(z) < 1 (i.e., the representations of the complementary series 
together with the boundary points of the principal series), on the other hand, 
we have the remaining representations of the principal series. The difference 
between these two cases lies in the asymptotic behaviour of the 
corresponding spherical functions: indeed, Theorem 2 implies that, in the 
former case, the product #,(x)(2r - 1)‘““2 is unbounded, while in the latter 
case the same product oscillates between - 1 and + 1. This is reflected in the 
statement of the following lemma. 

LEMMA 4. Let 7c = 71, be a unitary representation of the principal or 
complementary series, acting on the Hilbert space 3 = <. Let 4 = /I; be the 
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corresponding spherical function. Denote by Q(n) the value of $ on the words 
of length n. Then, if z # l/2 + kni/ln(2r - l), k E Z, 

(44 4x> 1, dhJ 4Y) lb= O(P- - l)4”>T (4) 

where 

/?=12Rez- II- 1. 

Furthermore: 

(i) if Im z = kx/ln(2r - l), k E Z, then 

li? 4(n)-’ M4J Hx) h70) lb= Q(x) $0) 

and 

“,” fib-’ (4bJ 4x1 1~44) n(Y) lb-= 4(x) 4(Y), 

(ii) if Re z = l/2 and I m z f kx/ln(2r - l), there exists a subsequence 
nk such that, for each x and y, 

lip @(nJ’ GYP,,> +I ly7$Y) 1) = 0) (60). 

Proof: Throughout this proof, we shall denote by ( , ) the inner product 
in A?‘. We write ,u,, * ,uu, = CyZO ai(n),uzi, where 

a&n) = 1/2r(2r - l)n-‘, a,(n) = (2r - 1)/2r, 

ai = (r - l)/r(2r - l)n-i for 0 < i < n. (5) 

This formula can be proved by direct computation. Then 

HP,> n(x) 19 aI) 4Y) 1) = (Xncu” *Pn> 70) 19 X(Y) 1) 

= ;’ ai(n)(r&j> +) 1, n(Y) 1). 
,G 

(dP*i> n(X) 1, n(Y) 1) = 2 9J.L X, Y) @i + m - 2j)~ 
j=O 

where the qzi(j, x, y) are as in Lemma 3. Since Iai( < (2r - 1)” (2r - l)-” 
for i < s, it suffices to show that 

+ 
i=ZI 

ai(n)(7T@Lzi) 7(X) 1, z(y) 1) = O((2r - 1)““). 
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We write the above sum as 

6 
i=Ztl 

a,(n) 6 ,~o q*i(jt XT V> $W + m - 2) 

= t a,(n) 2 p&x, y) fj(2i + m - 2j) 
i=s+ I j=O 

+ + 

i=Zl 

U,(n) ;z [q*i(j; X3 Y) -Pj(x, Y)] @i + m - W 
,ZJ 

Now, by Lemma 3, q&; x, y) -pj(x, y) = O((2r - l)-‘i); by Theorem 2, 
q$(2i + m - 2j) = O((2r - 1)4i); furthermore a,(n) < (2r - l)-“+‘. Therefore 
the second sum in the right-hand side is O((2r - 1)4”). It remains to estimate 
the first sum: 

+ 
i=%l 

U,(n) f pj(X, Y) @i + m - 2j) 
j=O 

= $ Pj(x>Y) 2 u,(n) $(2i + m - 2j). 
j=O i=stl 

The above equality imply that we must only estimate 

5 ai #(2i + m - 2j). (6) 
i=s+ I 

We can assume that m - 2j = 21 is an even number. Indeed, by (2), the value 
of d on words of odd length is a linear combination of the two values on the 
words of nearest even length. It follows from (5) that ah-,(n) = uh(rz + f). 
Therefore, the identity 4(n)’ = @, * ,u,, 4) = CzEo u,,(n) (,u2,,, 4) implies 

C ai $(2i + m - 2j) = 
i7fl 
b’ 

i=Zl h=si;/t I 
Oh-lb) @h) 

fl+/ 

= \’ 
h=sZ/t I 

ah@ + 0 @h) 

= qqn + 2)2 - fi: Uh(rl + 1) 4(2h). 
h=O 

Since Q(n + I)’ and uh(n + I) are both O((2r + l)O”), so is the sum (6). 
To prove (i) we observe that 

(7~01,) 4x1 l,+) 1) = 2 s,(j; X,Y) $(n + m - 31, 
j=O 

5x0/47/3 2 
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where m=jxl+jyl, S ince q,(j; X, y) converges to pj(x, y (Lemma 3) and 
@(n + m - YM n converges under the hypotheses of (i) (Theorem 2), we > 
obtain that 4(n)-’ (n&J X(X) 1, n(y) 1) converges for each x and y. One 
could at this point compute directly the limit f(x, y) of f,(x, y) = 
4(n)-’ (Q,,) z(x) 1, n(y) 1). It is simpler, however, to notice that, for fixed 
x, f(x, y) is a radial function of y, and that, for 1 WI = n, f,(x, e) 4(n) = 
a@(x) 4)(w) = 4(x) 4(n), which implies f(x, e) = 4(x). On the other hand, if 
$ = #,, A(w) 4 * P, = A(wx)@ *P,) = Y(Z) 4w-x) 4. Theref0re.L * iu, = y(z)f, 
and f * p, = y(z)f: Thus, by Theorem 1, for fixed x, f is a constant multiple 
of 4 andf(x, y) = 4(x) 4(y). To complete the proof of (i) write, as before, 

= m-’ + ~&>(7@2h) n(x) 1, n(y) 1) 
h:O 

= -+ uh(n) $b-’ @(2h)f,h(x,y)* 
h:O 

Fix E > 0, and choose k so that, for all h > k, Ifih(x, y) - 4(x) #(y)l < E. 
Recall that O(n)-” Cizo ah(n) 4(2/z) = 1, and observe that 9(2/z) > 0 (by the 
hypothesis on z and Theorem 2). Therefore, 

lim sup 
n 

2 ah(n) 4(n)-’ @(2h)f2h(X, Y> - #tx) #(Y> 
h=O 

” 

+ lim sup V ah(n) #+-’ 9(2h) I.fZh(X,y) - #cx> ti(Y)l < &. 
n h=k+ I 

Indeed, for fixed k, the hypothesis on z and Theorem 2 imply 

;- u,,(n) $(n)-2 4(2h) < k(2k + 1)(2r- 1))” $@z-~ --t 0. 
h:O 

Finally, to prove (ii), let nk be a sequence of positive integers such that the 
limit lim, 4(n,)(2r - l)Q2 exists and is nonzero: such a sequence exists 
because of the hypothesis on z and Theorem 2. As in the proof of (i), we let 

W4,) n(x) 1, n(y) 1) = f s&i x7 v) dh + m - ?ih 
j=O 

where m = 1 xl + 1 yl . Again q,& x, y) converges to JJ~(X, y) (Lemma 3), and 
we have only to prove that #(nk + m - 2j)/4(nk) converges as k + 00. 
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By Theorem 2, letting c = C+ + it, one can write 

4(n!i + m - WlWk) 
= pr - l)j-m/* Re(c(2r _ l)-i’(nkfm-2j))/Re(c(2r - l)-ith). 

Now Re(c(2r - 1))““k) = @(n,)(2r - l)“t’* converges by the choice of nkr 
and the proof is complete. 

Let us consider the functional l-+ Z(r) = jn r dv, defined on the dense 
subspace C3z of &. Since the functional Z has norm one, it extends to the 
whole of e. If Re z = l/2, e coincides with L*(Q) and Z(r) is simply the 
integral of <, for every <E L*(R). We shall now prove that Z(c) can be 
approximated through the action of F, on n. 

THEOREM 4. Let z be as in Lemma 4(i), and define T,, = $z(n)-’ ~~(a,,); 
then, for each r E X = 8, lim T, < = Z(r) 1, in the norm of A’@. On the other 
hand, let z and nk be as in Lemma 4(ii): then lim, Tnt(<) = Z(r) 1 in the weak 
topology ofR= L*(Q), for each <= JJ cjn,(Xj) 1. 

ProoJ To prove the first part of the statement, let 4 = 4:) z = rrz and 
<= JJ cj7c(xj) 1; then, by Lemma 4(i) 

converges to 2 cjej$(xi) 4(xj) = 12 ci#(xi)12 = IZ(<)12. By the same token, 
CT,6 9) converges to z(r) Z(v) if q = C djz( yj) 1. Therefore 
lim, 11 T,< - Z(r) 111 = 0. Since lim sup 11 T,<ll< IZ(r)l < I( ?J, we have 
limnsup II T,ll < 1, hence Cm,, (I T,,c - Z(t) 1 II = 0 for every < E 37 

For the second part, observe that, for each fixed < = C cjz(xj) 1, (4) yields 

that IITJII b is ounded. In addition, by Lemma 4(ii), (Tat<, v) converges to 
I( whenever v = C djz(yj) 1. It follows that T,,k< converges weakly to 
Z(T) 1. 

We are now ready to prove the irreducibility of the representations. 

THEOREM 5. Suppose that -1 < y(z) < 1, or equivalently, that 71 = 71; is 
either a principal or a complementary series representation. Then 7c is 
irreducible. 

Proof: Let Q be a projection on GV=< such that err(x) = n(x) Q for 
every x E F,, and let c = Q 1. Then ?rbn) r = QY@,) 1 = 9(n) Q 1 = 4(n) 6. If 
z satisfies the hypothesis of Lemma 4(ii), denote by nk the subsequence 
whose existence is asserted in Lemma 4(ii); on the other hand, if z satisfies 
the hypothesis of Lemma 4(i), let nk = k. Then T,,rc = c; therefore, denoting 
by P, the Poisson transform (see the remarks preceding Proposition 2), 

P,t(x-‘I= V’& n(x) 1) = (t TnkW 1) = (L 1) d,(x), 
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because, by Theorem 4, T,,n(x) 1 converges to 4,(x) 1, at least in the weak 
topology of 2. Since P, is injective when -1 < y(z) < 1, this means that < is 
a multiple of 1. Thus either Q 1 = 0 or Q 1 = 1. 

In the first case Q$x) 1 = n(x) Q 1 = 0 for every x E F,, thus Q = 0, 
because 1 is cyclic. In the latter case (0 - Q) 1 = 0 and Q is the identity. 
Therefore only trivial projections commute with every z(x), and 7c is 
irreducible. 

Remark 4. The proof of Theorem 5 shows that, if -1 < y(z) < 1 and 
u E R (the completion of linear combinations of translates of #,), then 
,u, * u = y(z) u implies that u = 4,. Indeed, if pi * u = y(z) u and u = Pz t, 
then T,,lr= r, and the argument used in the proof of the theorem yields that 
l= 1. 

Remark 5. Since n,-,-(x) = 7r,(x-l)*, the representations rr, and n,-, 
are dual representations: if AcL*(fi) is an invariant subspace for the 
former, then A’ is invariant for the latter, and conversely. For instance, let 
us consider the representations 71, such that y(z) = f 1, i.e., z = IT + if, with 
u = 0 or 1 and t = kn/ln(2r - l), k E Z. If c = 0, then the one-dimensional 
subspace A of constant functions on R is invariant under rr,, which acts on 
it as the trivial representation of F, for even values of k, and as the nontrivial 
radial character x(x) = (-1) IX’ for odd values of k. On the other hand, if 
(T = 1, then ML is an invariant subspace of codimension one for rr,. 

We have seen that K: and ni-, are unitarily equivalent if -1 < y(z) < 1. 
Conversely, nl and ?r-, are not equivalent if y(z) = 1. Indeed, for 
z = kxi/ln(2r - 1), n: is an irreducible one-dimensional representation: in 
fact, e is generated by the vector 1, and $ is the trivial character for even 
k, and the nontrivial radial character for odd k. On the other hand, if z = 1 + 
kni/ln(2r - 1), then 1r1 is a reducible infinite dimensional representation: it 
admits an invariant subspace of codimension one, then annihilator of the 
vector 1. 

4. THE PLANCHEREL FORMULA 

In this section we shall determine the spectrum of the convolution operator 
by ,~i and the Plancherel measure. We shall first explicitly exhibit the 
resolvant of ,u~. If z E C, it is easy to see that, for x # e, the function h,(x) = 
(2r - l)-“” satisfies the identity 

cul - Y(Z) 4) * h,(x) = 0. 

On the other hand, 

@, - y(z) 6,) * h,(e) = (2r)-’ ((2r - 1))’ - (2r - 1)‘); 
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thus, if L # kni/ln(2r - I), k E Z, the function 

k,(x) = 2r((2r - 1))’ - (2r - 1)‘))’ h,(x) 

satisfies the identity 

Let ki”’ be the truncation of k, to words shorter than n. If Re z = l/2, then 
k, fZ Z*(F,), but the sequence &, - y(z) 6,) * k:) is bounded in 1*(F,). It 
follows that the spectrum a(~~) of ,u, contains the set (y(z): Re z = l/2}. On 
the other hand, the norm of ,u, as a convolution operator on I*(F,) is 
(2r - l)“*/r [ 181. Therefore a(,~~) = {y(z): Re z = l/2) = I--(2r - I)“*/r, 
(2r - l)“‘/r]. 

On the spectrum a@,) there exists a positive measure (“Plancherel 
measure”) which yields an inversion formula for functions in I>: 

f(e) = !,,,,, (f, 42) dq(r)v 

where t = y(z) E 001,). This follows from the fact that the map f+f(e), 
defined on I:, extends, via the Gelfand transform, to a positive linear 
functional on the involutive algebra g(a@,)) of all continuous functions on 
a(~~). Sincef(e) = (g’)(e), the inversion formula is also valid for nonradial 
functions fE I’(F,). For our purposes, it is more convenient to define a 
Plancherel measure m on the line Re z = l/2 as m = q o y. Since y is 
periodic, it is enough to restrict m to an appropriate segment of this line, say 
(as in Remark 3) the segment J = {l/2 + it: 0 < t < n/ln(2r - I)}. Denoting 
again by m the measure on J thus obtained, the inversion formula reads 

f(e) = jJ U 4,) dm(z) (7) 

for every fE Z’(F,). 
We shall prove now, for the measure m, an analogue of Harish Chandra’s 

theorem relating the Plancherel measure of a semisimple Lie group to the 
coefficients appearing in the asymptotic expansion of spherical functions (see 
Theorem 9.2.1.5 of [25]). 

This result could also be obtained using the explicit computations of the 
Plancherel measure on o(,u,) given in [4, 231; our direct approach is simpler. 

THEOREM 6. Let 4, =czhL + c,-,h,-,, as in Theorem 2. For 0 < t < 
7r/ln(2r - l), let C(1/2+it)=C,,*+i,=C1/*--il: then dm( l/2 + it) = 
((2r - 1)/4r) ]c(1/2 + it)]-’ dt. 
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Proof: Theorem 1 and the expression (3) for the Poisson kernel yield the 
following identity, for 1x1 = k: 

4,(x) = (2r)-’ (2r - 1)((2r - l)“-“k + (2r - l)-‘k) 
k-l 

+ r-'(r- 1)(2r- I)('-')'( z (zr- l)cf-*i)j. 
j= 1 

(8) 

This formula can also be verified directly from the expansion of 4, given in 
Theorem 2, or by induction from the Corollary to Lemma 2. On the other 
hand, by (7), 

de(x) = 1 #z(x) dm(z)* (9) 
-.I 

For n E Z, let 

ii(n) = . (2r - l)-‘“’ dm(1/2 + it). 
J J 

Then one has ti(0) = 1, and, by (8), 

A( 1) + q-1) = 0. (10) 

Furthermore, for each integer n, (8) and (9) imply 

n-l 
h(n) + tG(-n) = -(2r - 2)/(2r - 1) 1 A(2j - n), 

j=l 

Observe that ti is real valued, because y(1/2 + it) = y(1/2 - it) and 
m = q o y. Furthermore, m is positive, thus n(n) = fi(-n). Hence 

n-1 
G(n) = -(r - 1)/(2r - 1) x tG(2j - n). 

j=l 
(11) 

Therefore, by (lo), rit(2k + 1) = 0 for every k E Z; on the other hand, if 
k> 1, 

fi(2k) - &(2k - 2) = -(r - 1)/(2r - l)(rii(2k - 2) + fi(--2k + 2)) 

= -2(r - 1)/(2r - 1) G(2k - 2), 

whence fi(2k) = (2r - 1))’ A(2k - 2). Since, by (11)Y &i(2) = 
-(r - 1)/(2r - l), it follows 

A(2k) = -(r - 1)(2r - 1))” if k> 1. 
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For 0 ( t < n/ln(2r - l), write &z(t) = u(t) df: one obtains 

u(t) = -T fi(k)(2r - l)‘k’ 
/(~~oo 

= 1 - cr- 1) 
[ 

C p.- lpi’-‘) 
k:l 

+ F (pm l)k(-2it-i) 

k=l I 

= 1 + 2(r- 1) Re[(2r - 1)2i’-’ ((2r- 1)2i’-’ - l))‘] 

= Re[((Zr - 1)2i’ - 1)((2r - 1)2i’-’ - l))‘]. 

On the other hand, Theorem 2 implies 

c(1/2 + it)= (2r)-’ ((2r- 1)‘-2i’- 1)((2r- 1)-l”- 1)-‘. 

An elementary verification now shows that 

u(t) = (2r- 1)(4r)-’ ]c(1/2 + it)lm2. 

We shall now write the Plancherel theorem in a form suitable for the proof 
of the following Proposition 3. For every t E IR and every finitely supported 
function f on F,, we define an element f, E Lm(R) by 

f,(u) = ?‘ f(x) P”2+it(x, co) = If(x) 7rl,2+i,(X) 1. 
XZ, 

From now on, we shall write the Plancherel measure as &z(t) instead of 
drn(i + it). 

THEOREM 7. Let f, g be finitely supported functions. 

(9 f * g*(x) = i., h12+A~-‘)fi3 gA2(0) d4h 

(ii) Ilfll: = I., Ilf,ll~~cn~ dM)- 
Proof: Observe that 

Therefore, by (9), the right-hand side of (i) equals 

- . 
If(Y) dw) j, 4’/2+it (w-‘x-‘y) dm(t) =f * g*(x). 

Part (ii) follows from (i). 
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It follows from Theorem 7 that the map f +f, extends to an isometry of 
I’(F,.) to the space L*(J, m, L*(R)) of square-integrable functions on J with 
values in L*(R). In other terms, 

and 

.o 
1*(F,) N ,! L*(R) dm(t) 

J 

.o 
A- 71 

! l/2 + it WO 
J 

We now prove the analogue of Herz’s principe de majoration [ 7, 171, 
relative to the representation rr,,*. 

PROPOSITION 3. For every f,g E Z*(F,), fhere exist <, q E L*(R) such 
hzt If* g”(x)1 G h,*(x) k-3 rl) md llfll2 II gll2 = ll4lL2 lI11lIL2’ 

Proof: Let <(cc) = [J, If,(w)] * dm(t)] I’* and V(W) = [S, I g,(o)] * dm(t) ] I’*. 
By the Plancherel formula, 1) ([IL2 = l]f]12 and I] vI]~.~ = (] g/l*; furthermore, by 
Schwarz’s inequality 

If* g*(X)1 Gjl l(Kl/2+it(x)L9 gt)l WO 

= 1 
D 

P*‘*(x, w) J If,(x-‘w) g,(w)1 dm(t) b(w) 
.I 

< 
I 

; p”2(x9 w> ax - ‘4 r(w) No) = (75,2(x) 6 rl). 

COROLLARY. For every positive function h with finite support, 
II ~,,,Wll = II WII . 

Proox Observe that I(h) = sup{l(h,f* g*)l: ]lf]12, ]I g]12 < l}, and, by the 
proposition, 

KM-* g*)l < (h, h,,(x) (9 v)) G h,,(h) 6 VI 

G II v2@Il llfllz II dl2. 

The converse inequality is immediate, since rr is weakly contained in A. 

Remark 6. The principe de majoration is used in [ 171 to prove that the 
coefficients of the regular representation of a semisimple Lie group G with 
finite center satisfy the inequality 

ii 14bW12 dk, & <4’(x) II&i,, (12) 
K K 
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where K is a maximal compact subgroup, ,4(G) is the Fourier algebra of G 
as defined in [ 111, and 4,,*(x) is the Legendre function (i.e., the spherical 
function associated to the quasi-regular representation). Denoting by A the 
Fourier algebra of the free group, the analogue of (12), in our context, would 
be the inequality 

a(1 4’>(x) G 4:,*(x> Ibll: (13) 

for coefficients of the regular representation. Let n = Ix]; then, if $f,,(x) = 
(1 + ((r- 1)/r) n)* (2r- 1))” is replaced by ((2r- 1)/2r)(l + n)’ 
(2r- l))“, inequality (13) can be deduced from Lemma 1.4 of [15]. The 
results of [ 11, which improve earlier work of Leinert [20] and Bozejko [2], 
show that (13) is true for Ix]= 1. We believe that (13) is true in general, but 
we have not been able to provide a proof. 
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