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Abstract—The singular integral solutions to certain classic dual trigonometric equations provided by the
formulas of Tranter and Bablojan are reduced to algorithms. A preliminary Fourier analysis is made of the
data, and computational rules are derived by the systematic reduction of the singular integrals for each
ordinary Fourier component of the data. Extensive numerical testing provides evidence for the correctness
of both the original solutions and the resulting algorithms. The listing of programs in ANSI FORTRAN to
implement the algorithms is appended.

1. BACKGROUND
We develop algorithms for the solution of the following classic dual trigonometric equations:

ﬁ-,cos (n+3)x = f(x), 0<x<c (1.1a)
n=0n +§
> A.cos(n+3x =g(x), c<x<m (1.1b)
n=0
- A, . L

—5sin(n +3)x = f(x), 0<x<c (1.2a)
n=0n +5
> A, sin(n+3dx = g(x), c<x<m (1.2b)
n=0
- A, .
2 7sm nx = f(x), : O0<x<c (1.3a)
n=1
z A, sin nx = g(x), c<x<n (1.3b)
n=1

where ¢ is a fixed point and f(x) and g(x) are given functions.

Our starting point is an important set of formulas, based on double singular integrals,
developed by Babiojan[1] and Tranter[2] for the solution of the above equations. The original
analysis was given in[3] and subsequently simplified[1, 2, 4]. Other singular integral solutions
are found in[5, 6]. The above equations are written in the canonical form described in[7]. In[2]
solutions were not derived for the case g 0 in (1.1b) and f= 0 in (1.2a) whereas in [1] solutions
were not derived for (1.3a, b). Combining the results we have available singular integral solutions
for all the equations (1.1a, b), (1.2a, b), (1.3a, b). The results here fulfill in part the suggestion made
in [8] that a preliminary ordinary Fourier analysis would be the key to converting singular integral
solutions into algorithms. (Naturally, the algorithmic resolution of ordinary Fourier analysis lies
beyond the scope of this paper.)

These classic dual trigonometric equations occur in solving mixed boundary value problems
in rectangular domains in the x-y plane [9, p. 150, 14, 20] and represent one of the simplest
examples of dual orthogonality. Consequently, they have been studied in many
investigations (8, 10, 11, 13, 15, 16, 18] and have found several applications especially in mixed
boundary value problems in mechanical engineering[1,21-23,44] and are closely related to
more general type dual series equations which occur in heat transfer theory, fracture
mechanics, and wave guide design, e.g.[21, 24-26). Moreover, because of the simple form of the
dual orthogonal problem represented by the above equations, their solutions in the form of
singular integrals have served as archetypal closed form solutions to dual Sturm-Liouville

+A copy of the computer code on punched cards or magnetic tape is available at cost from the first author.
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problems providing the model for comparison and development of other
solutions [26, 28, 29, 34, 44]. Also, because of their relation to canonical mixed boundary value
problems in the plane, the harmonic functions associated with these dual series have served as
bench marks against which to test other numerical methods of solving mixed boundary value
problems[12, 17,27, 34-38].

However, the fact that the solutions are expressed as double singular integrals has served as
a barrier to automated numerical evaluation of the formulas and to their rigorous justification.
These considerations make the present investigation timely for in it we reduce each singular
integral to an algorithm which is implemented in a computer program. By algorithm we mean
that given f(x) and g(x) each coefficient A, can be computed to specified accuracy by a
precisely defined, finite sequence of rules whose execution involves only a finite number of
elementary arithmetic operations none of which is division by zero.

On the basis of extensive numerical testing we conclude that Bablojan and Tranter’s
formulas[1, 2] are correct for a wide variety of input functions f(x) and g(x). However, from
such testing it is not possible to define the class of functions f(x) and g(x) for which the
resuiting solutions are rigorously valid.

In Section 2 we list notation and formulas needed for describing the singular integral
solutions. For completeness and ease of reference the singular integral solutions to (1.1a,b),
(1.2a, b) and (1.3a, b) are listed in Section 3, and the correspondence between these equations in
canonical form and those found in[1] and [2] is described. The algorithms are given in Section 4.
The use of the software package and its technical description, as well as the results of numerical
tests, are given in Section 5. Section 6 is devoted to the derivation of the formulas of Section 2, and
in Section 7 the algorithms of Section 4 are derived. In the Appendix is listed the FORTRAN
software which implements the algorithms.

2. PRELIMINARY DEFINITIONS AND FORMULAS FOR SUMS
AND INTEGRALS

In so far as practicable we maintain notational consistency with(8]. k and n will always be
used to denote nonnegative integers. We set 8, = n(n + 1)/(2n + 1), and &, is the Kronecker
delta. Further y =cos ¢, { =sinc, ¢ = cos (c/2), ¢ =sin(c/2). By P.* we denote the Legendre
function of the first kind of degree » and order u. We define %, by

Pox)=1+x and P,(x)= Paer(x) = Pa_i(x), n=1,2,.... Note that @, =(1-x%)""P,/B.
{30, p. 171]. Let Noo(y) =0, and for other values of « and v we define three definite integrals
R.., M.., and N,, by

Yy Y @K @u
Re(y)= J:‘ P.(x)P,(x)dx, M,.(y)= ,[1 ——%‘-_2% dx,
'R ()P,
Nuip= [ 202 4

F(0, 1), K(8) and E(6) denote respectively the incomplete elliptic integral of the first kind,
the complete elliptic integral of the first kind and the complete elliptic integral of the second
kind{30]. The derivation of the following ten formulas is discussed in Section 6. In these
formulas any Legendre polynomial of negative degree is taken as zero.

_ BaPu(Y)Pc(y) = BP{y)Pa ()
Ru(p) =Bl It kn=01,.. k=n, @.1)
2k~ 1
Ran) =g [14 70 - B PP
P (Y)P(y) | Pea(Y)Ps(y) | .. Piy)Po(y) k=0.1.... 29
+2{(2k~l)(2k—3)+(2k—3)(2k—5)+ T3 }] sl (22)

Rou(y) = (k+ )2{[(¢ + ky)Pu(y) — kPMIK @) = PANEW) + (-1}, k=0,1,..., 23)
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Moo(y) = —[1 +y+2l0g (1—;—“’)] 2.4)
Mkn(y)=—;—[(zn FDRu(y) - P Pu(y)] k=12, n=012.... (25
Nkn(y)=zf—(akn—aok)—Mh(y) k=0.1,... n=1.2... 2.6)
S P.(y) _l
2 omi1=3 K@) @7
- o\ .
[ K(cos2) sin 6 do = aE@)- w'K 6. 28)
21 % = %{g’k(v)K(qﬁ) +(=D*m(k +DRpu(-y)}, k=0,1,..., 2.9)
S Ru(y)_7(8 o
2t ‘4(17 Ryl 7))- @.10)

3. SOLUTIONS AS SINGULAR INTEGRALS

To convert the dual equations of Section 1 into the forms given in[1] and[2] requires only
simple transformations of the independent variable and A, {9, p. 150]. The correspondence
between the equations here and those given in[2] is this: (1.1a,b) here corresponds to the dual
eqn (8) and (9) in[2]; (1.2a,b) corresponds to the dual eqn (1) and (2); (1.3a,b) corresponds to the
union of the dual eqn (19) and (20) and the dual eqn (26) and (27). The dual equations of concern
in[1] are (18) and (23). Note that in Bablojan’s notation (18) in[1] with p = —1 and (23) with
p = 1 both correspond to (1.2a,b) here. Dual eqn (18) with p =1 and dual eqn (23) with p = —1
correspond to (1.1a,b) here.

By using an observation of Gordon[31] we can simplify the analysis by assuming g=0
without loss of generality. Let G(x) be defined by G =g on ¢ < x < 7, whereas on 0< x < ¢ let
G(x) be defined arbitrarily (suggestions for doing this conveniently are given in Section 4). Let
B., C., and F(x) be defined by

B. = %Jﬂr G(x)cos (n +3)x dx 3.1
F(x)=f(x)+i nBi:lcos (n+3)x, 0<x<c, 3.2)
A.=C,-B,. (3.3)

Then {C.} satisfies the dual trigonometric equation

> o cos (n+2x = F(x), 0<x<c, (3.4a)
neon+3
> Cucos(n+dx =0, c<x<m, (3.4b)

if, and only if, {A,} satisfies (1.1a,b).
If we now define B, and F(x) by

B, = %J:r G(x)sin (n +%)x dx (3.5)

F(x)=f(x)+ Eoni-:% sin (n + 3)x, 0<x<ec, (3.6)
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then {A,} satisfies the dual trigonometric eqn (1.2a,b) if, and only if, {C.} satisfies

~ C. .
2 risin(n +hx=F(x), 0<x<g (3.72)
> C.sin(n+d)x=0, c<x<m (3.7b)
n=0
Finally, let {A.} satisfy the dual eqn (1.3a,b) and define B. and F(x) by
2 (" .
. =— ] G(x)sin nx dx (3.8)
mJo
- B, .
F(x)=f(x)+2 ~, sinnx, 0<x<c. (3.9)
n=1
In this case {C,} satisfies the dual equation
> Cn .
2 —n—sm nx = F(x), 0<x<c, (3.10a)
na=l
> C.sinnx=0, c<x<m (3.10b)

n=|]

The solution to the dual eqn (3.4a,b) based on formula (18) in[2} or formula (25) in[1] is
given by

C.= CoPn(Y)+lf H(G)i(Pn (cos 9)) dé, n=12,..., (3.11)
2Jo de

where

r(x, 8) = (cos x — cos 8)'*

o .
H(0)=2¥2 dF(x) sinx dx 0<d<c, (3.12)

o dx  r(x,8)

and C, is found by substituting into (3.4a).
The solution to the dual eqn (3.7a,b) based on (22) in[1] is

C.=(n +%)I J(8)P, (cos 8) sin 6 d6, n=0,1,..., _ (3.13)
0
where
_V2(° Fx)
J(@) = = ) —r(x, 9 dx, 0<f<ec. (3.14)

The solution to the dual eqn (3.9a,b) based on (30) and (31) in[2] is

C|=J’ I(8)sin 6 do (3.15)
0

C.=—Cn+(2n— 1)f I(8)P._,(cos 8)sin8d8, n=2,3,..., (3.16)
0

where

V2 [(dFx) cos(d) - g, G.17)

Ie)= T Jo dx r(x, 8) ?
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4, ALGORITHMS

In developing the algorithms we perform an ordinary Fourier decomposition of F(x) and
find the algorithm for each ordinary Fourier component. Combining this with (3.1) and (3.3) dual
Fourier analysis is made to depend upon ordinary Fourier decomposition. In other words, one
cannot hope that dual Fourier decomposition is simpler than ordinary Fourier decomposition so
that one seeks to make dual Fourier analysis depend upon ordinary Fourier analysis as simply
as possible. Since F is defined only over part of the interval 0 < x < #, there are infinitely many
ways in which to obtain an ordinary Fourier decomposition representing F on 0 <x<c¢ in
terms of functions orthogonal on 0 < x < 7. Naturally, one seeks the decomposition so that the
ordinary Fourier components decrease rapidly. This is achieved by introducing a function ®(x)
such that @ = F on 0 <x < ¢ and @ is defined on ¢ < x < 7 in such a way that ® is as smooth as
F, and ® and a specified number of its derivatives are zero at x = #. Similar remarks hold for
constructing G(x). Further consideration of this point is not warranted here since it lies in the
domain of ordinary Fourier analysis and can be found in the literature, e.g.[32, 33].

Suppose, then, that ® is defined by P=Fon0<x<cand®=honc<x<m where hisa
function chosen in accordance with the remarks above. Then

®O(x) = i A cos (k +3)x 4.1

=2[ P 2" \
A= 11’.[) f(x)cos (k +3)x dX+"fc h(x) cos (k +3)x dx. 42)

Consider the dual series problem given by (3.4b) and

—C-"—1 cos(n+3x = 2 Ax cos (k +3)x, 0<x<ec. 4.3)
neot3 k=0

Clearly {C.} is a solution of the dual series eqn (3.4a,b) if, and only if, it is a solution to the dual
series eqn (4.3, 3.4b). This suggests solving (3.4a,b) separately for each ordinary Fourier
component, i.e. when F is given by

F(x)=cos (k+3)x, 0<x<ec. 4.4

In so doing we obtain the following algorithm. For the case k =0 the solution to (3.4a,b) is
Co= s [ K@+ 2-F R -] )
O—ZK(¢) 4 Y 4 .

C.= CoPa(y) -1 (¢2P~(7)+%Ro..(7)), n=12,.... 46)

For the case k=1,2,..., the solution to (3.4a,b) is

1

C=3K@)

{2—k + )PAVK (@) + (- 1)m(k + DR (~7)]} 4.7)
C. = CaP»(‘y)+%(k +9B.Na(y), nm=1,2.... 4.8)

For the dual eqn (3.7a,b) with F given by
F(x)=sin (k +3)x 4.9)
the algorithm is

akn
n+s;

Co=(k+3)(n +%)[ —Rk,.(y)], kn=0,1,.... (4.10)
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For the dual eqn (3.10a,b) with F given by

F(x)=sin kx (4.11)

the algorithm is
€= RuM* RerolD =20, k=12,..., @12
Cn+l = —Cn + k[akn + ak—l,n - (n +%){Rkn(7)+ Rk—l.n(‘y)}]y kv n= 19 29 v (4-13)

Let us examine the solution to (3.4a,b) given by (4.3) and (4.6) or (4.7) and (4.8) and consider
the determination of a coefficient C, to specified accuracy. This explicitly involves the
execution of 16 or less elementary arithmetic operations. Next it requires the evaluation of the
first n + 1 Legendre polynomials at y. These were computed by setting Py(y) =1, Py(y) = y and
using the recursion relation

Py = — (20 + 17Pu(y) = nPucs(3)] 4.14)

Beyond this finite number of rational operations two evaluations each of the sine, cosine,
logarithm, and the first two complete elliptic integrals are required. There are several algorithms
available for computing the trigonometric and logarithmic functions[39, 40]. For the evaluation
of the elliptic integrals we used the Chebyshev type algorithms of Cody[41]. It follows,
therefore, that formulas (3.1), (3.3) and (4.5)—(4.8) constitute an algorithm in the sense
enumerated above for computing {A,} the solution to (1.1a,b). Similar remarks are valid for
(1.2a,b) and (1.3a,b).

5. SOFTWARE USAGE AND COMPUTER TESTS

The software package is used by the statement
CALL BBLTRN(KASE,NB TRMS,K,SMALL C,C0,CN,IERR,AP)

(i) KASE (input) has allowed values 1, 2, or 3. If KASE = 1, the dual eqn (3.4a,b) is solved
with F given by (4.4). If KASE =2, the dual eqn (3.7a,b) is solved with F given by (4.9). If
KASE = 3, the dual eqn (3.10a,b) is solved with F given by (4.11).

(i) NB TRMS (input) denotes the number of Fourier coefficients to be computed, i.e. {C.:
n=0,1,...,NB TRMS} is calculated. For KASE =3, BBLTRN returns C, with the value zero.
NB TRMS must be nonnegative.

(iii) K (input) corresponds to k on the right hand sides of (4.4), (4.9), and (4.11). K must be
nonnegative.

(iv) SMALL C (input) corresponds to the breakpoint c. It must satisfy 0 <SMALL C < .

(v) CO (output) is the first Fourier coefficient C,.

(vi) CN (output) is a one-dimensional array of the remaining Fourier coefficients, viz. CN(N)
corresponds to Ch.

(vii) IERR (output) is an error parameter. IERR =0 is the first executable statement in
BBLTRN. If an error in the input data is discovered, IERR is incremented as shown in Table |
and control is returned to the calling unit without the coefficients being calculated. If no errors
are discovered, IERR retains the value zero. The user should test IERR immediately upon
returning from BBLTRN, since this is the only means of detecting an error in the input data.

(vili) AP is a one-dimensional array used for work space. It should be dimensioned to 4
greater than the larger of NB TRMS and K.

We define a degenerate condition as one which implies that all the Fourier coefficients are
zero. Tests are made for three such conditions. If at least one of them is true, CO and CN(N),
N =1,2,...,NB TRMS, are set equal to zero and a return is executed. If all three degeneracy
checks are negative, the program evaluates C0 and CN by implementing the algorithms. The
three conditions are: (i) ¢ =0; (ii) KASE=3 and k =0; (iii)) ¢* =0 (which can result from
underflow even if ¢ is positive).
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Table 1. The input parameters to
SUBROUTINE BBLTRN are listed in
column 1. If an error is discovered for a
given parameter, IERR is incremented
by the corresponding value in column 2.

Input IERR
Parameters Increment
KASE 1
NB TRMS 2
K 4
SMALL C 8

Test cases were run for all three dual equations as follows: ¢ =0.27, ¢=0.57 and
¢=0757and k=0,1,2,3,4,5,6,8, and 16 with NB TRMS = 200; ¢ = 0.017, 0.027, 0.987 and
0.997, and k =0, 3, and 11 with NB TRMS = 128. In all cases agreement could be considered
close between the series approximations using 129 or 201 terms and the right hand sides of the
dual equations. Pointwise errors were of the order 107 over 0 <x <c and of the order 107>
over ¢ <x <. In regards to these latter values, one should note that the second series in each
pair of dual equations had maximum absolute values greater than 10 and often 100 when
evaluated over 0 <x <c. As the number of terms in the series approximations was increased,
say from 8 to NB TRMS, consistent improvements in the approximations were observed. As
expected, there was somewhat greater deviation within a distance of 0.02 on either side of c.
We take these results as empirical evidence for the correctness of Bablojan and Tranter’s
formuias.

In the range of NB TRMS between 0 and 200 it took about 1 millisecond to compute a given
Fourier coefficient. If NB TRMS was small, fewer computations were required per coefficient,
but this was offset by the higher overhead costs per coefficient. These results depend on k and
are averaged over the values of k given above.

Estimates of round-off error indicate that for NB TRMS and k less than 200 and ¢ =0.017,
the coefficients are computed with relative error less than 107%. As ¢ approaches zero, all the
coefficients approach zero and though the absolute error with which they are computed remains
less than 107%, the relative error increases. However, checking the computer output by a hand
calculation indicates that for ¢ as small as 0.000017, the relative error is smaller than 107°.

The technical specifications are as follows.

Special condition. None.

Common blocks. /BT/, length 5.

Precision. Single.

1/0. None.

Portability. American National Standards Institute FORTRAN[45]). In units BBLTRN,
ELLIP E and ELLIP K there are machine dependent constants initialized in DATA statements.

Space required. 890,0.

Required resident routines. None.

Specifications. If NB TRMS = 1, the calling unit must specify CN to be a one-dimensional
array of length at least NB TRMS. The calling unit must specify AP to be a one-dimensional
array of length at least 4+ MAXO(NB TRMS K).

The estimations of round-off error, requirements for space, and times for execution listed
above were determined on the CDC 6400 using the SCOPE 3.3 operating system and the FTN
compiler with optimization level 1[46, 47].

6. DERIVATION OF FORMULAS FOR SUMS AND INTEGRALS

The formulas (2.1) and (2.2) for R.. and formulas (2.4) and (2.5) for M,. are given in[8],
while formula (2.6) for N,. was given in[42]. Let us establish formula (2.3) for R_3, for k#0
(the derivation for k = 0 is similar). Using the definition for R_4,, integrating by parts twice, and

CAMWA VOL. 3 NO. 3—D
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employing Legendre’s differential equation

-1 d
»(v + D) dx [“ - )H(P"(")]

to replace first P, and then P_j, we obtain

P(x)=

(k+3Ropuly) = 1i=ril0 [(1 = x*)(P-y(x)Pifx) = PLy(x) Pe())], ™.

Remembering that [30, p. 171]
1-x3 % (Py(x)) = % [xP_i(x) = Py(x)]
we find
(k + 3 R_3.u(y) = L[PAY)Pu(y) = Py(v)PU¥)]

+ (—‘2‘—)" lim [P_y(~1+ €) + Py(~1+¢)].

e=+0

The functions P.; are expressible as elliptic integrals [43, p. 337], viz.,

Pin=2KW) and Pyy==QEW)-KW).

6.1

6.2)

6.3

(6.4)

Substituting from (6.4) into (6.3) combined with some algebra yields the desired formula (2.3).

Next we turn to the summation formula (2.7). From [30, p. 232]

o (=1)"P, (cos 6) 2n+1 _ ( v )
2,.2."0————_2n+1 X F sm2,

where x = tan (n/2). We obtain the summation formula (2.7) by setting n=/2 and § =7 —c.

Likewise, formula (2.8) follows readily from formula (610.01) in[48].
Next we establish the summation formula (2.9). Now

BaNea(y) _ S 1 dP.(p)
;I T+ I[@k(”),§12n+l du ]d“'

Using (2.7) we see that

w© B"Nkn(‘y)__lfl _d_ [1_+—’L]”2
Z5ns1 =), Py (K( 2 ))d“
One now integrates by parts and uses (6.4) and
Pi(x) = =(BaP.(X)I(1 = x7).

A little algebra then gives the desired result.

(6.5)

Finally, we derive formula (2.10). Let Z denote the series on the left hand side of (2.10).

From the definition of R,, we see that

[ (< Puu)
‘L(Eoznﬂ du

Therefore from (2.7)
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From (6.4) the integrand above is wP_y(—~u)/2. Thus we see that
=7 [R-ta()= Rpol=7)]:

Using (2.8) to evaluate R_14(1), we obtain formula (2.10).

7. DERIVATION OF ALGORITHMS

We start with the derivation of formulas (4.5)-(4.8). Let us denote by H,(8) the value of
H(6) when F(x) is given by (4.4). Using Mehler’s representation for the Legendre polynomials
[30, p. 235}, viz.

P. (cos 0)=y7r_2] CO:((): ';)2).1' \/ZJ' su;((;-f;)x 5 i=0.l,

we see (3.12) implies that

,,e=%(cos 6-1) and H.=(k+)P. (cosh), k=1,2,. (1.1

Substituting into (3.11) we obtain
C.= C(,P.,(y)+%Lcdi0(P,. (cos 8))(cos 8 —~1)d8, k=0 and n=0,1,..., (7.2)
Co= CoPu{y) + (k +3) Lc% (P.(cos 0)P, (cos B)df, k=1,2,..., n=0,1,.... (1.3)

Integrating by parts we see that
j:adg (P. (cos 6)) (cos 6 — 1) d8 = —(1 = y)Pu(y) ~ Ron(¥).
This relation and (7.2) give (4.6). Using (6.5) we see that
J:a% (P.. (cos )P, (cos 8) 46 = — B, Nin.

Now we turn to the question of obtaining C,. We substitute from (4.6) into (3.4a) and
evaluate at x = 0. This gives for k =0

Y Pa(y) 1< Ronly) _
(CO 2)22n+1 4,.z=o2n+1_

n=0

(7.4

Replacing the sums in (7.4) from (2.7) and (2.10) gives (4.5). Substituting from (4.8) into (3.4a) at
x =0 we obtain

2 Ninly) _

2n+1 =l

CoK () + (k +3) 2 BaNenly)

Using (2.9) and some algebra we obtain (4.7).
If we denote by J.(8) the value of J(8) when F(x) is given by (4.9), we find after using
Mehler’s representation that

J(6) = (k +3) P, (cos 8).

Substituting into (3.13) and rearranging we obtain (4.10).
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Finally we consider the derivation of (4.12) and (4.13). Let us denote by L(8) the value of
I(6) when F(x) is given by (4.11). Using Mehler’s representation and the addition formula for
cosines we see that

L(9)= g(P" (cos 8) + Pi—, (cos 8)).

Equations (4.12) and (4.13) follow upon inserting this expression into (3.15) and (3.16) respec-
tively.
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(stswsanunssnnsrnannsaassanaes APPENDIX susEBAASEARNISIERESYAIRR R R R K I RRI RS
C
SUBRDUTINE EBLIRN(KASE,NB TkMS,K,SMALL C,CO,(N,IERR,AP)

COMMENTS., THIS SOFTWARE PACKALE IS THE APPENDIX TO THE PAFER
KELMAN,H.B s MAHEFFY,J.P.s AND STMPSON,J.T. ALGORITHMS FOR (LASSIC DUAL
TRIGONOWETRIC EWUATIUNS,COMPUT . MATH.APPL.,1977

ITS uSt 1S DESCRIoED IN SEC.5 whERE DEFINITIONS OF THE 2ARAMETERS IV THE

ARGUAENT LIST ARE GIVEN. THE MEANING OF PARAMETERS IN COMMOIN/DT/ 15 23vIOUS

FRUM ASSIGN®MENT STATEMENTS BELUe.

COMMON/BT/LUMAAPHILPILPSIAPS] SU

DIMENSION ARP(T)L,CNCY)

LOLICAL CASESDEGLNRT

CASELBUOL) = .NUT.300L

DATA PY/3.16715926535898/

C  TEST INFUT PARAMETERS
1ERW = O
1F(KASE.LE.L .OH. KASE.LE.&) TERR=IERR4?
IF(ND TRWS.LT.C ) JERR =1EKK+2
TFCRLLT.U) TERR=1ERK+4
FFCSMALL C .LT. U.N .OR. SMaLL € .GT. PY)} IERR = JERR + 8
IFCIERR.NE.C) RETURN
¢ EAD TESTING

pl=pY
€ UvR £ = SMALL (/2.C
6MASCOS (SHALL ()
PRI = (uS(C Q¥R 2)
PS1 = SINCL DVR 2)
PS1 SQ = PSles?
DEGLNRT=SMALL C.E4.U. .OR., (KASE.EQ.3.AND.K.EQ.D0) .DOR, PSI $Q.&Q.J.

LR RaNat

1# (CASE(DEGNRT)) 50 10 100
CALL SET U(CUs,CN,NB TRMS)
RETURN
< ELSEs USE ALGORITHMS TO COMPUTE
160 CONTINUE

CALL LONUKIMAXDINS TRMS,K JsUuMALAP)
CALL COEFF(KASELNE TRMS,(UsCNAAP,LK)
RETURN
£t ND
¢
FUNCTION AM(K,N,AP)
COMMENT. AM 1S THE INYEGRAL MIK,N) GIVEN bY FOIRMULAS (2.4) AND (2.5)
COMMON/BI/GMA,PhI-#1,PSIsPS] SU
DIMENSION APC1)
LOLICAL CASE,XK £EQ D
CASE(BOOL) = .NOY.BOOL
AN=FLOAT(N}
NHOLD = N
KHOLD = X
« EC 0 = K.EG.0
TFE(CASE(X EQ D.AND.N.EG.D)) 62 T0 10
AWM s =1.0 =6MA ¢ 2.D0*ALOG(2.0/(1.0~GPMA))
RETURN
10 CONTINUE
JFC(CASE(X kW 0)) L0 YO 20
AHOLD=N
NHOLD=D
AN=0.
C ELSE,K . NE.V
20 CONTINUE
AM=CANSANGT D) *R(KHOLDANHULD, AP AP (KHOLD* 1) #SCHP (NHOLD, AP)
AM =AM/BETA(KHOLD)
RETURN
END
€
FUNCTION AN(KsN,AP)
COMMENT, AN 1S5 THE INTEGRAL N(K,N} GIVEN BY FORMULA (2.6)

COMMON/BT/GMALPHILPL,P51,PS] SG
DIMENSION AP(1)
LOGICAL CASE
CASE(BOOL)Y=.NDT.BOOL
AN = =AM(KsN,AP)
IF(CASE(N,.EG.D)) 60 ¥0 10
AN = AN =7, 0/BETA(K)
RETURN
< ELSE, NUNE.L
15 CONTINUE
AV = AN $L2.C/BETACNI )W (DELTA(K,N)=DELTA(D,K))
RETURN
END

FUNCTION BETA(K)
AK=FLOATI(K)
AKT=AK+1.0
BETAZAKeACT/ (AK1+AK)
RETJRN

END
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<

CUMMENT

1000

10

1100
4

2u10
3002

3010

C

COMMENT :

<

R. B. KELMAN et al.

SUBKJUTINE COEFFCICAS

Es NB TRMS,CL,C P.K)

COMMON/BY/GUMALPHL,PL,FST,PYD Sa
DIMENSION C(D),P(1)
LOGICAL CASc
CASE(BOOL)=.NOT.BOOL

DATA

1ZERO/0/

AKZFLOAT(C)
AKKLFSACH, Y
$0 TO (1000,2000,300C

ELE =
ELx = ELLIP X(PSI SQ)

ELLIP E(PSI] SQ

TF(CASE(X Eu.())
C0=(.5/ELK)*(PSE SGPELK+2.0~(P1/4.0)*RHALF (12ERI,P,ELELELK))

1F(N3 TRWS.£Q.0()

), ICASE

)

RETURN

00 101G N=1.,Ng TRuS

L=N+1

CAN) =COmPLL) = 5o (PSIT

CONTINUE
RETURN

ELSEsK.uE.T

0=

CUZ(.S7ELKR)I (2. ~AKHLF*CO)
TF(NS TRMS . EG.0) RETURN

o

1020 N=1,NB TRWS

L=Ne1

CINI=CU*P(L)4.52AKHLF*BETA(N) *ANI(K,N,P)

CONTINJE
RETURN

SGaP L)+ .5aR(IZEROSN,P))

CLZARHLF®  S»(LELTA(K,JZERQ) /AKHLF-R(K,IZERO,P))
IF(Ng TRMS ,E0.0) RETURN

o0

2L10 N=

ANHLF=FLOATIN)#+.5

CUINI=AKHLEF*ANHLF# (URLTA(K,N)/ANHLF =R{X,N,F)})

CONTINVE
RETURN

0=0.0

1F(NB TRMS

K WNS 1 = x=1
CAT)=(=AK/ 2.0 »(R(K,TZERQ,P)+R(KMNST,1ZERD,P)I~2, #DELTA(IZERD,

KMNS1))

s N8 TRMS

LEQ.0) RETURN

1F(NB TRMS.EQ.71) RETURN

NB
00

MNS 1 = N8 TRMS -
3010 N=t,Nb MNS 1

AN HLF = FLOAT(N)
TERM=DELTACK N *DELTACKMNS T N) ~ANHLF* (R(K,sN,P) ¢ (KMNST,N,P))
CIN®Y)==C(N)Y+AKNTERM

CON
RETUR
£ N

Fumgr

1F (X,
END

FUNCT

TINUE
N
o

IUN DELTALK,N)
DELTA=0.0

EQ.N)DELTA=1.0
RETURN

LON ELLIP E (ETA)

C ELLIP E COMPUTES THE ELLI

[

OIMEN
DATA
DATA
DATA
DATA
DATA
DATA
DATA
SUMA
Sums
00 1D
d =8
SUMA
SUM3
CUNT]
ELLIP
RETUR
[

Funei

SION A(7)s BUY)
Al ,B(1)/ 4.4314
AL2),B(2)7 5.6811
A(3),B(3)7 2.2186
A(e).BLL)/ 1.5684
A(S),u(5)/ 1.9228
Alo),BL6)/ 1,218
A7) eBU)7 1.5501
0.

0.

1 =1, 7
-1

= (SUMA + A(J)) =
= (SuM3 ¢+ B(I)) *
NUE

E = 1. ¢ SUMA -
N

°

ION ELLIP X (ETA}

1

+ .5

DELTA IS THE KRONECKER DELTA

PTIC INTEGRAL E(SGRT(! -

7 193546
5 68105
2 20699
? 70023
4 38y02
Y L¥tes
8 74474

ETA
ETA

ALOGC &

7733
3803
FIYY)
9786
2977
6695
5296

TA )

E-1,
k=2,
E=2,
E~2,
k-2,
€E=2,
E~3.

. SU

2.69999
3.37488
5.84950
4.09074
2.35091
b.465682
3.7888¢6

"8

¢ ELLIF X CUMPUTES THE ELLIPTIC INTEGRAL K(SUKT(Y = E

C

CUMMENT,

DIMEN
DATA
DATA
DATA
OATA
GATA
DATA
DATA
DATA
SUMA
SuMa
50 10
J o=k
SuMa
SUuMg
CONTL
ELLLe
RETUR
[ |

SION AC(7)s, 8(2)
AL12,B(1)/9.657306
A(2),8(2)73.06%909
AL3).BC8)/1,52618
AlL),p(k)71.255645
AC5),d(5)71,63695
AL6),B(8)/1.09623
AC?),0(7)/1.40/04
ALUGG/1.38629 4306
= 0.
= 0.

1= 1.7

(SUMA + A(J)) »
= (SdMbB ¢ B (J))
NUE
K = ALJG4& ¢ SUMA
N
[

U20%1 6771

63386 1

795

32062 2534
69354 3211
68596 7517
81065 8623
Y1569 6101

11 1989

ETA
ETA

~ ALOGL(

SUDHOUTIVE LGNDR(N,X,AP)

oIMLEN
AP(Y)
APC2)
N2zNe

x=2
CONT]
He=

SIuN AP(Y)
=1.0

=x

2

NUE
2.0-1.0/FLOATI(X)

£7

E-02,
£-2,
£-2,
€2,
€-2,
E~2.
e-3,

a) L

GENERATES LEGENDRE POLYNOMIALS UF DHOER

AP(K41)=XARK*AP(K)~(RK-T.0) *AP(K=1)

K=K
1F (K.
RETUN
END

+1
LE.N2) 30 TO 10
~

ETA))

99844
06209
29706
82159
60258
26731
«8734

TA))

FOURLER COEFFICIENTS CUN)AN=0,1,.,..,N8 TRMS,ARE EVALJATED.

CINTINUE

w3 T3 11

CONTINUE

SCRP(K,PISELKSFLOAT((=1) oK)} aPI«AKHLF *ARHALF (X, P,ELELELK)

CONTINUE

8655 E
8189
6166 E
3154 E
L9846 €
5060 €
9387 €

1.24999 99858 5309 €-1

?7.0311¢
“.87379
5.57218
2.09057
S.818U7
3.42805

(.5 ¢+ 5

10585
5109¢
44300
67733
S6147
71922
/

uMa)

3296 €-2
5¢18 £~2
7327 €-2
6790 E-2
199% E-3
9768 E-4

K=0,1,...8#1. STORES

o]

PR R

1IN AP
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FUNCTTON R(K,N,P)

COMMENT, R IS INTEGHAL EVALUATJED USING FORMULAS(2.1) AND (2.2) .,

1L0

4

COMMON/BT/GMA,PHL»P1,PS2sPSI SQ
DIMENSION P(1)
LOuwICAL CASE
CASE(BOOL)=.NUT . BOOL
AK=ELOAT(K)
AN=FLOAT(N)
AKZ=AK+AK
L=k
maNel
JECCASL (K, NE.NY) 3 10 100
R=BETA(N)SSCRPIN,P)OF (L) ~UETA(K)aSCHP(K,PI*P (M)
R=R/ (AN (AN+1 D) -AK» (AK+1.D0))
KETURN
ELSE, K. EU.N
CINTINUE
OENOM=AK2+1,0
1F(K.EQ. L) PK
(K. 6T.0) PK
H=1.00%A%F(L)*22 - ((AK2-2.U)/(AKZ2=1.0))=P{L)sPK
RER/DENIM
IHAK.LEL.1IRETUKN
K.tw.N AND. K.GLE.Z2,S0 HORM SUM
SuM=0.0
kK=K
CUNTINUE
AKKZ2=FLUAT (2exK)
SUM=SuUMe (P (XK JAP(KK=13)/C (ARK2=1.0()w{AKK2-3,0))
CKEKK=T
1F(KK.GE.2)
K3R ¢ (2.25U
RETURN
LN D

FUNCTION WHALF(N,F ELESELK)

CUMMENTS: RHALF(N) IS THlL INTELGRAL EVALUATED USINL FORMULA (2.3) wITH 3%4
€ KLPLACLD dY -0MA,

33

COMYUN/AT/GMALPHIAPL.+5]14PST SQ
DIMENSION P(T)

MaNet
TFUNCEG.DY D T 3u
GO0 TO 4L
CONTINUVE
RHALF 1.0+ kLE- € PSI SQ JDeELK
RHALE = -E.*HALF/F]
RETJRN
CONTINJE

JF(N.GELT)

RN=FLOATIN)

TERM=( PS1 54 = RN#LMA)® F(YM) & RNeP(N)
TERM=TERM*ELC

TERW=VENRM ~ P(M)ebLE ¢ 1.0

RHALF 2.t (=T, *aN) 7 (FlellaNt. 5)en2))
RHALFZRHALFSTER®

RETURM

END




