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Abstract-The singular integral solutions to certain classic dual trigonometric equations provided by the 
formulas of Tranter and Bablojan are reduced to algorithms. A preliminary Fourier analysis is made of the 
data, and computational rules are derived by the systematic reduction of the singular integrals for each 
ordinary Fourier component of the data. Extensive numerical testing provides evidence for the correctness 
of both the original solutions and the resulting algorithms. The listing of programs in ANSI FORTRAN lo 
implement the algorithms is appended. 

1. BACKGROUND 

We develop algorithms for the solution of the following classic dual trigonometric equations: 

Q<X<C (l.la) 

2 A, cos (n + ;)x = g(x), 
n=O 

C<X<P (l.lb) 

z. 3 sin (n + i)x = f(x), 

2 A. sin (n + f)x = g(x), 

2 A sin nx = f(x), 
n-1 n 

ocx<c 

CCX<P 

o<x<c 

(1.2a) 

z A. sin nx = g(x), 
n=l 

C<X<T (1.3b) 

where c is a fixed point and f(x) and g(x) are given functions. 
Our starting point is an important set of formulas, based on double singular integrals, 

developed by Bablojan [ l] and Tranter [2] for the solution of the above equations. The original 
analysis was given in [3] and subsequently simplified [ 1,2,4]. Other singular integral solutions 
are found in[.5,6]. The above equations are written in the canonical form described in[7]. In[2] 
solutions were not derived for the case g+ 0 in (l.lb) and f+ 0 in (1.2a) whereas in [I] solutions 
were not derived for (1.3a, b). Combining the results we have available singular integral solutions 
for all the equations (1. la, b), (1.2a, b), (1.3a, b). The results here fulfill in part the suggestion made 
in 181 that a preliminary ordinary Fourier analysis would be the key to converting singular integral 
solutions into algorithms. (Naturally, the algorithmic resolution of ordinary Fourier analysis lies 
beyond the scope of this paper.) 

These classic dual trigonometric equations occur in solving mixed boundary value problems 
in rectangular domains in the x-y plane [9, p. 150, 14, 201 and represent one of the simplest 
examples of dual orthogonality. Consequently, they have been studied in many 
investigations[8, 10, 11,13, 15, 16,181 and have found several applications especially in mixed 
boundary value problems in mechanical engineering[l,21-23,441 and are closely related to 
more general type dual series equations which occur in heat transfer theory, fracture 
mechanics, and wave guide design, e.g. [21,24-261. Moreover, because of the simple form of the 
dual orthogonal problem represented by the above equations, their solutions in the form of 
singular integrals have served as archetypal closed form solutions to dual Sturm-Liouville 

+A copy of the computer code on punched cards or magnetic tape is available at cost from the first author. 
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problems providing the model for comparison and development of other 
solutions[26,28,29,34,44]. Also, because of their relation to canonical mixed boundary value 
problems in the plane, the harmonic functions associated with these dual series have served as 
bench marks against which to test other numerical methods of solving mixed boundary value 
problems [ 12, 17,27,34-381. 

However, the fact that the solutions are expressed as double singular integrals has served as 
a barrier to automated numerical evaluation of the formulas and to their rigorous justification. 
These considerations make the present investigation timely for in it we reduce each singular 
integral to an algorithm which is implemented in a computer program. By algorithm we mean 
that given f(x) and g(x) each coefficient A. can be computed to specified accuracy by a 
precisely defined, finite sequence of rules whose execution involves only a finite number of 
elementary arithmetic operations none of which is division by zero. 

On the basis of extensive numerical testing we conclude that Bablojan and Tranter’s 
formulas[l, 21 are correct for a wide variety of input functions f(x) and g(x). However, from 
such testing it is not possible to define the class of functions f(x) and g(x) for which the 
resulting solutions are rigorously valid. 

In Section 2 we list notation and formulas needed for describing the singular integral 
solutions. For completeness and ease of reference the singular integral solutions to (l.la,b), 
(1.2a, b) and (1.3a, b) are listed in Section 3, and the correspondence between these equations in 
canonical form and those found in [ l] and [2] is described. The algorithms are given in Section 4. 
The use of the software package and its technical description, as well as the results of numerical 
tests, are given in Section 5. Section 6 is devoted to the derivation of the formulas of Section 2, and 
in Section 7 the algorithms of Section 4 are derived. In the Appendix is listed the FORTRAN 
software which implements the algorithms. 

2.PRELIMINARYDEFINITIONSANDFORMULASFORSUMS 
ANDINTEGRALS 

In so far as practicable we maintain notational consistency with@]. k and n will always be 
used to denote nonnegative integers. We set p,, = n(n + 1)/(2n + l), and St, is the Kronecker 
delta. Further y = cos c, 4’ = sin c, $J = cos (c/2), $ = sin (c/2). By P,’ we denote the Legendre 
function of the first kind of degree v and order p. We define .?J’” by 

go(x) = 1 +x and g,(x) = P.+,(x) - P.-,(x), n = 1,2,. . . . Note that 9’. = (1 - x~)~‘*P~‘/& 
[30, p. 1711. Let N,,,,(r) = 0, and for other values of K and v we define three definite integrals 
R,, M,, and NW, by 

F(0, n), K(B) and E(6) denote respectively the incomplete elliptic integral of the first kind, 
the complete elliptic integral of the first kind and the complete elliptic integral of the second 
kind[30]. The derivation of the following ten formulas is discussed in Section 6. In these 
formulas any Legendre polynomial of negative degree is taken as zero. 

R *n (y) = P.9m(,+pk(r) - &9k(Y)p”(Y) 
n(n+l)-k(k+l) 

k, n = 0, 1,. . . k# n, 

Rtr(y) = j&i [ 1+ r(p,(,)p-~P,(,)P,-,(y) 

1 
Pk-,(Y)Pk-z(y) Pk-2(YPk-3(Y) 

+2 (2k-l)(2k-3)+(2k-3)(2k-5)+“‘+ 
PdY)Po(Y) 

3.1 >I k=O,l,..., 

R+(Y) = & {I@‘+ ky)P,dy) - kP,-,(r)lK(JI) - P,(y)E(#) + (-l)“], k = O,l, 

(2.1) 

(2.2) 

, (2.3) 



Algorithms for dual equations 205 

(2.4) 

) n=0,1,2 )...) (2.5) 

n=l,2,... (2.6) 

(2.7) 

sin B de = 4@(d) - $*K(4)). (2.8) 

-, ~~~~(~)=~{A(y)K(~)+(-l)‘a(k+f)~-~.,(-y)}, I= k =O, 1,. . . , (2.9) 

-- 
* 

(2.10) 

3. SOLUTIONS AS SINGULAR INTEGRALS 

To convert the dual equations of Section 1 into the forms given in[l] and[2] requires only 
simple transformations of the independent variable and A. [9, p. 1501. The correspondence 
between the equations here and those given in]21 is this: (I.la,b) here corresponds to the dual 
eqn (8) and (9) in [2]; (1.2a,b) corresponds to the dual eqn (1) and (2); (1.3a,b) corresponds to the 
union of the dual eqn (19) and (20) and the dual eqn (26) and (27). The dual equations of concern 
in[l] are (18) and (23). Note that in Bablojan’s notation (18) in[l] with p = -1 and (23) with 
p = 1 both correspond to (1.2a,b) here. Dual eqn (18) with p = 1 and dual eqn (23) with p = -1 
correspond to (l.la,b) here. 

By using an observation of Gordon [31] we can simplify the analysis by assuming g = 0 
without loss of generality. Let G(x) be defined by G = g on c < x < P, whereas on 0 < x < c let 
G(x) be defined arbitrarily (suggestions for doing this conveniently are given in Section 4). Let 
B., C., and F(x) be defined by 

G(x) cos (n +4)x dx (3.1) 

Fo=f(x)+~o~Cos(n+t)x, o<x<c, 

A.=Cn-B,. (3.3) 

Then {C,} satisfies the dual trigonometric equation 

Ijo 5 cos (n + i)x = F(x), 

g c. cos (n + Dx = 0, 

o<x<c, 

c<x-=a, 

if, and only if, {A,} satisfies (l.la,b). 
If we now define B. and F(x) by 

3 r” 
B. = $ 

I 
G(x) sin (n +$)x dx o 

(3.2) 

(3.4a) 

(3.4b) 

F(x) = f(x) + “zO$ sin (n + Bx, o<x<c, 
2 

(3.5) 

(3.6) 
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then {A.} satisfies the dual trigonometric eqn (1.2a,b) if, and Only if, (c-1 satisfies 

$o%sin(n+f)x=F(x), OCX<C, 

m 

z C,sin(n+$)x=O, c<x<?r. 
n-0 

Finally, let {A.} satisfy the dual eqn (1.3a,b) and define B. and F(x) by 

F(x) = f(x) + 2 s, sin nx, o<x<c. 
n-1 n 

In this case {C.} satisfies the dual equation 

- en I2 - sin nx = F(x), 
n-l n 

o<x<c, 

(3.7a) 

(3.7b) 

(3.8 

(3.9) 

(3.10a) 

3 C. sin nx = 0, C<X<W. (3. lob) 
“-1 

The solution to the dual eqn (3.4a,b) based on formula (18) in[2] or formula (25) in[l] is 
given by 

c. = CUP, +; I = H(B) $ (Pa (~0s 0)) de, n=l,2,..., 
0 

where 

T(X, e) = (COS x - cos e)“z 

-sr(+dx, oce<c, 

and C, is found by substituting into (3.4a). 
The solution to the dual eqn (3.7a,b) based on (22) in[l] is 

C,=(n+t) c I qep. (COS e) sin e de, n = 0, 1,. . ., 
0 

where 

.r(e) =$l@gdx, ace-cc. 

The solution to the dual eqn (3.9a,b) based on (30) and (31) in[2] is 

c,= cI(f3)sinede 
I 0 

I 

c 
C, = -C.-, + (2n - 1) ~(~)P,_,(cos e) sin e de, n = 2,3,. . ., 

0 

I(e)=$[y.sdx, o<e<c. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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4. ALGORITHMS 
In developing the algorithms we perform an ordinary Fourier decomposition of F(x) and 

find the algorithm for each ordinary Fourier component. Combining this with (3.1) and (3.3) dual 
Fourier analysis is made to depend upon ordinary Fourier decomposition. In other words, one 
cannot hope that dual Fourier decomposition is simpler than ordinary Fourier decomposition so 
that one seeks to make dual Fourier analysis depend upon ordinary Fourier analysis as simply 
as possible. Since F is defined only over part of the interval 0 < x < n, there are infinitely many 
ways in which to obtain an ordinary Fourier decomposition representing F on 0 <x c c in 
terms of functions orthogonal on 0 < x < IT. Naturally, one seeks the decomposition so that the 
ordinary Fourier components decrease rapidly. This is achieved by introducing a function a,(x) 
such that 0 = F on 0 < x < c and @ is defined on c < x < P in such a way that @ is as smooth as 
F, and @ and a specified number of its derivatives are zero at x = ?r. Similar remarks hold for 
constructing G(x). Further. consideration of this point is not warranted here since it lies in the 
domain of ordinary Fourier analysis and can be found in the literature, e.g.[32,33]. 

Suppose, then; that Q, is defined by @ = F on 0 c x < c and @ = h on c c x < s where h is a 
function chosen in accordance with the remarks above. Then 

a)(x) = x hk cos (k + i)x 
k-0 

(4.1) 

A,, 2 ~ f(x) cos (k + 4)x dx + $1,1 h(x) cos (k +4)x dx. (4.2) 

Consider the dual series problem given by (3.4b) and 

m so 5; cos (n + 2x = & hk cos (k + f)x, o<x<c. (4.3) 

Clearly {C,,} is a solution of the dual series eqn (3.4a,b) if, and only if, it is a solution to the dual 
series eqn (4.3, 3.4b). This suggests solving (3.4a,b) separately for each ordinary Fourier 
component, i.e. when F is given by 

F(x) = cos (k + ;)x, o<x<c. (4.4) 

In so doing we obtain the following algorithm. For the case k = 0 the solution to (3.4a,b) is 

1 
co = 2K(dJ) [ 

JI’K(9) + 2 - $ R-t.o(- y) 1 (4.5) 

For the case k = 1,2,. . . , the solution to (3.4a,b) is 

co = 2K(4) 
-!- (2 - (k + f)K%(y)W$) + (-l)*z(k + f)R-td-~91) 

C. = COP,(Y) +; (k + &?.N~.(y), n = 1,2,.... 

(4.7) 

(4.8) 

For the dual eqn (3.7a,b) with F given by 

F(x) = sin (k + f)x 

the algorithm is 

(4.9) 

C.=(k+;)(n+;) -j$ 
C 

-R,.(y)], k,n=O,l,.... (4.10) 
2 
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For the dual eqn (3.10a,b) with F given by 

F(x) = sin kx 

the algorithm is 

(4.11) 

c, = 2 (R&y) + Rt-LO(Y) - WLk-A k=l,2,..., (4.12) 

C,,, = -C. + k[h, + h-,.n -(n +i){Rt,(y)+ Rt-dy)II. k,n=1,2 ,.... (4.13) 

Let us examine the solution to (3.4a,b) given by (4.3) and (4.6) or (4.7) and (4.8) and consider 
the determination of a coefficient C,, to specified accuracy. This explicitly involves the 
execution of 16 or less elementary arithmetic operations. Next it requires the evaluation of the 
first n + 1 Legendre polynomials at y. These were computed by setting PO(y) = 1, P,(y) = y and 
using the recursion relation 

P,+dY) = -& [(2n + l)yP.(y) - nPAv)l. (4.14) 

Beyond this finite number of rational operations two evaluations each of the sine, cosine, 
logarithm, and the first two complete elliptic integrals are required. There are several algorithms 
available for computing the trigonometric and logarithmic functions [39,40]. For the evaluation 
of the elliptic integrals we used the Chebyshev type algorithms of Cody[41]. It follows, 
therefore, that formulas (3.1), (3.3) and (4.5)-(4.8) constitute an algorithm in the sense 
enumerated above for computing {A.} the solution to (l.la,b). Similar remarks are valid for 
(1.2a.b) and (1.3a,b). 

5. SOFTWARE USAGE AND COMPUTER TESTS 

The software package is used by the statement 
CALL BBLTRN(KASE,NB TRMS,K,SMALL C,CO,CN,IERR,AP) 

(i) KASE (input) has allowed values 1, 2, or 3. If KASE = 1, the dual eqn (3.4a,b) is solved 
with F given by (4.4). If KASE = 2, the dual eqn (3.7a,b) is solved with F given by (4.9). If 
KASE = 3, the dual eqn (3.10a,b) is solved with F given by (4.11). 

(ii) NB TRMS (input) denotes the number of Fourier coefficients to be computed, i.e. {C,: 
n=O,l , . . . , NB TRMS} is calculated. For KASE = 3, BBLTRN returns Co with the value zero. 
NB TRMS must be nonnegative. 

(iii) K (input) corresponds to k on the right hand sides of (4.4), (4.9), and (4.11). K must be 
nonnegative. 

(iv) SMALL C (input) corresponds to the breakpoint c. It must satisfy 0 5 SMALL C 5 ?r. 
(v) CO (output) is the first Fourier coefficient C,. 
(vi) CN (output) is a one-dimensional array of the remaining Fourier coefficients, viz. CN(N) 

corresponds to C,. 
(vii) IERR (output) is an error parameter. IERR = 0 is the first executable statement in 

BBLTRN. If an error in the input data is discovered, IERR is incremented as shown in Table 1 
and control is returned to the calling unit without the coefficients being calculated. If no errors 
are discovered, IERR retains the value zero. The user should test IERR immediately upon 
returning from BBLTRN, since this is the only means of detecting an error in the input data. 

(viii) AP is a one-dimensional array used for work space. It should be dimensioned to 4 
greater than the larger of NB TRMS and K. 

We define a degenerate condition as one which implies that all the Fourier coefficients are 
zero. Tests are made for three such conditions. If at least one of them is true, CO and CN(N), 
N = 1,2,. . . ) NB TRMS, are set equal to zero and a return is executed. If all three degeneracy 
checks are negative, the program evaluates CO and CN by implementing the algorithms. The 
three conditions are: (i) c = 0; (ii) KASE = 3 and k = 0; (iii) $* = 0 (which can result from 
undertIow even if c is positive). 
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Table 1. The input parameters to 
SUBROUTINE BBLTRN are listed in 
column I. If an error is discovered for a 
given parameter, IERR is incremented 
by the corresponding value in column 2. 

Input 
Parameters 

IERR 
Increment 

KASE I 
NB TRMS 2 

K 4 
SMALL C 8 

Test cases were run for all three dual equations as follows: c = 0.27r, c = 0.5~ and 
c = 0.757r and k = 0, 1,2,3,4,5,6,8, and 16 with NB TRMS = 200; c = O.O11r, 0.02n; 0.98~ and 
0.99~, and k = 0,3, and 11 with NB TRMS = 128. In all cases agreement could be considered 
close between the series approximations using 129 or 201 terms and the right hand sides of the 
dual equations. Pointwise errors were of the order lo-’ over 0 <x < c and of the order 10e2 
over c < x < 7. In regards to these latter values, one should note that the second series in each 
pair of dual equations had maximum absolute values greater than 10 and often 100 when 
evaluated over 0 <x < c. As the number of terms in the series approximations was increased, 
say from 8 to NB TRMS, consistent improvements in the approximations were observed. As 
expected, there was somewhat greater deviation within a distance of 0.02 on either side of c. 
We take these results as empirical evidence for the correctness of Bablojan and Tranter’s 
formulas. 

In the range of NB TRMS between 0 and 200 it took about 1 millisecond to compute a given 
Fourier coefficient. If NB TRMS was small, fewer computations were required per coefficient, 
but this was offset by the higher overhead costs per coefficient. These results depend on k and 
are averaged over the values of k given above. 

Estimates of round-off error indicate that for NB TRMS and k less than 200 and c 2 O.Olp, 
the coefficients are computed with relative error less than lo-*. As c approaches zero, all the 
coefficients approach zero and though the absolute error with which they are computed remains 
less than lo-*, the relative error increases. However, checking the computer output by a hand 
calculation indicates that for c as small as O.OOOO11r, the relative error is smaller than 10m5. 

The technical specifications are as follows. 
Special condition. None. 
Common blocks. IBTI, length 5. 
Precision. Single. 
I/O, None. 
Portability. American National Standards Institute FORTRAN [45]. In units BBLTRN, 

ELLIP E and ELLIP K there are machine dependent constants initialized in DATA statements. 
Space required. 890,,,. 
Required resident routines. None. 
Specifications. If NB TRMS 2 1, the calling unit must specify CN to be a one-dimensional 

array of length at least NB TRMS. The calling unit must specify AP to be a one-dimensional 
array of length at least 4 + MAXO(NB TRMS,K). 

The estimations of round-off error, requirements for space, and times for execution listed 
above were determined on the CDC 6400 using the SCOPE 3.3 operating system and the FTN 
compiler with optimization level 1[46,47]. 

6. DERIVATION OF FORMULAS FOR SUMS AND INTEGRALS 

The formulas (2.1) and (2.2) for Rk, and formulas (2.4) and (2.5) for M,. are given in[8], 
while formula (2.6) for N,. was given in[42]. Let us establish formula (2.3) for R+ for k# 0 
(the derivation for k = 0 is similar). Using the definition for R+, integrating by parts twice, and 

C,4MWA VOL 7 NO 3-D 
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employing Legendre’s differential equation 

P”(X) = -l -d[(l-X’)$(P”(X)] V(Y + 1) dx 

to replace first A and then P-:, we obtain 

(k +;)2R_&*(y) = ;;trO [(1 - x’)(P-j(x)PXx) - PqxvmNl;‘“. 

Remembering that [30, p. 1711 

(1 - x3; (P-:(x), = ; [XP_$(X) - Pi(X)] 

(6.1) 

(6.2) 

we find 

(k + i)*R-i,(y) = ~2V’::(~V’d~) - P-t(yVVyN 

+qlim [P_:(-l+e)+P+(-l+e)]. (6.3 
C-+0 

The functions P=+ are expressible as elliptic integrals [43, p. 3371, viz., 

P-~(Y) = $ K(+) and P&Y) = ‘, (2E($) - K(4)). (6.4) 

Substituting from (6.4) into (6.3) combined with some algebra yields the desired formula (2.3). 
Next we turn to the summation formula (2.7). From [30, p. 2321 

2 2 (-1)“P” (cos e) 
n-0 2n+l x 

where x = tan (q/2). We obtain the summation formula (2.7) by setting n = 7r/2 and 0 = ?r - c. 
Likewise, formula (2.8) follows readily from formula (610.01) in[48]. 

Next we establish the summation formula (2.9). Now 

g,&) 2 LdP,(CL) 
._,2n+l dp 1 dp. 

Using (2.7) we see that 

- PA”(Y) _ ’ z 
“r, 2n+’ 

- -jjy W(r)-& (~([y]“*)) dp 

One now integrates by parts and uses (6.4) and 

P:(x) = -(p.s”(x))/u -x2). (6.5) 

A little algebra then gives the desired result. 
Finally, we derive formula (2.10). Let 2 denote the series on the left hand side of (2.10). 

From the definition of Ro. we see that 

Therefore from (2.7) 

Z=;CK([y]“*)dP. 



Algorithms for dual trigonometric equations 

From (6.4) the integrand above is 7rP_:(-~)/2. Thus we see that 

Z = f [R-:,(l) - R-:.o(-y)]. 

Using (2.8) to evaluate R_:.,,(l), we obtain formula (2.10). 

7. DERIVATION OF ALGORITHMS 

We start with the derivation of formulas (4.5)-(4.8). Let us denote by Z&(e) the value of 
H(8) when F(x) is given by (4.4). Using Mehler’s representation for the Legendre polynomials 
[30, p. 2351, viz. 

we see (3.12) implies that 

H,=i(cosB-1) and K=(k+~)B,(cos@), k=l,2,.... (7.1) 

Substituting into (3.11) we obtain 

1 
C” = C&(y)+5 o de 

I 
cd (P, (COS e)) (COS e - 1) de, k = 0 and n = 0, 1, . . . , (7.2) 

c, = COP”(Y) + (k + 9 cos e)pk (CDS e) de, k = 1,2,. . . , ff = 0,1,. . . . (7.3) 

Integrating by parts we see that 

I ,=-& (P” (cos e)) (c0s e - 1) de = -(l - y)P,(y) - Ron(y). 

This relation and (7.2) give (4.6). Using (6.5) we see that 

I oc -& (P, (COS e))s, (COS e) de = - PAL. 

Now we turn to the question of obtaining C,. We substitute from (4.6) into (3.4a) and 
evaluate at x = 0. This gives for k = 0 

1 1 i Ron(y) 
,=o2n+I 4,,,2n+l . (7.4) 

Replacing the sums in (7.4) from (2.7) and (2.10) gives (4.5). Substituting from (4.8) into (3.4a) at 
x = 0 we obtain 

CoK(d)+(k+f)“~,B~~~(:)= 1. 

Using (2.9) and some algebra we obtain (4.7). 
If we denote by J,(e) the value of J(e) when F(x) is given by (4.9), we find after using 

Mehler’s representation that 

J,(e) = (k +;)R (cos e). 

Substituting into (3.13) and rearranging we obtain (4.10). 
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Finally we consider the derivation of (4.12) and (4.13). Let us denote by l(O) the value of 
Z(e) when F(x) is given by (4.11). Using Mehler’s represent.ation and the addition formula for 
cosines we see that 

I~.@) = t (A ccos 0) + P,-, (~0s 63. 

Equations (4.12) and (4.13) follow upon inserting this expression into (3.15) and (3.16) respec- 
tively. 
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